
DESIGN PATTERNS IN NAV 2016
Nikola Kukrika, Ciprian Iordache, Gary Winter

(Microsoft MDCC / Cloud Ready Software)

New

module 1

My cool solution New module 2

New module

3

Problem
statement

Use event and interfaceI have to modify my
solution whenever a
new module gets
added.

Solution

My solution

I have to modify my
solution whenever a
new module gets
added.

New

module 1

New module 2

New

module 3

Cons
Write protective code

Pros
Loose coupling with clear
responsibility

Pluggable design

Problem statement

1. Credit cards stored
randomly

2. Everyone has
permission to access

3. Not pin protected

The
electronic
“wallet”

Problem statement

1. Encapsulate sensitive
data

2. Provide a single point
of access

3. Encrypt data

1. Credit cards stored
randomly

2. Everyone has
permission to access

3. Not pin protected

Solution

1. Credit cards stored
randomly

2. Everyone has
permission to access

3. Not pin protected

COD 1266 Encryption Management

The Good
• Highly reusable and scalable

• Keeps the sensitive data in a secure way

The Bad
• Texts of max 250 chars can be encrypted

DoSomething(Variant, Arguments)

Code

BRING IT
ON!

Sales Header
Purchase Header

Service Invoice Purchase Invoice
Bank Account

Sales Invoice

Bank Statement

RECORDREF

RECORDID

Problem

The existing code must be extended to support a new record

=> copy old code, change a few aspects

=> often more than 90% code is duplicated

Problem
• To support a new record often more than

90% code is duplicated

• With each record added code is becoming
worse:

• Multiple flows

• Harder to understand

• Harder to maintain

• Harder to extend / upgrade

• Harder to Test

• Cost of adding the new table type is always
the same

Solution
• Provide a single interface for all of the record

types

• Make a Clear Separation between Table
Specific Code from Common code

• Adding a new record should not require code
changes or they should be minimal

// Instead of Sales Header

If support for RecordRef and RECORDID is needed

Assignment to Variant needed before usage – compiler limitation

SalesHeader := RecordVariant Removes filters!!!

SalesHeader.Copy(RecordVariant) Correct!

RecRef.SETTABLE(SalesHeader) Correct!

• Don’t use it as a hammer! Not needed if there are only few tables

• Cannot pass variant with VAR – Need to fetch the record again

• Careful with filters – Test!

• Case statements can explode – use Argument Table or Rules Table

• Try to limit the number of case statements, avoid if possible

Suggestion – Right number of case statements:

0 – Best Number
1 – OK
2 – Please explain yourself
3 – No way!

Problem
Once created, a NAV record can be used for
many things

You might want to restrict its usage until a
condition is met

Example: A new customer should not be used
for posting until it is approved

Solution
Use a generic mechanism for adding and
lifting restrictions on a given record

Add restriction

• Direct call into
Restriction
Management

Consume the
restriction

• Application feature

• Call into Restriction
Management to check
for restrictions

Remove the
restriction

• Direct call into
Restriction
Management

To restrict posting Gen. Journal Lines if a customer has not been added in Account No. field:

[EventSubscriber] RestrictGenJournalLineAfterInsert(VAR Rec : Record "Gen. Journal Line";RunTrigger : Boolean)

IF (Rec."Account Type" = Rec."Account Type"::Customer) AND (Rec."Account No." = '') THEN

RestrictGenJournalLine(Rec);

[EventSubscriber] RemoveGenJournalLineRestrictionsAfterModify(VAR Rec : Record "Gen. Journal Line";VAR xRec : Record
"Gen. Journal Line";RunTrigger : Boolean)

IF NOT ((Rec."Account Type" = Rec."Account Type"::Customer) AND (Rec."Account No." <> '')) THEN

AllowRecordUsage(Rec.RECORDID);

The Good
• Unlike the Blocked Entity pattern, no need for adding special fields in new tables

• Scalable and reusable

• The API is there already

The Bad
• You can only add a restriction once per record

• The restriction is global, their use cannot be refined

Problem
• Unhandled .NET exceptions are not

actionable

• User does not understand what the
problem is

• No Try-Catch clause in C/AL

Solution
• .NET exception handling in C/AL

TryFunction

Contains the code susceptible of throwing .NET
exceptions

Marked as TryFunction = Yes

IF NOT TryFunction THEN use exception
handler. DotNet Exception

Handler

• Collect

• Catch

• Cast / TryCast

• Log

• Rethrow
Next Step

[TryFunction]
PROCEDURE SendRequestToWebService@17();

VAR

WebRequestHelper@1000 : Codeunit 1299;

HttpWebRequest@1007 : DotNet "'System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'.System.Net.HttpWebRequest";

HttpStatusCode@1002 : DotNet "'System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'.System.Net.HttpStatusCode";

ResponseHeaders@1001 : DotNet "'System, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089'.System.Collections.Specialized.NameValueCollection";

ResponseInStream@1006 : InStream;

BEGIN

CheckGlobals;

BuildWebRequest(GlobalURL,HttpWebRequest);

ResponseInStreamTempBlob.INIT;

ResponseInStreamTempBlob.Blob.CREATEINSTREAM(ResponseInStream);

CreateSoapRequest(HttpWebRequest.GetRequestStream,GlobalRequestBodyInStream,GlobalUsername,GlobalPassword);

WebRequestHelper.GetWebResponse(HttpWebRequest,HttpWebResponse,ResponseInStream,HttpStatusCode,ResponseHeaders,GlobalProgressDialogEnabled)

;

ExtractContentFromResponse(ResponseInStream,ResponseBodyTempBlob);

END;

LOCAL PROCEDURE SendDataToConversionService@1(VAR PaymentFileTempBlob@1003 : Record 99008535;BodyTempBlob@1004 : Record

99008535;PostingExch@1007 : Record 1220);

VAR

BankDataConvServiceSetup@1000 : Record 1260;

WebServiceRequestMgt@1001 : Codeunit 1290;

BodyInStream@1005 : InStream;

ResponseInStream@1002 : InStream;

BEGIN

IF NOT BodyTempBlob.Blob.HASVALUE THEN

ERROR(NoRequestBodyErr);

PrepareSOAPRequestBody(BodyTempBlob);

COMMIT;

BankDataConvServiceSetup.GET;

BodyTempBlob.Blob.CREATEINSTREAM(BodyInStream);

WebServiceRequestMgt.SetGlobals(BodyInStream,

BankDataConvServiceSetup."Service URL",BankDataConvServiceSetup."User Name",BankDataConvServiceSetup.GetPassword);

IF NOT WebServiceRequestMgt.SendRequestToWebService THEN

WebServiceRequestMgt.ProcessFaultResponse;

…

The Good
• Allows for user-friendly errors

• Reusable solution

• Works for both .NET and NAV errors

The Bad
• Not suitable for transactions

Problem statement

1. “What happened?”

2. “I cannot reproduce
the problem”

Solution

NAV Activity Log

The Good
• Generic implementation, uses variants

• Out-of-the box API

The Bad
• Cleanup required so table does not get huge with obsolete data

Error Messages X

Error

Error

Error

Error

Error

Error

Close

Error

XPage where to Fix

Close

Provide Data

Feature X Setup

Other field 1

Other field 2

Invoke

X

OK I
GIVE UP

Wait there are
only 2 more
errors left

Problem
• One More Error is bad UX

• Test fields and error messages not very helpful

• Need common Error Processing

Solution
• Collect and show error messages in a single

place

• Provide a link to a page where to fix it

The Good
• Generic implementation, uses recordid

• Out-of-the box helpers

The Bad
• No option to copy/parse the error messages

• Cleanup required (for the persistent solution)

• Tricky code to persist in case of errors

Problem
• Enable users to specify conditions (e.g. when to

use a record)

• Need a specific page or a report for each table

Solution
• Provide a generic request page for a given

table

• No additional objects needed – page is build
dynamically

• [Optional] Store filter as a blob in database

New Data Type – FilterPageBuilder

[Optional] Store results in BLOB fields

• Concepts

• End-to-end Coding Example

• Why do we need Events?

• When do we need Events?

• How can YOU leverage Events in your verticals?

Problem
• Short update cycles

• Continuous updates are key to SaaS

• Traditionally C/AL code is tightly coupled

• Modifications tend to have a large footprint in
the standard application

Solution
• Enable loose coupling of methods

• Allows functional enhancement without
touching standard objects

• Decrease the footprint

• Make updates safer and more simple

• Enable painless continuous updates

• Facilitate collaboration

You can leverage Events to implement additional
business processes without needing to touch
standard objects at all.

DEMO

• Design a business process in a way that it
becomes a framework for decoupled methods

• Wrap the process in publisher events:
• OnBeforeProcess (� Publisher Event)

• MainProcess (Executable Method)

• OnAfterProcess (� Publisher Event)

• Enhance your business process by adding
methods as Subscriber Events

The term “Process” is just used as a placeholder for the actual feature that you
want to implement.

• Design a business process in a way that it
becomes a framework for decoupled methods

• Wrap the process into hooks:
• OnBeforeProcess (� Call to relevant hooks)

• MainProcess (Executable Method)

• OnAfterProcess (� Call to relevant hooks)

• Enhance your business process by adding
methods as codeunits that you can run with a
record parameter

• Include new methods in your hook list

• Always: Keep track of whether your business
process has been handled by an additional
method (subscriber or hook):
• EventHandled variable

• “Event Handled” field

• “Event Pattern” and “Hook Pattern” solve the same
problem

• “Event Pattern” depends on platform availability

• “Event Pattern” is preferred if available

• Global Events (Codeunit 1)

• Trigger Events (Table / Page)

• Business Events (Code Declared Events)

• Integration Events (Code Declared Events)

• Codeunit 1

• Declared as local Integration Events

• Currently no real system events, but a variation of
Integration Events

• OnBeforeDeleteEvent

• OnAfterDeleteEvent

• OnBeforeInsertEvent

• OnAfterInsertEvent

• OnBeforeModifyEvent

• OnAfterModifyEvent

• OnBeforeRenameEvent

• OnAfterRenameEvent

• OnBeforeValidateEvent

• OnAfterValidateEvent

• Table Trigger Before Event (e.g. OnBeforeDeleteEvent)

• Table Trigger (e.g. OnDelete)

• Global Trigger in Codeunit 1 (e.g. OnDatabaseDelete)

• Database Operation (e.g. Record gets deleted)

• Table Trigger After Event (e.g. OnAfterDeleteEvent)

• OnOpenPageEvent

• OnAfterGetRecordEvent

• OnAfterGetCurrRecordEvent

• OnNewRecordEvent

• OnInsertRecordEvent

• OnModifyRecordEvent

• OnDeleteRecordEvent

• OnBeforeValidateEvent

• OnAfterValidateEvent

• OnBeforeActionEvent

• OnAfterActionEvent

• OnQueryClosePageEvent

• OnClosePageEvent

• Business Events / Integration Events

• All Events are declared as functions

• Events cannot have code, only comments

• Events cannot have return values

• Best Practices:
• Publish a local function on the object where it is raised

• Only raise an event once

• Stick meticulously to naming conventions

• You can only subscribe to events in codeunits

• Each event publisher can have multiple subscribers

• The order in which multiple subscribers invoke a
publisher event cannot be defined and can vary from
instance to instance

• Arguments passed from publisher to subscriber are
bound by name and type

• The order of the arguments is irrelevant

• The number of arguments is irrelevant: only use the
arguments you really need

• Behavior is almost identical; the difference is a
conceptual one

• Integration Events are helpers to avoid code
modification in standard objects

• Integration Events may be subject to change over time

• Business Events should not change

• Business Events define a formal contract

• Business Events constitute a public API

• Currently no Business Events in Dynamics NAV

• When to introduce Business Events into your vertical

• Break your complete solution down into encapsulated
methods

• Each method is a codeunit of its own with only one
global function

• Each method is only ever called from the class (table) it
belongs to

• Define which methods belong to which business
processes

• Use Business Events to create an API that gives external
access to your processes

• Your Business Event API allows you to differentiate
between types of developers / development

• Core development which changes or enhances your
structure / architecture

• Senior product developers

• Additional development which is limited to the defined
contracts and interface points

• External developers

• Junior project / tenant extensibility developers

• Dynamics CRM Integration

• Workflow

• Permission Recorder

• Custom Events for Posting

• Registering Service Connection

• NAV Extensions

Learn more
http://aka.ms/NAVGetReady https://community.dynamics.com/nav/w/designpatterns

