
NAV 2015: THE LATEST APPLICATION CODE

FROM A DESIGN PATTERNS PERSPECTIVE

Mostafa Balat, Bogdana Botez, Anders Larsen
(Microsoft MDCC)

C/AL Design Patterns

C/AL Developer

As a C/AL developer, this is your day

New

Features

Upgrade

Code

maintenance

If only...

… MS developers wouldn’t ruin your solution with each new version

… upgrade was easy and FAST

If only...

… legacy code would follow a clearly stated intention

… maintenance costs were low

If only...

… creating new features was quick and easy

… you would know the proven solutions

Code Design

1 2

Agenda

WHAT is a Design

Pattern?

WHAT is a Design

Pattern?

WHAT is a Design Pattern?

WHY do we need

Design Patterns?

WHO is part of the

project?

WHAT Next? WHAT NAV Patterns

are we

documenting?

When the
“Gang of Four” was writing
Design Patterns, we knew that there were lots of
software patterns other than object-oriented
design patterns.

Ward Cunningham in the preface to "Analysis Patterns: Reusable Object

Models" by Martin Fowler

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

When the
“Gang of Four” was writing
Design Patterns, we knew that there were lots of
software patterns other than object-oriented
design patterns.

Ward Cunningham in the preface to "Analysis Patterns: Reusable Object

Models" by Martin Fowler

Erich Gamma

Richard Helm

Ralph Johnson

John Vlissides

Existing Design Patterns

Object Oriented

Design Patterns

Gang of Four

Design Patterns

NAV Design

Patterns

A pattern is an idea that has been useful in one
practical context and will probably be useful in
others.

Martin Fowler

WHY NAV Patterns?

WHY NAV Patterns?

New code

2%

Modifying

Existing Code…

Understanding Code

78%

Time spent on:

New Code: 2%
Modifying Existing Code: 20%
Understanding Code: 78%

When understanding means rewriting

Avoid the MC Hammer code

Make your code extensible

Problem
• Using too many arguments in a function

• Hard to change signatures

• No function overloading in CAL

• Duplicating option definitions

Solution
• Group commonly used arguments as a table and use as a single argument.

Make Your Code Extensible

Example 1

The Argument Table Pattern: Example 1

Bad example

Procedure definition

PROCEDURE FillInVATReturnData@1200001(VAR DeclarationID@1200000 : Code[20];VAR LineID@1200001 :
Code[20];VAR PeerID@1200002 : Code[20]; VAR DocumentNo@1200003 : Code[20]; VAR NumberOfCopies@1200007 :
Integer; VAR Uploaded@1200004 : Boolean; VAR Correction@1200005 : Boolean; VAR HasValidationErr@1200006 :
Boolean);

Call

FillInVATReturnData(NoSeries, NextLineID, CustomerID, DocumentNo, SingleCopy, ???, ??, …., …)

The Argument Table Pattern: Example 1

Good example

New table

TAB 50003 VAT Return Data

Procedure definition

PROCEDURE FillInVATReturnData@1200001(VAR VATReturnData@1200000 : Record 50003);

Init default values

VATReturnData.INIT;

VATReturnData.NumberOfCopies := GetDefaultNumberOfCopies;

VATReturnData.Uploaded := FALSE;

Call

FillInVATReturnData(VATReturnData);

Example 2

The Argument Table Pattern: Example 2

Bad example
LOCAL PROCEDURE GetTableSyncSetupW1@3(

OldTableId@1002 : Integer;

VAR UpgradeTableId@1001 : Integer;

VAR TableUpgradeMode@1000 : 'Check, Copy, Move, Force') : Boolean;

BEGIN

CASE OldTableId OF

DATABASE::"Sales Header":

SetTableSyncSetup(0,TableUpgradeMode::Check,UpgradeTableId,TableUpgradeMode);

DATABASE::"Posting Exch. Column Def":

SetTableSyncSetup(104025,TableUpgradeMode::Copy,UpgradeTableId,TableUpgradeMode);

DATABASE::"Payment Export Data":

SetTableSyncSetup(0,TableUpgradeMode::Force,UpgradeTableId,TableUpgradeMode);

ELSE

EXIT(FALSE);

END;

EXIT(TRUE);

END;

The Argument Table Pattern: Example 2

Good example

PROCEDURE GetTableSyncSetupW1@3(VAR TableSynchSetup@1000 : Record 2000000135);

BEGIN

SetTableSyncSetup(DATABASE::"Sales Header",0,TableSynchSetup.Mode::Check);

SetTableSyncSetup(DATABASE::"Posting Exch. Column Def",104025,TableSynchSetup.Mode::Copy);

SetTableSyncSetup(DATABASE::"Payment Export Data",0,TableSynchSetup.Mode::Force);

END;

Overview: The Argument Table Pattern

Good
• Fewer arguments

• Clear intention

• Allows assigning default values

• Allows validation logic for parameters

• Easy to extend:

• Easy to add new fields, no upgrade problem

• No function signature change needed. Can be used where needed. Few lines of modification

• The table should be temporary

Bad
• More objects

• There is a limit to table encapsulation (cannot encapsulate records of another tables)

Make your code upgradable

The Hooks Pattern
Problem: upgrade/merge conflicts
Solution: make your product
upgradable, by minimizing your
footprint

Hooks Pattern
by Eric Wauters

Two steps:
• name the places in the already existing code where

customization is needed
• place all your business logic outside the already existing

application code

https://community.dynamics.com/nav/w/designpatterns/117.hooks-pattern.aspx

The Hooks Pattern

Without the pattern, upgrade = 2 weeks

With the pattern, upgrade = 15 min

“Upgrading from 2013 to 2013R2, there was a change in codeunit 80 (piece of code
moved to a function). There were lots of reactions from the community .. like
<<Microsoft, please don't do that, now my code won't merge>>... I only had to
move 1 line to that function...” (Eric Wauters)

The Hooks Pattern

Make your code configurable

Rules Table Pattern

Challenge
• Extending and maintaining hard-coded logic is expensive

• Minimize changes to existing code when adding new behavior

• Deploy changes to multiple tenants, plus customization for their businesses

Approach
• Data-driven changes are less expensive, easier to do

Make Your Product Configurable

Example: Automatic Bank Reconciliation

Rules Table

Line No. Statement Amount Transaction Text Payer Information
Additional Transaction
Information

10000 -1500 Inv.10001 Cannon Group

20000 -1750 Thank You! Kennel

Entry No. Type Amount Document No. Customer Name

1 Invoice 1500 10001 Cannon Group Plc.

2 Invoice 1500 99876 Cardoxy

3 Invoice 750 10201 Kennel

4 Invoice 2500 10210 Spotsmeyer's Furnishings

5 Invoice 2500 10211 Spotsmeyer's Furnishings

6 Invoice 5000 10212 Spotsmeyer's Furnishings

Transactions from Bank Statement File

Open Ledger Entries

Bad example: Forest of IF Statements in Multiple Pages!

Rules Table

Bad example 2: Argument table plus EXITs to avoid nesting

Rules Table

In total, there are 3 full screens of code like this!

Rules Table - Overview
Good example: Implement the matching rules as a table

Statement
Amount

Transaction
Text

Payer
Information

Additional
Transaction
Information

-1500 Invoice on the
date

Cannon Group

Entry
No.

Type Amount
Document

No.
Customer Name

1 Invoice 1500 10001 Cannon Group Plc.

Transactions from Bank Statement File

Open Ledger Entries

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully Yes - Multiple One Match

High Fully Yes - Multiple Multiple Matches

High Fully No One Match

Medium Fully Yes - Multiple Not Considered

Medium Fully Yes Not Considered

Medium Fully No Multiple Matches

Medium Partially Yes - Multiple Not Considered

Low Fully Yes No Matches

Low Partially Yes No Matches

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully No One Match

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

Fully No One Match

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully No One Match

Rules Table – Implementation

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

Fully No One Match

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully No One Match

Rules Table – Adding More Rules

Modify or add rows to the table. No code modifications needed.

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully Yes - Multiple One Match

High Fully Yes - Multiple Multiple Matches

High Fully No One Match

Medium Fully Yes - Multiple Not Considered

Medium Fully Yes Not Considered

Medium Fully No Multiple Matches

Medium Partially Yes - Multiple Not Considered

Low Fully Yes No Matches

Low Partially Yes No Matches

Match Confidence

Related Party

Matched

Document No. / Ext.

Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully Yes - Multiple One Match

High Fully Yes - Multiple Multiple Matches

High Fully No One Match

Medium Fully Yes - Multiple Not Considered

Medium Fully Yes Not Considered

Medium Fully No Multiple Matches

Medium Partially Yes - Multiple Not Considered

Low Fully Yes No Matches

Low Partially Yes No Matches

Low Fully No No Matches

Low Partially No One Match

Match Confidence

Related Party

Matched

Document No. /

Ext. Document No.

Matched

Number of Entries

Within Amount

Tolerance Found

High Fully Yes - Multiple One Match

High Fully Yes - Multiple Multiple Matches

High Fully No One Match

Medium Fully Yes - Multiple Not Considered

Medium Fully Yes Not Considered

Medium Fully No Multiple Matches

Medium Partially Yes - Multiple Not Considered

Low Fully Yes No Matches

Low Partially Yes No Matches

Low Fully No No Matches

Low Partially No One Match

Match Confidence

Related Party

Matched

Document No. /

Ext. Document No.

Matched

Number of Entries

Within Amount

Tolerance Found Due Date

High Fully Yes - Multiple One Match No

High Fully Yes - Multiple Multiple Matches No

High Fully No One Match No

Medium Fully Yes - Multiple Not Considered No

Medium Fully Yes Not Considered No

Medium Fully No Multiple Matches No

Medium Partially Yes - Multiple Not Considered Yes

Low Fully Yes No Matches No

Low Partially Yes No Matches No

Low Fully No No Matches Yes

Low Partially No One Match Yes

Rules Table – Extending Criteria

Match Confidence

Related Party

Matched

Document No. /

Ext. Document No.

Matched

Number of Entries

Within Amount

Tolerance Found Due Date

High Fully Yes - Multiple One Match No

High Fully Yes - Multiple Multiple Matches No

High Fully No One Match No

Medium Fully Yes - Multiple Not Considered No

Medium Fully Yes Not Considered No

Medium Fully No Multiple Matches No

Medium Partially Yes - Multiple Not Considered Yes

Low Fully Yes No Matches No

Low Partially Yes No Matches No

Low Fully No No Matches Yes

Low Partially No One Match Yes

Rules Table – Extending Criteria

Rules Table

Other Implementations

• Data Exchange Framework

• Rapidstart Configuration Templates

• Rapidstart – Field Mappings and Text Processing Rules, etc.

Good
• Extensible

• Readable

• Easier to maintain

• Simpler to upgrade

• Faster to deploy

Bad
• Tables can grow quickly making it difficult to understand

Rules Table

Make your code adaptable to user needs

Challenge
• Using same table for real and temporary may undesirably impact other related data

• Validation triggers are partially or not needed for temporary processing

• UI should be business logic-free

Approach
• Create a new table with replica or custom mapping for temporary data

Make Your Product Adaptable

Presentation Model Pattern

• Commands

View

• Data Binding

• Notifications

View-Model
• Get

• Set

Model

Presentation Model – Implementation

• Actions

Page

• Data Binding

• Validation
Triggers

Temporary
Table • Mapping (Clone

or Custom)

• Insert, Update,
Delete

Permanent
Table

Bank Reconciliation

Challenge
• W1 implementation with improvements overshadows localization

• Import bank statement file, auto-match statement lines to Ledger Entries

• Customers decide when to migrate their business process off legacy localization

Approach
• Display both old and new data through the same starting point

• Statistical cues reflect old or new data, based on user’s choice

• Provide a switch to move from legacy to universal implementation

Presentation Model in NAV 2015

Presentation Model – Bank Reconciliation

Model

• W1 or Legacy

View-Model

• Unified backend

View

• Cards
List Page

Table

Bank Acc.
Recon.

Bank Rec.
Header

Presentation
Model –
Example

Start

Refresh Temporary
Dataset

Is Legacy
Active?

Temporary
Dataset

Action?

No

Bind to User
Interface

End

Yes
CRUD on

Temporary Dataset
Is Legacy Active

No
Cloned

Mapping
Yes

Custom
Mapping

Yes

CRUD on
Bank Rec.
Header

No

CRUD on
Bank Acc.

Reconciliation

Permanent
Tables

Presentation Model – Bank Reconciliation

1. Get temporary copies of the Bank Acc. Reconciliation table

Presentation Model – Bank Reconciliation
2. Get temporary copies of the Bank Rec. Header table

Presentation Model – Bank Reconciliation
3. Bind the temporary copies to the right set of Card page

Presentation Model – Bank Reconciliation
3. Bind the temporary copies to the right set of Card page

Good
• Adjust the representation of the same data to different needs

• Enable basic and advanced scenarios (regular Customer card vs. Mini
Customer card)

• Migrate users easily to new implementations with less effort

Bad
• Mainly for the user interface. Otherwise, Queries should be used.

Presentation Model Design Pattern

Make your code user friendly

.NET Exception Handling

Challenge
• Need to reuse .NET classes in C/AL

• Unhandled exceptions annoy users

• No Try-Catch clause in C/AL

Approach
• .NET exception handling in C/AL

Make your code user friendly

Example
IF NOT CheckFileExistence.RUN(TempBlob) THEN BEGIN

ExceptionHandler.Collect;

CASE TRUE OF

ExceptionHandler.TryCastToType(GETDOTNETTYPE(FileNotFoundException)):

CheckFileExistence.ImportFile(TempBlob);

ExceptionHandler.TryCastToType(GETDOTNETTYPE(UnauthorizedAccessException)):

CheckFileExistence.UploadFileFromClient(TempBlob,FileName);

ELSE

DotNetExceptionHandler.Rethrow;

END;

END;

.NET Exception Handling

// CATCH STATEMENTS

// CATCH Exception

Service Management
1. Construct a web request.

2. Connect to a web service.

3. Handle any web exceptions.

4. Extract the error response.

5. Display a user-friendly error.

• Payment Export

• Bank Statement Import

• Bank Name Lookup

.NET Exception Handling in NAV 2015

.NET Exception Handling – Example

Convert File to Different Format Using a Web Service

W
e

b
 S

e
rv

ic
e

M
an

ag
e

m
e

n
t

E
xt

e
rn

a
l D

a
ta

H
a

n
d

le
r

.N
E

T
 E

xc
e

p
ti

o
n

H
a

n
d

le
r

Start

Exception

Identify the Issue

End

No
Extract the Data

Content
Web Service

Send File to Service
Bank File

Yes

Error Message

Example – External Data Handler

Example – Web Service Management

Example – Exception Handler

.NET in C/AL vs. Add-Ins

Good
• Easier to customize (by in-house and partner developers alike)
• Easier to deploy (FOB or text)
• Easier to upgrade (no external dependencies)
• Reuse of knowledge (written in C/AL)

Bad
• OnRun usage trigger might be tricky in case of codeunit-nested invocation.

NAV cookbook

Cached Web Service Calls

Challenge
• Reference data needs to be up-to-date.

• Connected model, network latency, service downtime

• Disconnected model, out of sync, maintainability

Approach
• Retrieve and cache the data periodically

Reuse Data from External Services

Reuse Data
from
External
Services –
Example

Start

Is the list
outdated?

Apply a country
filter

Read existing
Bank Names

Yes

Is it for a
specific
country?

Bank Names

Web Service

Refresh the Bank
Names

Is the list
empty

Yes

No

No

Stop
Bank Names List

No

Yes

• Host the list of bank names cached from a web service

• Uses a timestamp to recognize the last refresh time

• Display the bank names in full or lookup modes

• Auto-refresh the data for one or more Country/Region Codes

• Provide an action to the user for forcing a data refresh

• Payment Export

Reuse Data from External Services in NAV

Reuse Data
from External
Services in
NAV

OnOpenPage
BEGIN

CountryRegionCode := IdentifyCountryRegionCode(Rec,GETFILTER("Country/Region Code"));

IF BankDataConvBank.ISEMPTY THEN BEGIN

ImpBankListExtDataHndl.GetBankListFromConversionService(HideErrors,CountryRegionCode,ShortTimeout);

EXIT;

END;

RefreshBankNamesOlderThanToday(CountryRegionCode);

END;

Reuse Data from External Services – Example

RefreshBankNamesOlderThanToday
BEGIN

IF CountryRegionCode <> '' THEN

BankDataConvBank.SETFILTER("Country/Region Code",CountryRegionCode);

BankDataConvBank.SETFILTER("Last Update Date",'<%1',TODAY);

IF BankDataConvBank.FINDFIRST THEN

ImpBankListExtDataHndl.GetBankListFromConversionService(ShowErrors,CountryRegionCode,Timeout);

END;

Reuse Data from External Services – Example

Reuse Data from External Services

Good
• Avoid connection timeout, service downtime

• Working across devices, users may have limited bandwidth

• Data is ‘relatively fresh’ according to the business expectations

Bad
• Dependency on an external service is as good as the service uptime is

Copy Document

Challenge
• When a user wants to create a entity of a documents structure based on a existing entity

of the same document structure.

• When a user want to be able to copy from one Document structure to another

Approach
• Create a codeunit for the

remapping of the fields

Document

Structure X

Document

Structure Y

Copy Document

Copy Document

Copy
Document

Copy Document

Copy Document

SELECT DISTINCT using Queries

SELECT DISTINCT using Queries

Challenge
• SELECT DISTINCT (a.k.a. select unique) is not provided by NAV out of the box

Approach
• Use a query object to

• configure grouping parameters for SELECT DISTINCT

• add a Totals column on the query to trigger grouping

SELECT DISTINCT using Queries

Example
VAT Entry – get all
documents which
generated entries in the
VAT Entry table.

DISTINCT: One line per
one document.

Type

Document Type

Document No.

SELECT DISTINCT using Queries

SELECT DISTINCT using Queries

SELECT DISTINCT using Queries

NAV Usages
Query 19: VAT Entries Base Amt. Sum

Used by Report 19: VAT-VIES Declaration Tax Auth.

Related pattern
SELECT DISTINCT with temporary tables

C/AL Guidelines

C/AL Guidelines
We will take a few of them here ☺

• Parameters rule 1

• Parameters rule 2

• WITH scope

• Cyclomatic complexity (CC)

Parameters rule 1
The number of parameters passed to a string must match the placeholders.

Bad

HelloWorldMsg@1005 :
TextConst 'ENU=Hello, World!';

MESSAGE(HellowWorldMsg,TABLECAPTION);

Good

HelloWorldMsg@1005 :
TextConst 'ENU=Hello, World!';

MESSAGE(HelloWorldMsg);

C/AL Guidelines

Parameters rule 2
Do not declare parameters by reference if their values are not intended to be changed.

Bad

LOCAL PROCEDURE
ShowMessage@15(VAR Text@1000 : Text[250]);

BEGIN

IF (Text <> '') AND GenJnlLineInserted THEN

MESSAGE(Text);

END;

Good

LOCAL PROCEDURE
ShowMessage@15(Text@1000 : Text[250]);

BEGIN

IF (Text <> '') AND GenJnlLineInserted THEN

MESSAGE(Text);

END;

C/AL Guidelines

WITH Scope
Do not use the WITH scope when it has a variable whose name is the same as a local

variable. This can lead to wrong code assumptions.

Bad

PROCEDURE InsertData@1("Contract Type"@1000 :
Option...);

BEGIN

WITH ServiceContractHeader DO BEGIN

DimMgt.InsertServContractDim(
...,"Contract Type","Contract No.",0,...);

END;

Good

PROCEDURE InsertData@1(ContractType@1000 :
Option...);

BEGIN

WITH ServiceContractHeader DO BEGIN

DimMgt.InsertServContractDim(
...,ContractType,"Contract No.",0,...);

END;

C/AL Guidelines

Cyclomatic complexity (CC)
Cyclomatic complexity, also known as V(G) or the graph theoretic number, is probably the most
widely used complexity metric in software engineering. Defined by Thomas McCabe, it's easy to
understand and calculate, and it gives useful results. This metric considers the control logic in a
procedure. It's a measure of structural complexity. Low complexity is desirable.
How to calculate cyclomatic complexity?

CC = Number of decisions + 1

The cyclomatic complexity of a procedure equals the number of decisions plus one. What are
decisions? Decisions are caused by conditional statements. In C/AL we consider IF and Case as
decision in literature called CC3

C/AL Guidelines

Cyclomatic complexity (CC)

C/AL Guidelines

WHO works on design patterns?

Microsoft
Anders Larsen

Bardur Knudsen

Bogdan Sturzoiu

Bogdana Botez

Ciprian Iordache

Eva Dupont

Kurt Juvyns

Michael Nielsen

Mostafa Balat

Nikola Kukrika

Partners
Arend-Jan Kauffmann, Xperit Products

Claus Lundstrøm

Eric Wauters, iFacto, PRS

Gerhard Winter, agiles, PRS

Henrik Langbak, Bording Data A/S

Jan Hoek, IDYN

Kim Ginnerup, Bording Data A/S

Luc Van Vugt, fluxxus.nl

Mark Brummel, Brummel Dynamics Services, PRS

Mike Doster, Mergetool

Søren Klemmensen, Concept Computer Corp.

Xavier Garonnat, knk Ingenerie

WHO is in?

Search for “NAV Design Patterns” on

Wiki

WHO works on design patterns?

•A new Pattern per month (12-15 over the next year)

•Coming up soon

• The C/AL guidelines on the Wiki

Plans

