
CLIENT ADD-INS BLACK BELT: 
BRINGING .NET AND JAVASCRIPT TOGETHER

Vjekoslav Babić
(Fortempo - Business Consulting)





Vjekoslav Babić

consultant, trainer, blogger, author

Twitter: @vjekob

Mibuso: Vjeko

Blog: vjeko.com

Author of many How Do I… videos for MSDN and PartnerSource for NAV 2013, NAV 

2013 R2, and NAV 2015

Co-author of “Implementing Microsoft Dynamics NAV 2009” book

ABOUT ME



JavaScriptC/AL







Hands up...

How many control add-ins have you created?

1+2+3+5+10+



Think of this...

How many control add-ins can solve all your problems?

1





Demo
A mean and lean all-purpose control add-in



Crossing page 
boundaries

JSON Deployment

Resolving 
assemblies

User Interface
Call 

synchronization

TODAY’S AGENDA



PART 1
Crossing page boundaries:

Talking to the control add-in from other objects



Code does not belong in pages.

BRAVE CLAIM #1



... IF CODE DOES NOT BELONG IN PAGES, THEN...



Demo #1
... but this simply does not work.



• Control add-in is an interface:

• ... and interfaces don’t have instances, unless they are implemented in a class.

IT ALL MAKES SENSE...



SOLVING THE PUZZLE

Page Codeunit
(or any other object)

Event Marshaller 
(.NET Interop)

Marshaller Event

Marshalling method



Demo #2
Communication through an event marshaller



PART 2
JSON





• JSON is JavaScript Object Notation

• JavaScript objects can be represented as JSON

• JavaScript can:

• Convert an object to JSON string

• Convert JSON string to an object

• Instantiate an object from JSON

WHAT IS JSON?



HOW DOES C/AL TALK TO JAVASCRIPT

C/AL JavaScript

Method

Event

String

String



NAV Extensibility Framework 
(.NET)

HOW DOES C/AL TALK TO JAVASCRIPT

C/AL JavaScript

MethodProxy Method

Event

String String

Proxy Method StringString



NAV Extensibility Framework 
(.NET)

HOW DOES C/AL TALK TO JAVASCRIPT

C/AL JavaScript

MethodProxy Method

Event

Object JSON

Serializer ObjectDeserializerObject JSON



• Objects of any serializable .NET type can be passed to JavaScript

• Any JavaScript object can be passed to C/AL

• NAV runtime handles serialization (conversion) between objects using JSON

PASSING OBJECTS BETWEEN C/AL AND JAVASCRIPT

C# JavaScript (JSON)



PASSING OBJECTS BETWEEN C/AL AND JAVASCRIPT



Demo #3
Passing objects back and forth



Dictionary<,> is always mapped to a valid JSON object of dynamic structure:

• Dictionary instance becomes one object

• Every key becomes property

• Every value becomes property value

Receiving objects from JavaScript into Dictionary<,> is not directly supported.

PASSING DYNAMIC STRUCTURES



Demo #4
Mapping Dictionary<,> to JSON



PART 3
Deploying during development



1. Retrieve the public-key token from the assembly

2. Create control add-in record

3. Copy the assembly to the Add-Ins folder

4. Create the resource zip file

5. Import the resource zip file

MANUAL DEPLOYMENT



If it can be automated, 

it should be automated.

(ancient Chinese proverb)



• Deploying new functionality costs time (as much as a couple minutes per build, or change)

• Building during development is a frequent process

• All deployment steps can be fully automated

DEPLOYING DURING DEVELOPMENT



Load all satellite 
assemblies

Search types for 
ControlAddInExport 

attribute

For every interface 
with attribute, 

create Resource 
folder structure

Read public key 
token from the 

assembly

Zip the resource file
Copy files to client 
and server add-ins

If necessary, restart 
NST

Import or modify 
Control Add-in 
records in NAV

AUTOMATING DEPLOYMENT USING POWERSHELL



Demo #5
Deploying from Visual Studio



PART 4
Automatically Resolving .NET Interoperability Assembly Dependencies



Copying 
assembly .dll
into Add-ins 

folder

Installing 
into GAC

DEPLOYING ASSEMBLIES

• We can automate this, but:

• Only per environment

• Moving to a new environment requires re-deployment



NAV 2015 and newer:

• Assemblies deployed to Service\Add-ins will be automatically deployed to clients

• If the assembly is not already present in RoleTailored Client\Add-ins

• If the assembly is not already present in the GAC

• If the assembly wasn’t already automatically deployed

• Assemblies are not automatically deployed to RoleTailored Client\Add-ins but to temporary folder in user’s profile

• Redeploying an assembly to the server will only update it to clients if the Version property changes

CLIENT-SIDE DEPLOYMENT IN NAV 2015



NAV 2016 and newer:

• Assemblies deployed into the Add-ins table will be automatically deployed at runtime from the database:

• If Add-in Name matches the assembly name

• If assembly is not already deployed to Service\Add-ins folder

• Is assembly is not already automatically deployed from the database

• Issues:

• Ignores the fully qualified assembly name

• Requires assembly files to be individually zipped and imported

• Re-deploying an assembly requires version change

CLIENT AND SERVER DEPLOYMENT IN NAV 2016



Goals:

• Backward compatibility all the way back to NAV 2013

• Both client-side and server-side

• Redeploy even if version does not change

• Must have zero-footprint on the outside environment: must require no external assemblies

REINVENTING THE (BETTER) WHEEL



.NET applications automatically resolve assemblies:

• By looking into GAC

• By looking into the same folder where the application (entry assembly) resides

When the assembly cannot be found there .NET runtime calls System.AppDomain.AssemblyResolve event:

• An application uses this event to look in additional places

• Microsoft Dynamics NAV looks into server or client Add-ins folders and their subfolders

Subscribing to this event is not possible using C/AL – you must use a wrapper class

ASSEMBLYRESOLVE EVENT



• Assemblies stored in the database

• Assemblies identified using their fully qualified name

• Assembly resolver wrapper class built at on-the-fly at runtime – no deployment needed either

• Wrapper class publishes C/AL-compatible event to resolve assemblies

• Resolved assemblies are not retained between sessions

ZERO-FOOTPRINT ASSEMBLY RESOLVER



Demo #6
Resolving assemblies from database



PART 5
Managing User Interface



To create user interface

• Create UI through DOM 
manipulation

• Embed a stylesheet into resource

• Embed images into resource

To manage client-side logic

• Embed scripts into resource

• Load scripts from URL

WHAT THEY TEACH US IN SCHOOL...



Nothing needs to be embedded in resource.

WHAT THEY DON’T TEACH US IN SCHOOL...



Demo #7
Dynamic HTML, CSS, and JavaScript



Demo #8
Owning the playground

(and take AngularJS angle at it all...)





Demo #9
Owning some more playground

(by editing .aspx files)



Store HTML, CSS, 
JavaScript in the 
database (BLOB)

Load and feed to 
the client on 

demand

Construct HTML, 
CSS 

programmatically

Construct 
JavaScript 

programmatically

You own the 
show, be 
creative...

SOME IDEAS...



PART 6
Synchronizing Calls between JavaScript and C/AL



C/AL CALLING JAVASCRIPT

JavaScriptC/AL

User initiates a 

C/AL execution 

cycle

C/AL stuff

C/AL calling 

JavaScript

JavaScript 

function

JavaScript stuff

End

(Yields control 

to user)

(may still be 

executing after 

C/AL execution 

ends)



JAVASCRIPT CALLING C/AL

C/ALJavaScript

JavaScript 

execution 

initialized

JavaScript stuff

JavaScript 

invoking C/AL

C/AL event 

trigger

End of 

JavaScript 

execution
C/AL stuff

(may still be 

executing after 

JavaScript 

execution ends)

C/AL busy?

Yes

Show busy 

dots...

Yields control to 

user

No



Why the difference?



Negative

No return 
values on 

methods or 
events

C/AL not 
aware if 

JavaScript is 
busy

Possible 
performanc
e issues or 

crashes

Positive

Code 
becomes 

more 
modular

Architecture
s become 

event-
driven

Better 
separation 
between UI 

and 
business 

logic

CONSEQUENCE OF ASYNCHRONOUS CALLING



Demo #10
Issues due to incorrect synchronization



• No option to synchronize calls from C/AL to JavaScript – C/AL simply goes on

• To synchronize calls from JavaScript to C/AL, we have (in NAV 2015 and newer):

SYNCHRONIZING CALLS

Environment object

•Busy property

•OnBusyChanged event

InvokeExtensibilityMethod
parameters

• skipIfBusy

•callback



Demos #10 and #11
Synchronizing calls

(two different approaches)



Web Clients allow 
you to own the 
show. Totally.

Do not build 
hardcoded 

control add-ins. 
You only need 

one.

Combine the 
power of .NET 

with flexibility of 
JavaScript.

TAKEAWAYS...



vjeko.com/categories/control-add-ins
20+ articles, examples, tips and tricks about control add-ins

... AND SOME MORE TAKEAWAYS…








