
Kalman Beres, Nikolay Dobrev
MICROSOFT



Agenda

• Telemetry

• In-client tools

• Debugging enhancements

• Snapshot debugging

• Profiling



Agenda

• Telemetry

• In-client tools

• Debugging enhancements

• Snapshot debugging

• Profiling



• Lifecycle
• Logins
• Performance
• AL errors
• PowerBI Dashboard

http://aka.ms/bctelemetryreport

Telemetry

http://aka.ms/bctelemetryreport


Agenda

• Telemetry

• In-client tools

• Debugging enhancements

• Snapshot debugging

• Profiling



Agenda

• Telemetry

• In-client tools

• Debugging enhancements

• Snapshot debugging

• Profiling



Demo



• New setting to exclude temporary record read writes

• New setting to exclude breaking on errors on try functions

• Startup company can be specified in the launch.json

Other debugger enhancements



Agenda

• Telemetry

• In-client tools

• Debugging enhancements

• Snapshot debugging

• Profiling



Recording of a session and looking at the state at certain points in time: snappoints

Snapshot debugging does not stop the execution and only records state on snappoints.

So, it is enabled in PRODUCTION.

1.Set snappoints and start snapshot debugging for a session

2.Perform the scenario you want to debug

3.Download snapshot result

4.Step through the snapshot and inspect flow & data

Snapshot result will contain call-stack and select local & global variables values recorded for 
the snappoints.

Allows rapid investigation and collaboration with the customer on exact reproduction steps

Snapshot debugging



Property Description

request Type of launch configuration.
Must be “snapshotInitialize”

environmentName The SAAS environment name

environmentType Production, Sandbox, OnPrem

tenantId The AAD tenant id, or the authority domain (<xyz>.onmicrosoft.com)

breakOnNext WebClient, WebServiceClient, or Background (only UI-less user sessions)

sessionId Integer id of running session to attach to.

Help and Support page/Tenant Admin Center

userId The ID of the user to attach to.
Can be empty (debug next), a user ID security GUID or username

snapshotVerbosity If set to SnapPoint, call-stack is only captured on snappoints. Default is Full

executionContext Debugging, Profiling or both

profilingType Sampling or Instrumentation

Snapshot Debugging - Business Central | Microsoft Docs

Snapshot launch.json configuration

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-snapshot-debugging


Conceptually same as breakpoints
• Added in gutter or using shortcut

• Shown in breakpoints list

• Also in symbol code (DAL)

However
• Not a breakpoint, execution is not halted

• Variables only collected at snappoints 
(and exceptions)

• Must be added before initializing snapshot

Adding snappoints



F7 or ”AL: Initialize snapshot debugging” command

Prepares snapshot capture

Uploads snappoints and trigger rules to target server

Starts listening, if it can acquire a session then it sets status to started

Snapshot debugging session counter on the status-bar will be updated

View all current snapshots

Click the debug icon in the status bar

Shift+F7

“AL: Show all snapshots” command

Initializing snapshot



You finish snapshot debugging session by pressing Alt + F7
Brings up all snapshot sessions that have been started.

Choosing one will close the session debugging on the server and download the 
snapshot file.

Finish and download snapshot session



A snapshot debugging session can be in one of these states

State Description

Initialized Server is waiting for the next session to be snapshot debugged based on specified session 
rules

Started Attached to end-user session and snapshot capture in progress

Finished Snapshot capture has finished

Downloaded Snapshot file is downloaded

Snapshot states



If initializing a snapshot session for the next session, the user will be warned 

Warning on capturing user session



D365 Snapshot Debug permission set
To create and download a snapshot file that exists on the server on behalf of an 

end-user .

ResourceExposurePolicy (former ShowMyCode) and NonDebuggable, 
Dynamic IP protection are respected as with normal debugger.

Must be started within 30 minutes after initialization .

Must be finished within 10 minutes. 

Snapshot access and permissions



Archive (.zip) file
• Default downloaded to ./.snapshots in current 

workspace.

• Override download location 
with al.snapshotOutputPath setting.

• Contains debug metadata (code, callstack and snapshot 
data etc.)

Snapshots can contain customer privacy data!
• Must be handled accordingly to privacy compliance.

• Delete when no longer needed.

• Unfinished snapshots pruned on internal server side.

Snapshot files



Downloaded snapshot session can be debugged.
Shift+F7 or click debug status icon, select finished snapshot 

capture in ./.snapshots ("al.snapshotDebuggingPath” 
override).

F5 and chose snapshot launch configuration with a 
“snapshotFileName” set.

Code “execution” will stop at first snappoint hit
AL exceptions will be treated as snappoints

No snappoints? Entry first line in first captured method

F5 will jump between snappoints/breakpoints
Can insert new breakpoints, but no variable state after capture

Debugging snapshot file offline



Demo Snapshot debugger



Snapshot debugging recording with 
state at snappoints in PRODUCTION a
nd SANDBOX.

Normal debugging, halting execution 
and doing line by line debugging 
in SANDBOX only.

Debugging



Agenda

• Telemetry

• In-client tools

• Debugging enhancements

• Snapshot debugging

• Profiling



AL profiler introduced 
using instrumentation

Tracks start and stop for each called 
method and computes time spent

Tracks # of hits for a called method

AL Profiler

procedure Foo()

begin

FUNC_ENTER(Foo);

// do some work

CALL_ENTER(Other);

// call another function

Other();

CALL_EXIT(Other);

// do some more work

FUNC_EXIT(Foo);

end;

The next release we have introduced 
sampling based profiling.



Sampling
• Low overhead

• Not all calls are captured

• UI interactions, external calls are included

• Time is a factor of sampling interval + 
overhead

Instrumentation
• Resource intensive

• More details

Sampling vs. Instrumentation



Sampling

AlsoSmall()

C
a
ll
st

a
ck

Time

Run()

Foo()

Bar()

Small()

S
a
m

p
le

 0

Idleg()

~100 ms

S
a
m

p
le

 1

~100 ms

S
a
m

p
le

 2

~100 ms

S
a
m

p
le

 3

~100 ms

S
a
m

p
le

 4

~100 ms

S
a
m

p
le

 5



In-client Profiler



New profiling type: sampling
At a fixed interval (sample point), track current method/call stack frame
Sample interval configurable on NST, set to 100ms in cloud
Total and self-times effectively = # of samples hit * (sample interval + overhead)
Method calls happening between sampling intervals will not appear

Sampling will include time spent outside AL code
New Idle node in profile

New profilingType setting in launch.config

Sampling in AL profiler



Demo- AL profiler



In-Client Profiling
•Understanding where time is spent 

in PRODUCTION and SANDBOX

Sampling
•Export profile result from client or profile 

using the profiletype sampling 
to understand where time is spent 
in PRODUCTION and SANDBOX

Instrumentation
•Profile using the 

instrumentation profiletype in VS Code 
for targeted profiling in a SANDBOX

Profiling




