
WITH NAV DEVELOPMENT

Eric Wauters
(iFacto Business Solutions)

AGENDA

POWERSHELL

Easily add menu for frequently used taks

Add this to the profile

Make it easy for you to use PowerShell ISE

Profiles

EXTEND THE ISE

Collection of functionalities

Common nouns in cmdlets and functions

.psm1

Deploy: xcopy

http://msdn.microsoft.com/en-us/library/windows/desktop/dd878310(v=vs.85).aspx

CREATE YOUR OWN MODULE

http://www.powertheshell.com/isesteroids/

created by PowerShell MVP Dr. Tobias Weltner

your “personal PowerShell consultant”

• Learn
• Master
• Leverage

ISE STEROIDS

Backup-NAVDatabase

Restore-NAVDatabase

New-NAVEnvironment

Copy-NAVEnvironment

ConvertTo-MultiTenantEnvironment

InvokeSQL

Start-WindowsClient / Start-IdeClient

CREATE RE-USABLE FUNCTIONS

Get-NAVServerInstance

Get-NAVServerConfiguration

Get-NAVCompany

…

EXTEND EXISTING CMDLETS

Upgrade

Export Objects from Original

Export Objects from Modified Export Objects from Target

Create Delta’s between Original and Modified

Create Delta’s between Original and Target

Merge
Update VersionList

Check Conflicts

Check Deleted Objects

Remove all unchanged objects

Create FOB file

CreatenTargetDatabase Sandbox
Import License in Sandbox

Import merged objects

Compile

Export as fob

Remove Sandbox

Create NAV environment from original database in new version

Unlock Objects

Make current user db_owner

Conver database to new version

Import license in resultdb

Delete all objects except tables

Import Upgrade Toolkit

Delete tables that were deleted by target

Import Result Fob
Sync Schema changes

Start Data Upgrade

Automate as much as possible!

GOAL

Merge
• Export objects

• Original
• Modified
• Target

• Create Delta’s
• Original vs Modified
• Original vs Target

• Merge objects
• Update Versionlist
• Update Date/time
• Save MergeResult
• Remove Unchanged

UPGRADE

Create Fob

• Restore Sandbox from Target DB
• Create Server Instance
• Upload License
• Import MergeResult
• Compile
• Export
• Remove Sandbox

Data Upgrade

• Restore Modified DB in new version
• Unlock Objects
• Convert DB
• Start NST
• Delete all except tables
• Import Upgrade Toolkit
• Delete tables
• Import Fob
• Sync
• Start Data Upgrade
• Backup database

Creating Delta's to C:_Workingfolder\Upgrade_TestCustomer\MergeResult\Deltas_ORIGINAL_MODIFIED

Creating Delta's to C:_Workingfolder\Upgrade_TestCustomer\MergeResult\Deltas_ORIGINAL_TARGET

Merge to C:_Workingfolder\Upgrade_TestCustomer\MergeResult

Update Versionlist and DateTime

Enabling PortSharing for MicrosoftDynamicsNavServer$NAV2016_BE

Backup up database with this statement:

BACKUP DATABASE [NAV2016_BE] TO DISK = N'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\Backup\MicrosoftDynamicsNavServer$NAV2016_BE.bak'

WITH COPY_ONLY, NOFORMAT, INIT, NAME = N'NAVAPP_QA_MT-Full Database Backup', SKIP, NOREWIND, NOUNLOAD,
STATS = 10

Restoring Backup C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\Backup\MicrosoftDynamicsNavServer$NAV2016_BE.bak to NAV2016_BE_Sandbox

Invoke-SQL with this statement:

SELECT [Default Data Path] = SERVERPROPERTY('InstanceDefaultDataPath')

Invoke-SQL with this statement:

SELECT [Default Log Path] = SERVERPROPERTY('InstanceDefaultLogPath')

Invoke-SQL with this statement:

RESTORE FILELISTONLY FROM DISK=N'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\Backup\MicrosoftDynamicsNavServer$NAV2016_BE.bak'

Restoring database NAV2016_BE_Sandbox

Creating ServerInstance NAV2016_BE_Sandbox

Make ServiceAccount NT AUTHORITY\NETWORK SERVICE DBOwner

Invoke-SQL with this statement:

IF NOT EXISTS(SELECT name FROM sys.server_principals WHERE name = 'NT AUTHORITY\NETWORK SERVICE')

BEGIN

CREATE USER [NT AUTHORITY\NETWORK SERVICE] FOR LOGIN [NT AUTHORITY\NETWORK SERVICE]

END

Invoke-SQL with this statement:

ALTER ROLE [db_owner] ADD MEMBER [NT AUTHORITY\NETWORK SERVICE]

Enabling PortSharing for NAV2016_BE_Sandbox

Import NAV license in NAV2016_BE_Sandbox

Import Merged Objects

Compile Uncompiled

Export C:_Workingfolder\Upgrade_TestCustomer\Result.fob

Remove Temorary DB NAV2016_BE_Sandbox

Removing ServerInstance NAV2016_BE_Sandbox

MultiTenant: False

Invoke-SQL with this statement:

ALTER DATABASE [NAV2016_BE_Sandbox] SET SINGLE_USER WITH ROLLBACK IMMEDIATE

Invoke-SQL with this statement:

DROP DATABASE [NAV2016_BE_Sandbox]

NAV2016_BE_Sandbox successfully dropped.

Restore modified backup and create as instance

Restoring Backup C:_Workingfolder\CustomerDBs\TestCustomer.bak to ProductDEV

Invoke-SQL with this statement:

SELECT [Default Data Path] = SERVERPROPERTY('InstanceDefaultDataPath')

Invoke-SQL with this statement:

SELECT [Default Log Path] = SERVERPROPERTY('InstanceDefaultLogPath')

Invoke-SQL with this statement:

RESTORE FILELISTONLY FROM DISK=N'C:_Workingfolder\CustomerDBs\TestCustomer.bak'

Restoring database ProductDEV

Creating ServerInstance ProductDEV

Make ServiceAccount NT AUTHORITY\NETWORK SERVICE DBOwner

Invoke-SQL with this statement:

IF NOT EXISTS(SELECT name FROM sys.server_principals WHERE name = 'NT AUTHORITY\NETWORK SERVICE')

BEGIN

CREATE USER [NT AUTHORITY\NETWORK SERVICE] FOR LOGIN [NT AUTHORITY\NETWORK SERVICE]

END

Invoke-SQL with this statement:

ALTER ROLE [db_owner] ADD MEMBER [NT AUTHORITY\NETWORK SERVICE]

Enabling PortSharing for ProductDEV

Unlock all objects

Invoke-SQL with this statement:

UPDATE [ProductDEV].[dbo].[Object] SET [Locked]=0,[Locked By]=''

Invoke-SQL with this statement:

CREATE USER [WIN-K5JLU49T31O\Administrator] FOR LOGIN [WIN-K5JLU49T31O\Administrator]

Invoke-SQL with this statement:

ALTER ROLE [db_owner] ADD MEMBER [WIN-K5JLU49T31O\Administrator]

Invoke-SQL with this statement:

DISABLE TRIGGER [dbo].[REVISION_UPDATE] ON [dbo].[Object]

Invoke-SQL with this statement:

DISABLE TRIGGER [dbo].[REVISION_INSERT] ON [dbo].[Object]

Invoke-SQL with this statement:

DISABLE TRIGGER [dbo].[REVISION_DELETE] ON [dbo].[Object]

Converting Database

Invoke-SQL with this statement:

ALTER DATABASE [ProductDEV] SET MULTI_USER WITH NO_WAIT

Start NST ProductDEV

Import NAV license in ProductDEV

Import Upgrade Toolkit

Deleting all objects except tables

Deleting these Tables:

Type=Table;Id=452

Type=Table;Id=453

Type=Table;Id=464

Type=Table;Id=465

Import C:_Workingfolder\Upgrade_TestCustomer\Result.fob

Import C:_Workingfolder\Upgrade_TestCustomer\Result.fob

Performing Sync-NAVTenant

Starting Data Upgrade

InProgress -- 0.00 %

InProgress -- 46.67 %

InProgress -- 86.67 %

InProgress -- 86.67 %

Completed -- 100.00 %

Data upgrade status: Completed

BackupDatabase

Backup up database with this statement:

BACKUP DATABASE [ProductDEV] TO DISK = N'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\Backup\ProductDEV.bak' WITH COPY_ONLY, NOFORMAT,

INIT, NAME = N'NAVAPP_QA_MT-Full Database Backup', SKIP, NOREWIND, NOUNLOAD, STATS = 10

**

Done!

MicrosoftDynamicsNavServer$ProductDEV created!

Total Duration 951 seconds

**

CAN WE GO FASTER?
Current script takes about 16 mins

Create an ApplicationDB

1) Copy TargetDB
2) Import License
3) Import text objects
4) Compile – force schema changes
5) Convert to Multi Tenancy
6) Dismount Default Tenant
7) Import Upgrade Codeunits
8) Restore your Modified Db
9) Mount it to the application-db
10)Sync

Convert to Single Tenant

1) Dismount Tenant
2) Export application to Tenant
3) Backup

Create Result Environment from Backup

LET’S USE THE POWER OF MULTI TENANCY

Target Environment Copy-NAVEnvironment

Import-NAVServerLicense

Set-NAVServerInstance -Restart

Import all merged objects

Compile (Force Schema changes)

ConvertTo-NAVMultiTenantEnvironment

Dismount & Drop Database

Restore Modified Database (Old Version)

Remove-NAVApplication

Mount-NAVTenant

Import Upgrade Codeunits

Sync-NAVTenant

Start-NAVDataUpgrade

Dismount-Tenant

Export-NAVApplication

Result

Drop ApplicationDB

Time saved: 8 mins per upgrade

LET’S USE THE POWER OF MULTI TENANCY

ONE MORE STEP…
Download the Cumulative Update

1) Find blogarticle with new Cumulative Update

2) Find KB Article – open it

3) Request hotfix

4) Select hotfix (country)

5) Fill in email

6) Open email

7) Click link

WHAT ARE THE STEPS

http://hotfixv4.microsoft.com/Dynamics NAV 2015/latest/NAKB3097767/42951/free/487517_ENU_i386_zip.exe

{

fixid:'487517',

product:'Dynamics NAV 2015',

language:'English',

langcode:'ENU',

platform:'x86',

release:'latest',

filename:'NAKB3097767',

version:'NAV 8.0',

build:'42951',

size:'659155760',

credate:'9\x2f28\x2f2015 7\x3a49\x3a29 PM',

moddate:'9\x2f29\x2f2015 6\x3a15\x3a23 AM'}

Monitor the RSS feed of the NAV Team Blog

Follow the KB link

On the KB Link, follow the download link

Read the JSON on the KB page

Create your link

Download!

HOW DO WE

Think in reusable functions

Create and maintain your own toolbox

Always build on top of this toolbox

POWERSHELL KEY TAKEAWAYS

Who would be interested in getting
his hands on these PowerShell

functions?

https://github.com/waldo1001/

EXTENSIONS

Upgrade-safe modification to your NAV database

Publishing/Installing a package that describes the changes that need to be made

Deltafiles – describe the modifications

Navx – the package extension

Manifest – describes the package (version, author, dependencies, prerequisites, …)

IN SHORT – WHAT IS AN EXTENSION?

WHAT DO WE NEED TO CREATE AN EXTENSION?

EXTENSION POWERSHELL CMDLETS
Name Synopsis
Get-NAVAppInfo Gets information about an NAV App based on the specified package file or the specified Microsoft

Dynamics NAV Server instance.

Get-NAVAppTenant Gets the tenants where the specified NAV App is installed.
Install-NAVApp Installs a published NAV App for a tenant.
Publish-NAVApp Publishes a NAV App to the app catalog of the specified Microsoft Dynamics NAV Server instance.
Repair-NAVApp Repairs a NAV App by recompiling it against the current base application. Use this cmdlet if the

base application has changed since publishi...

Uninstall-NAVApp Uninstall a NAV App for a tenant.
Unpublish-NAVApp Unpublishes a NAV App from the app catalog of the specified Microsoft Dynamics NAV Server

instance.

Export-NAVAppPermissionSet Exports the specified permission set from a Microsoft Dynamics NAV database to a file.
Get-NAVAppManifest Loads a manifest for an NAV App from an external source.
New-NAVAppManifest Creates a new in-memory manifest object with the specified NAV App metadata.
New-NAVAppManifestFile Creates a file with metadata for a NAV App package.
New-NAVAppPackage Creates a NAV App package file (.navx) at the specified location based on the specified manifest

file and source files.

Set-NAVAppManifest Sets one or more available properties on an in-memory manifest.

create a navx-file
• Get/Create/update Manifest

•New-NAVAppManifest
•Set-NAVAppManifest
•Get-NAVAppManifest
•New-NAVAppManifestFile
•Get-NAVAppInfo

• Exporting Permissions
•Export- NAVAppPermissionSet

• Packaging into a NAVX
•New-NAVAppPackage

DEVELOPMENT-PART

Deploying a navx-file

ADMINISTRATION-PART

App Element
• (MajorAppID
• Name
• Publisher
• Description
• Version (Major.Minor.Build.Revision)
• CompatibilityID .Minor.Build.Revision)

Capabilities Element
• UiChanges / UiAdds / schemaChanges / schemaAdds / codeAdds / PermissionSets

Prerequisites Element
• specific identifiable object IDs (if not exists, not published)

Dependencies Element
• Other NAV Apps

WHAT’S IN A NAV APP MANIFEST

Set of Delta Files

The Manifest

Permissionsets

WHAT IN A NAV APP PACKAGE

Let’s create a simple Extension

Check Prerequisites

Check Dependencies

Build sandbox database with Export-NAVApplication

• Export objects
• Apply deltas
• Import objects
• Compile

Delete sandbox

Create to NavApp Metadata records

PUBLISH-NAVAPP

Let’s have a look what a serious extension could look
like…

Deltas are crucial

• An “Extension” could be seen as a set of deltas
• Original / Modified

Your DEV environment should be based on the prerequisites of the “Extension”:

• Dynamics NAV
• Your Vertical

Whoever develops the “Extension”, NEVER works on the “on-going” dev database of your vertical.

• Treat an “Extension” as being a separate product
• Therefor a separate development environment

ISOLATED DEVELOPMENT ENVIRONMENT

You should never expect your extension to work as it would as normal development.

There are quite some limitations – some that you would not expect.

• Business Charts
• New Functions on existing table
• Code on new actions

ALWAYS TEST AS AN EXTENSION

Prepare your DEV Environment
• Original Database
• Development Database
• Test Database

A build script that
• Create NavX

• Create/update manifest (increment version)
• Export Original (if necessary)
• Export Modified (if necessary)
• Create Delta’s
• Create NAVx with Manifest & Delta’s

• Deploy NavX
• Check if app is already installed in tenant

• If installed: remove
• Publish new version
• Install new version in tenant

POWERSHELL CAN HELP…

Eventing

When you’re doing Extensions to your own product, YOU decide which events there are in the product. No limitations in terms
of events.

When you’re doing Extensions to the default NAV product, you depend on the events that Microsoft has published.

A lot of scenarios depend on which events exist

Published events from Microsoft

HOOKING INTO DEFAULT FUNCTIONALITY

Publishers

• Publish a local function on the object where it is raised
• Only raise an event once
• Very strict naming convention:

• Bad: OnAfterCommit in codeunit 50000 Sales Management
• Good: OnAfterPostDocument in Codeunit 80 Sales-Post

Subscribers

• A dedicated codeunit which holds all your subscription codeunit
• Decouple: call out to the corresponding method
• Very strict naming convention:

• Bad: OnAfterPostDocument – it doesn’t explain what it’s doing
• Good: CreateRentalItemEntry or AddGeolocationToCustomerOnModify

EVENTING BEST PRACTICES

Custom Add-Ins: not possible!

Default Add-Ins: not possible!

Be creative

VISUALIZATIONS

Upgrade means: Uninstall/Install

Uninstall is going to remove the app, including added tables and fields

Data is moved to the "NAV App Data Archive“ tables

When installing an app, the app is able to get the data from the data archive

UPGRADING AN APP

Part of your Extension, create a codeunit with these global functions

• OnNavAppUpgradePerDatabase
• OnNavAppUpgradePerCompany

Get Archive Info with:

• NAVAPP.GETARCHIVERECORDREF (TableId, var RecordRef)
• NAVAPP.GETARCHIVEVERSION

You can be quite generic

• Restore data for every added field in a default table
• Restore data for every added table

Implement data upgrade already in first version

HOW GETTING DATA FROM THE ARCHIVE?

Table
• New fields
• New Tables

Pages
• New Page
• New actions
• New groups
• New Fields
• Factboxes

MenuSuite

Codeunits

Events

POSSIBLE TODAY
XMLPorts

Queries

Reports

Add-Ins

Publish Web Services based on new objects

Delete objects

Change code

NOT POSSIBLE TODAY

Sometimes you’ll need to step
away from decent (code) design

One great step to effortless
upgrades!

SECURITY

- User account that is logged in NAV

- Service account of the NST

- Service account of SQL Server

WHAT USER IS EXECUTING CODE?

Who thinks it’s the SQL Server
Service Account?

Who thinks it’s the user account of
the user that is logged into NAV?

Who thinks it’s the NST Service
Account?

Should it be local admin or
domain admin?

HELP

Save word as a HTML

Read through it, and cut all sections of H1, H2, … to separate HTML files

Create references in H1 to all H2’s

Generate the TOC based on the Headers

CREATE NAV HELP FROM WORD DOCUMENT

NAVMGT

Install On-Premise and Cloud NAV Environments

Manage in-house NAV environments (DEV Environments)

Monitoring & Alerting

- Backups
- Services
- NAS, ...)

RDP Access to monitored servers, with encrypted passwords

NAVMGT FUNCTIONALITIES

My Blog: www.waldo.be

My PowerShell Scripts: www.github.com/waldo1001

Magno’s blog: www.nav-magno.be

Vjeko’s blog: www.vjeko.com

RESOURCES

