
CONNECTING TO THE OUTSIDE WORLD:
HOW TO GET THE BEST OUT OF WEB SERVICES

Arend-Jan Kauffmann, Mark Brummel
(Xperit Group / NAV Skills)

WHERE WE ARE GOING WE
DON’T NEED SOAP

Started as COBOL developer in 1988

Dynamics NAV since 2002

co-founder Xperit Group B.V.

Microsoft MVP Dynamics NAV since 2013

co-founder Dutch Dynamics Community

blogger
Microsoft Dynamics NAV Thoughts

http://www.kauffmann.nl

AREND-JAN KAUFFMANN

Dynamics NAV (Navision) since 1997

MVP Since 2006

Freelance Engineer & Trainer

MARK BRUMMEL

AGENDA

Status Update
Web Services

Types of
Web Services

Consuming
Web Services

REST &
MANAGED API

Q & A

AGENDA

Status Update
Web Services

Types of
Web Services

Consuming
Web Services

REST &
MANAGED API

Q & A

Status Update
Trends & Technology

A Decade of Web Services

Web Services

Exchanging information in a standardized way

WHY WEB SERVICES

Flat File ODBC XML Json

Web Services change the way we think about software development. They are like NAV Solutions on Steroids. Why would you
build a solution in NAV to convert from Celcius to Fahrenheit if that is available as a Web Service.

Web Services are becomming more common and standardised. They are also better known by NAV Developers.

Microsoft Dynamics NAV however still has no solid framework to consume Web Services

When Web Services were introduced a lot of attention was given to exposing Pages as Web Services. Many partners
discovered that this is genereting confusing and too complex WSDLs. XML Ports are better

NAV Exposes SOAP and sends XML while the rest of the world is moving to REST and Json. How does this reflect to OData,
which is REST based.

INTEGRATION

AGENDA

Status Update
Web Services

Types of
Web Services

Consuming
Web Services

REST &
MANAGED API

Q & A

OData

REST

SOAP

SOAP

Generic Object Model

Flexible

Supported by Dynamics NAV

WSDL - UDDI

REST

Standardised (HTTP)

GET PUT POST DELETE

Not supported by NAV except…

OData is based on REST

ODATA

Based on REST

Includes Query language

Supported by NAV (Read/Write)

PATCH allows caching

XML VS. JSON

AGENDA

Status Update
Web Services

Types of
Web Services

Consuming
Web Services

REST &
MANAGED API

Q & A

SOAP vs REST

REST SOAP
Exposes resources representing data Exposes operations representing logic

Uses HTTP verbs - GET / POST / PUT / DELETE Uses HTTP POST / SMTP / MSMQ

Emphasis on simple point-to-point communication
over HTTP

Emphasis on loosely coupled distributed messaging

Stateless communication Supports stateless and stateful operation

Multiple dataformats – Json / XML / Text Supports only XML

Shorter learning path – easy consume without
additional components

Requires more skills – hard to consume without
additional components

REST

The URL is the command

Parameters are accepted:
• As part of the URL
• As body part of the HTTP request (HTTP POST)
• In the request header (most often used for authentication)

Request parameters and response
data can be

• Just text
• Xml
• Json

SOAP vs REST – How to call them

REST SOAP
Without any external component:
• Do the message pumbling yourself
• Call the web service with .Net HttpWebRequest
• Handle HttpWebResponse
• No strong typing

See Codeunit 1294 / 1297 / 1299

With external component
• Create strong type object with Visual Studio
• Use .Net HttpWebRequest /

HttpWebResponse
• Better choice: HttpClient /

HttpResponseMessage

With external component
• Create web proxy dll with Visual Studio
• Strong typing
• Still need to use .Net Binding and Endpoint

component

REST – Tip 1 – HttpClient

Supports GET / POST / PUT /
DELETE methods

Designed as an easy to use

alternative for HttpWebRequest

Available in .Net Framework 4.5

REST – TIP 2 – Strong typing

Let Visual Studio create your strong typed
data object

Paste XML or JSON as class

Copy the dll to the Add-ins folder on the
server

Use JsonConvert
(Copy Newtonsoft.Json.dll to Add-ins
folder – only design-time)

Managed API

Hides the complexity

Library of types and operations build on top of a web
service

Client code only need to use the API

The library performs the web service calls

Extremely useful with complex web services

Example 1: Verify e -mail address

Purpose Verify if an e-mail address really exists

Homepage http://www.email-validator.net/

Type REST

Example 2: Generate Bar Code

Purpose Generate the bar code for an item

Homepage http://www.barcodes4.me/

Type REST

Example 3: Send SMS

Purpose Send SMS

Homepage http://www.bulksms.com/

Type REST

Example 4: DocuSign

Purpose Digitally sign documents

Homepage http://www.docusign.com/

Type Managed API

Example 5: Office 365 Mail

Purpose Synchronize an Office 365 Inbox
Including attachments

Homepage http://aka.ms/ews-managed-api-readme

Type Managed API

Other Useful Web Services

Azure File Storage
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-files/

EAN Search
http://www.ean-search.org/

Programmable Web
http://www.programmableweb.com/apis/directory

Call to action

Learn .Net Interoperability

Learn C#

Think simple

Don’t try to reinvent the wheel

