
TIPS, TRICKS & TOOLS
FOR NAV/SQL TROUBLESHOOTERS

Jörg Stryk
(STRYK System Improvement)

MS Dynamics NAV (Navision) since 1997
Since version 1.2

MS SQL Server since 2003
Since version 2000

100% focus on NAV/SQL Performance Optimization
STRYK System Improvement (since 2006)
Worldwide support of MS Dynamics Partners & Customers

More than 500 projects in about 25 countries on 5 continents –
and counting!

Microsoft Most Valuable Professional
MVP MS Dynamics NAV since 2007

Book: “NAV/SQL Performance Field Guide” ISBN 978-3-8370-1442-6

Software: “SSI Performance Toolbox” http://www.stryk.info/toolbox.html

Blog: “NAV/SQL Performance – My Two Cents” http://dynamicsuser.net/blogs/stryk/

JÖRG A. STRYK

Query-
Strategy

&
Indexing

Blocks &
Deadlocks

Platform &
Hardware

PERFORMANCE AREAS - AGENDA

http://mibuso.com/downloads/nav-techdays-2011-understanding-keys-indexes-with-dynamics-nav-sql..movie
http://mibuso.com/downloads/nav-techdays-2012-understanding-blocks-deadlocks-theory-practice-movie
http://mibuso.com/downloads/nav-techdays-2014-sql-server-sizing-configuration-for-good-performance

C/AL

Database

SQL Server

Hardware/Platform

C/AL
Databa

seSQL
Serv

er

Har
dw
are/
Plat
for
m

PERFORMANCE AREAS

Query-
Strategy

&
Indexing

Blocks &
Deadlocks

PART 1 - PLATFORM

Platform &
Hardware

It depends …

A common mistake that people make when trying to design something completely foolproof
is to underestimate the ingenuity of complete fools.

Douglas Adams

Windows Foundation Essential Standard Enterprise
Data Center

CPU RAM CPU RAM CPU RAM CPU RAM
Server 2008

n/a

4 32 GB 8 1 TB

Server 2008 R2 4 32 GB 8 2 TB

Server 2012 1 32GB 2 64 GB 64 4 TB 64 4 TB

Server 2012 R2 1 32GB 2 64 GB 64 4 TB 64 4 TB

Server 2016

SQL Standard Enterprise

CPU RAM CPU RAM

Server 2008 4 max max max

Server 2008 R2 4 64 GB max max

Server 2012 4/16 64 GB max max

Server 2014 4/16 128 GB max max

Server 2016 4/16 128 GB max max

64bit versions only!

Know the Limits!

Let’s check it out ...

� SQL Server Wait Statistics
� Windows Performance Monitor
� Performance Analysis of Logs (PAL) https://pal.codeplex.com/

Object Counter Instance Best Practice Comment

Processor % Processor Time Total 15% to 25% (or less)

Processor % Privileged Time Total Less than 10%

System Processor Queue Length n/a Less than 2

SQL Server: General Statistics User Connections n/a n/a The number of users working

SQL Server: SQL Statistics Batch Request/sec n/a n/a The number of queries processed

SQL WaitStats CXPACKET n/a n/a Depends on MAXDOP

1 CPU/Core per 20 to 25 User-Processes

Windows Power Options � High Performance
[BIOS � CPU Power Saving disabled]
Max. Degree of Parallelism � 50% of CPU �worst case (NAV!) � MAXDOP = 1
Don‘t change the „Affinity Masks“!
Regard special requirements in virtual environments! [Static vs. Dynamic; NUMA Spanning on/off]

CPU – BEST PRACTICES

Object Counter Instance Best Practice Comment

Memory Available MB n/a More than 500 MB

Paging File % Usage n/a n/a

SQL Server: Buffer Manager Buffer Cache Hit Ratio n/a Greater than 95%

SQL Server: Buffer Manager Free Pages n/a Greater than 640

SQL Server: Buffer Manager Page Life Expectancy n/a Greater than 300

SQL Server: Memory Manager Target Server Memory n/a n/a Max. Memory by Configuration

SQL Server: Memory Manager Total Server Memory n/a n/a Current Memory Usage

RAM – Best Practices

The more the better!
Never less than 16GB
Regard limitations by OS and SQL version/edition

Max. Server Memory = Physical Memory – 2 [to 4]GB [- requirements of other services or applications]
Min. Server Memoyr = 25% to 50% of Max. Server Memory
Local Group Policies � „Lock Pages in Memory“ for SQL Server service account [optional: Traceflag 845]

Disk 1 Disk 2

Data

Disk 1

Disk 2

Data

Disk 1 Disk 2

Data

Disk 3 Disk 4

Disk 1 Disk 2

Data

Disk 3
Parity

RAID 0 „Striping“ RAID 1 „Mirroring“ RAID 10 „Stripin g & Mirroring“ RAID 5 „Striping with Parity“

Only with SAN

DISKS – RAID (Redundant Array of Independent Disks)

RAID 5/6/DP
PP HS HS

RAM/NVRAM Cache

DISKS – SAN (Storage Area Network)

SSD cost per GB is 10 times more expensive
than HDD

SSD cost per IOPS is 10 times cheaper than
HDD

DISKS – Hard Disk Drives & Solid State Disks

DISKS – „Fusion IO“

http://www.fusionio.com

Object Counter Instance Best Practice Comment

Physical Disk Avg. Disk Sec/Read Each drive Less than 0.015 HDD; SSD less than 0.005

Physical Disk Avg. Disk Sec/Write Each drive Less than 0.015 HDD; SSD less than 0.005

SQL WaitStats PAGEIOLATCH n/a Less than 0.015 HDD; SSD less than 0.005

SQL WaitStats WRITELOG n/a Less than 0.015 HDD; SSD less than 0.005

SQL WaitStats IO_COMPLETION n/a Less than 0.015 HDD; SSD less than 0.005

DISKS – Best Practices 1

Use separate drives for
� OS, Programms, etc.
� SQL Server tempdb
� NAV DB Data (mdf/ndf)
� NAV DB Log (ldf)
� Local Backups & Misc

Local Group Policies � „Perform Volume Maintenance Tasks“ for SQL Server service account
Format DB drives with 64KB (Caution: regard special SAN requirements!)
SAN: adjust Host Bus Adapter (HBA) queue depth (depends, something between 32 and 128)

Data Size � equal to estimated maximum (e.g. 1000 MB to 5000 MB)
Auto Growth Data �fix value (e.g. 100 MB to 500 MB)
1 data-file per CPU; no more than 8 to 12 data-files in total
Log Size � 100 MB to 500 MB
Auto Growth Log � fix value (e.g. 100 MB to 500 MB)
Maybe Traceflag 1118

tempdb

Data Size � 10% free space minimum
Auto Growth �fix value „Data Filegroup 1“ (e.g. 1000 MB to 5000 MB)
Log Size � depends on Log Backup frequency; max. 20% of net data-size
Auto Growth Log � fix value (e.g. 500 MB to 1000 MB)
NEVER EVER USE „Auto Shrink“!

NAV database

DISKS – Best Practices 2

Object Counter Instance Best Practice Comment

Network Interface Current Bandwith each adapter n/a Should equal desired bandwidth

Network Interface Output Queue Length each adapter 0

Network Interface Packets Outbound Errors each adapter 0

SQL WaitStats OLEDB n/a Less than 1 msec

SQL WaitStats ASYNC_NETWORK_IO n/a Less than 1 msec

LAN – Best Practices

Gigabit
Regard LAN/WAN requirements
Dedicated Server-to-Server connections

Regard special requirements in virtual environments!
[TCP Offloading? UDP Offloading? Checksum Offloading? Receive Side Scaling (RSS)?]

Object Counter Instance Best Practice Comment

Microsoft Dynamics NAV * all ???

Microsoft Dynamics NAV % Primary key cache hit rate all Greater than 90 Indicates data caching issues

Microsoft Dynamics NAV Heartbeat time (ms) all Less than 10 Indicates LAN issues

Microsoft Dynamics NAV Average server operation time (ms) all Less than 100 [Indicates RAM/CPU issues ?]

SQL WaitStats ASYNC_NETWORK_IO n/a Less than 1 msec Will be always high with NAV 2013+

Dynamics NAV Service (NST) (NAV2013+)

One NST per 50 to 100 Users � one CPU per 20 to 25 Users
RAM: 500 MB per NST + 20 MB per Session + DataCache + MetaDataCache (apx. 100 MB)
At least two NST for the Users (for failover)
One separate NST for debugging/troubleshooting

Data Cache � 10 [= 1024 MB] to 12 [= 4096 MB]
Metadata Provider Cache � 5000 [objects]
Max. Concurrent Calls � equal to number of actual Sessions connected to this NST
“Debugging NST” � different service account!
“Debugging NST” � “Disable SmartSql” = TRUE

Virtualization

Resource-Requirements are the same as with physical Servers
NEVER EVER OVERBOOK THE VIRTUAL HOSTS!

Refer to “Best Practice Guides” of Hypervisor
Regard special requirements regarding CPU (Static vs. Dynamic; NUMA Spanning on/off)
Regard special requirements regarding LAN (TCP Offloading? UDP Offloading? Checksum Offloading? Receive Side Scaling?)

Blocks &
Deadlocks

Platform &
Hardware

PART 2 – QUERY STRATEGY

Query-
Strategy

&
Indexing

Balanced Trees

1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16

1 – 4
5 - 8
…

9 – 12
13 - 16

…

1 – 8
9 - 16

…

Indexes

Leaf NodesLeaf Nodes

Index NodesIndex Nodes

Root NodesRoot Nodes 1 - 16

1 – 8

1,2,3,4 5,6,7,8

9 - 16

9,10,11,12 13,14,15,16

Non-Clustered IndexClustered Index
%7%?

Table DataTable Data

Index NodesIndex Nodes

Root NodesRoot Nodes 1 - 16

1 – 8

1,2,3,4
[Rec]

5,6,7,8
[Rec]

9 - 16

9,10,11,12
[Rec]

13,14,15,16
[Rec]

7?

Index Seek Index Scan

Indexes

Indexes

SELECT * FROM [CRONUS AG$G_L Entry]

WHERE ([G_L Account No_] = @P1) AND (([Posting Date] >= @P2) AND ([Posting Date] <= @P3))

ORDER BY [Entry No_]

C/SIDE SQL Server Example (Customer)

Primary Key Primary Key Clustered Index No. …$Customer$0:
No_

Secondary Key Unique Non-Clustered Index Search Name $1 (UNIQUE):
Search Name, No_

Table Relation Foreign Key
(Maintain Relationships = TRUE)

Country Code …$Customer$FK$T18_F35$T9

n/a Included Columns

n/a Filtered Indexes

n/a Descending Indexes

n/a Partitioned Indexes

Caution:
Using the „ SQL Index“ property in a wrong way might cause severe perform ance degradation!

Indexes

Old New (?) Cursor Comment

FIND(-) FIND(-) Dynamic • No TOP clause
• Regard WHERE and ORDER BY clause
• Required with ASCENDING(FALSE)

FINDSET n/a • TOP clause based on „Cache Record Set“
• Cursor if actual result set exceeds TOP size
• If with modification (MODIFY) then FINDSET(TRUE) or FINDSET(TRUE,

TRUE) � causing LOCKING !
• Cannot be used with ASCENDING(FALSE)

FINDFIRST n/a • TOP 1 clause; returns one record
• Cursor if actual result size exceeds 1 record
• Don‘t use with loops

ISEMPTY n/a • TOP 1 NULL; returns 0 or 1
• Don‘t use if record data is needed

FIND(+) FIND(+) Dynamic • No TOP clause
• DESCENDING order
• Regard WHERE and ORDER BY clause

FINDLAST n/a • TOP 1 clause; returns one record
• DESCENDING order
• Cursor if actual result size exceeds 1 record
• Don‘t use with loops

FIND Commands (before NAV 2013)

Old New (?) Cursor Comment

FIND(-) FIND(-) n/a • Automatic TOP clause
• Required with ASCENDING(FALSE)
• Small “Rollback” effort

FINDSET n/a • No TOP clause („Cache Record Set“ is void)
• If with modification (MODIFY) then FINDSET(TRUE) or FINDSET(TRUE,

TRUE) � causing LOCKING !
• Cannot be used with ASCENDING(FALSE)
• Higher “Rollback” effort

FINDFIRST n/a • TOP 1 clause; returns one record
• Don‘t use with loops

ISEMPTY n/a • TOP 1 NULL; returns 0 or 1
• Don‘t use if record data is needed

FIND(+) FIND(+) n/a • Automatic TOP clause
• DESCENDING order

FINDLAST n/a • TOP 1 clause; returns one record
• DESCENDING order
• Don‘t use with loops

FIND Commands (since NAV 2013)

Let’s check it out ...

� SQL Profiler
� Management Studio & DMV
� NAV SQL Trace
� Smart Query Tuning
� SQL Refactoring

CREATE INDEX <Name> -- stay away from NAV naming conventions (never name $0, $1 etc.)!

ON <Table_or_IndexedView> -- e.g. tables or VSIFT

(

-- Fields to support WHERE clause

<equality_columns, ordered by selectivity> -- regard AND OR LIKE etc. operators

<inequality_columns, ordered by selectivity> -- regard AND OR LIKE etc. operators

-- optional (e.g. to support Dynamic Cursors or similar): Fields to support ORDER BY clause

<fields as taken from ORDER BY, double values (see WHERE) removed>

)

INCLUDE -- optional: e.g. to support SELECT SUM queries or some JOINS etc.

(

<included_columns> -- excerpt from table; never copy all/too many fields!

)

WHERE -- optional: to reduce index size filtering according to query requirements

<filters> -- filtering according to query requirements

WITH -- optional: create index with small impact during creation

(

MAXDOP = 64, -- using all CPU

ONLINE = ON -- ONLINE Indexing with Enterprise Edition to reduce blocks

)

NEVER EVER change or drop a NAV standard index from SQL site!

Indexing Rules

�Avoid “Dynamic Cursors” (before NAV 2013)

�Regard Key/Sorting and Filter (more important before NAV 2013)

� Identify “bad queries” with SQL Profiler
�Analyze TRC file and QEP (using various Tools & Scripts etc.)

� Implement optimized indexes (NAV or SQL)
�Verify Index Usage
�Remove unused indexes

�Maintain Indexes & Statistics

Troubleshooting Expensive Queries

�Option 1:
� Identify problematic SmartQuery (Profiler etc.)

�Format Statement; e.g. using third party tools
� Investigate “Query Execution Plan”

� Identify high-cost operators
�Pick related sub-SELECT and apply optimized index

�Option 2:
�Disable “SmartQuery” on NST

� Identify problematic (sub-)SELECT (Profiler etc.)
�Apply optimized index

Expensive Queries – „Black Belt“: SmartQuery

Query-
Strategy

&
Indexing

Platform &
Hardware

PART 3 - BLOCKING

Blocks &
Deadlocks

SQL Server

Lock Modes:
• Shared Locks (S)
• Exclusive Locks (X)
• Update Locks (U)
• [Intent Locks (I)]

Lock Levels:
• Row
• Key
• Page
• Extent
• HoBT
• Table
• File
• Application
• Metadata
• Allocation Unit
• Database

Locking Mechanisms

E
S
C
A
L
A
TI
O
N

I
S
O
L
A
T
I
O
N
L
E
V
E
L
S

Lock Modes

Lock mode Description

Shared (S)
Used for read operations that do not change or update data, such as a SELECT
statement.

Update (U)
Used on resources that can be updated . Prevents a common form of deadlock that
occurs when multiple sessions are reading, locking, and potentially updating
resources later.

Exclusive (X)
Used for data-modification operations, such as INSERT, UPDATE, or DELETE.
Ensures that multiple updates cannot be made to the same resource at the same
time.

Intent Used to establish a lock hierarchy . The types of intent locks are: intent shared
(IS), intent exclusive (IX), and shared with intent exclusive (SIX).

Existing granted mode

Requested mode IS S U IX SIX X

Intent shared (IS) � � � � � �

Shared (S) � � � � � �

Update (U) � � � � � �

Intent exclusive (IX) � � � � � �

Shared with intent exclusive (SIX) � � � � � �

Exclusive (X) � � � � � �

Lock Modes

Avoid SQL Server Lock Escalation

�Enable „Always Rowlock“ in NAV (before NAV 2013)

Caution: Do not use with 32bit systems or with little RAM!

SELECT * FROM"NAV" . "dbo" . "CRONUS AG$Purchase Header"

WITH (UPDLOCK, ROWLOCK)

WHERE (("Document Type" =@P1)) AND (("No_" =@P2))
OPTION (OPTIMIZE FOR UNKNOWN)

�Optional: disable Lock Escalation globally using Traceflag 1224
Caution: Do not use Traceflag 1211!

Lock Granularity

Transaction Isolation Levels
READ UNCOMMITTED (NAV Default)
Implements dirty read, or isolation level 0 locking, which means that no shared locks are issued and no exclusive locks are honored. When this option is set, it is
possible to read uncommitted or dirty data; values in the data can be changed and rows can appear or disappear in the data set before the end of the
transaction. This option has the same effect as setting NOLOCK on all tables in all SELECT statements in a transaction. This is the least restrictive of the
four isolation levels .

READ COMMITTED (SQL Default)
Specifies that shared locks are held while the data is being read to avoid dirty reads, but the data can be changed before the end of the transaction, resulting in
nonrepeatable reads or phantom data. This option is the SQL Server default .

REPEATABLE READ (NAV Default “Hardlocking” since NAV 2013)
Locks are placed on all data that is used in a query, preventing other users from updating the data, but new phantom rows can be inserted into the data set by
another user and are included in later reads in the current transaction. Because concurrency is lower than the default isolation level, use this option only when
necessary.

SERIALIZABLE (NAV Default “Hardlocking” before NAV 2013)
Places a range lock on the data set, preventing other users from updating or inserting rows into the data set until the transaction is complete. This is the most
restrictive of the four isolation levels . Because concurrency is lower, use this option only when necessary. This option has the same effect as setting
HOLDLOCK on all tables in all SELECT statements in a transaction.

Using REPEATABLE READ Isolation with NAV (before NAV 2013)

Requires NAV 5.0 SP1 Build 30482 (or higher) or NAV 2009 SP1 Build 30609 (or higher)
Theoretical risk of “Phantom Reads”.

USE [<DatabaseName>] -- select NAV database here

GO

SELECT diagnostics FROM [ndodbproperty]

GO

-- set NAV isolation to REPEATABLE READ

UPDATE [ndodbproperty] SET diagnostics = diagnostics + 4194304

GO

Transaction Isolation Levels

Read Committed Snapshot Isolation

Using “RCSI” ???

This has no benefit for NAV internal queries but may support “external” queries.

Caution: enabling RCSI will increase the pressure on "tempdb “;
thus, it is mandatory to have it really optimized!

USE [master]
GO

ALTER DATABASE[<DatabaseName>]
SET ALLOW_SNAPSHOT_ISOLATION ON
GO

ALTER DATABASE[<DatabaseName>]
SET READ_COMMITTED_SNAPSHOT ON
GO

�Optimize Workflow / Business Processes

�Avoid Lock Escalation

�Avoid Serialization (before NAV 2013)

�Regard Data-Structure; e.g. “Clustered Index”

�Avoid “overlapping” Resultsets

�Short Transactions, short Locking-Times

Deadlocks:

�[Lock Resources in same sequence ???]

�[Using “Semaphore” ???]

Avoiding Blocks & Deadlocks

Let’s check it out ...

� Block Detection Events
� Deadlock Tracing
� NAV SQL Trace

