
Kalman Beres, Nikolay Dobrev
MICROSOFT

Agenda

• AL Settings

• Workspaces

• Dependency publishing

• Rapid Application Development (RAD)

Agenda

• AL Settings

• Workspaces

• Dependency publishing

• Rapid Application Development (RAD)

• User/Global settings - Settings that
apply globally to any instance of VS
Code you open.

• Workspace Settings - Settings stored inside
your workspace and only apply when the
workspace is opened. Overrides User
settings.

• Project folder Settings - Apply to a specific
folder, it overrides User/Global settings.

AL Settings

Visual Studio Code User and Workspace Settings

https://code.visualstudio.com/docs/getstarted/settings

• User/Global settings - Settings that apply
globally to any instance of VS Code you open.

• Workspace Settings - Settings stored
inside your workspace and only apply
when the workspace is opened.
Overrides User settings.

• Workspace Folder Settings - Apply to a specific
folder of a multi-root workspace. Overrides
Workspace and User settings.

AL Settings

Visual Studio Code User and Workspace Settings

https://code.visualstudio.com/docs/getstarted/settings

• User/Global settings - Settings that apply
globally to any instance of VS Code you
open.

• Workspace Settings - Settings stored inside
your workspace and only apply when the
workspace is opened. Overrides Global
settings.

• Project Settings - Apply to a
specific project and it overrides
the Global settings.

AL Settings

Visual Studio Code User and Workspace Settings

https://code.visualstudio.com/docs/getstarted/settings

Nonobvious AL Settings

Setting name Description
al.incrementalBuild Specifies whether the compiler should reuse the existing background compilation for creating

the package. If it is set to false then Ctrl + Shift+ B is equivalent to building the AL project with
alc.exe.

al.editorServicesLogLevel Sets the logging verbosity level for the AL Language Editor Services host executable. Possible
values are 'Verbose', 'Normal', 'Warning', and 'Error'.

Controls the verbosity output of the C:\Users\<user>\.vscode\extensions\ms-dynamics-
smb.al-<version>\bin\win32\EditorServices.log and DebuggerServices.log. If it is set to option
other than 'Normal' remember to revert it back to 'Normal' because the files can grow
exponentially fast.

al.browser The AL developer can specify the browser in which to open the Business Central client when
launching the application from Visual Studio Code. The available options are 'Edge', 'Edge
Beta', 'Chrome', 'Firefox' and 'SystemDefault'.

al.incognito The AL developer to open the browser in Incognito/InPrivate mode when launching the
application from Visual Studio Code. This option will take effect only if the 'al.browser' option
is set to a non-default value.

Option​ Description​
generateReportLayout Controls whether the compiler will generate Report Layout files

when building the package. Default value is true.

parallel​ Specifies whether the compiler should use multiple threads when building
the project. Default value is true​

maxDegreeOfParallelism Specifies the maximum number of concurrent tasks the compiler should
use when compiling the project. Default: 2​

delayAfterLastDocumentChange Specifies the number of milliseconds before getting document diagnostics.
Default:800 ms

delayAfterLastProjectChange Specifies the number of milliseconds to wait for a project and all
that depend on the project background compilation to re-start. Default:
4 sec​

continueBuildOnError Specifies if build should continue even if errors are found.​ It requires
"al.incrementalBuild" to be false.

al.compilationOptions

Agenda

• AL Settings

• Workspaces

• Dependency publishing

• Rapid Application Development (RAD)

What is an AL workspace?
▪ It is the collection of one or more AL projects.

What is an AL project?
▪ It is a collection of files(al, json, xml) that produces an AL app file.
▪ It is defined by the app.json file.

• A workspace can be a standalone single workspace or a multi root workspace
defined by .code-workspace.json file

• The biggest advantage of a workspace is that it allows one to work
on multiple projects on the same VsCode instance.

Workspaces

• Projects in a workspace can define a dependency relation.

• Within a dependency relation symbols will be resolved from the project and
not from the app file.

Projects with project references

“MySystem App” is a project in the workspace
“MyBase App” is also a project in the workspace

• The active project is determined by looking at:
▪ The project that has an opened AL file in focus
▪ The app.json file opened defining the AL project .

• The active project is shown on the taskbar.

• All operations (commands) execute in the context of the active project.

The active project

• The active project and all the project references (forward closure) are loaded

• Projects that are not loaded are marked with the letter N.

Loading a workspace with project references

MyBaseApp

MyLeafApp MySystemApp External

N

• A project reference acts as a symbol resolver instead of an app reference.

Resolving symbols

Package cache path

MyLeafApp MySystemApp External

MyBaseApp

MyBaseApp.app

MySystemApp.app

External.app

Resolves

Resolves

ResolvesResolves

• The active project is built (Ctrl+ Shift+ B)

• In order that dependency publishing works all changed (dirtied) project
references are also built. A project is dirtied if an AL file is changed in the
project. Dirtying loses scope only after publishing.

• Hint: Do build often since we do a GC collect after each build sequence.

Building projects with project references

Workspaces Demo

Agenda

• AL Settings

• Workspaces

• Dependency publishing

• Rapid Application Development (RAD)

Dependency publishing

P1 P2

P7

P9

P13

P5

P10

P3P4

P6 P8

P11

P12

Full Dependency Publishing Demo

• Dependency graph for an active project within a workspace is calculated when the
workspace is loaded.

Note: The dependency graph is built for a workspace meaning if you have a dependency chain [A -
> B -> C] and only projects A and C are part of the workspace then the graph won’t have a link
between A and C.

• Full compilation is done for the whole dependency graph built for the current active
project.

This ensures we have the most up-to-date compiled artifacts. If the compilation of any of the
projects fails, the whole operation is aborted.

• We publish in topological order.
• The launch.json configuration of the current active project is used to determine the publish

parameters.
• It publishes the whole dependency graph meaning even if the server already contains one

of the projects it will be still published.
• If a publish operation fails because of an error on the server, the whole operation fails.

Full dependency publishing

Dependency publishing

P1 P2

P7

P9

P13

P5

P10

P3P4

P6 P8

P11

P12

• P11 and P8 are part of the same
workspace.

• P11, P8 and P12 are already
published to the server.

Dependency publishing

P8

P11

VS Code workspace

P8

P11 P12

Server

Both Workspace projects are edited.
Denoted with Asterix *

Dependency Publishing

P8

P11 P12

P8*

P11*

VS Code workspace Server

Deploying P8 to the server will result in the
following.

1. Uninstalling every dependency app
available on the server- P11 and P12.

2. Publishing P8.

3. Installing back every dependency app- P11
and P12.

Dependency Publishing

P12

P8*

P11*

VS Code workspace Server

.dep.app P8*

P11

Now if we deploy P11 we will have the
following scenario.

1. All extensions in the graph are uninstalled
(including the ones not in the VS Code
Workspace).

2. In this case both P11 and P8 are
deployed.

3. All extensions available on the server part
of the graph are reinstalled.

Dependency Publishing

P12

P8*

P11*

VS Code workspace Server

P8*

.dep.app P11*

• When P8 is big and it takes long time to
recompile.

• When we know P11 will work with the older
version of P8 and recompilation is not
needed.

Specifying dependencyPublishingOption in
launch.json file.

Dependency Publishing with Ignore

P12

P8*

P11*

VS Code workspace Server

P8

.dep.app P11*

Launch.json file options

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-json-files#Launchjson

Dependency Publishing Demo

Agenda

• AL Settings

• Workspaces

• Dependency publishing

• Rapid Application Development (RAD)

• It is a fast server incremental compilation and deployment step.

• A very much simplified drawing on how Business Central runs AL code:

Rapid application development aka RAD

Base app

Table A

Page A

CodeUnit A

App database

Ctrl F5

Application Object
Metadata Table

Metadata Table A

Metadata Page A

CSharp CodeUnit A

CSharp Table A

CSharp Page A

Business Central
Server

Tenant database

Page A.dll

Table A.dll

Codeunit A.dll

Table A

Business Central
Server Compile

R
u

n

• How does it work? We need a baseline of a published app.

• Modify Table A and add Table E. The NST compilation then will look like:

RAD explained

Base app

Publish

Compile app

Store metadata

Application Object
Metadata Table

Table A

Table B

Table C

Table D

Table A

Table B

Table C

Table D

Table A

Table B

Table C

Table D

Base app

Publish

Compile app

Reference

Rest of Base App
treated as Symbols

Table A

Table E

Table B

Table C

Table D

Store

Application Object
Metadata Table

Table A

Table B

Table C

Table D

Table E

Table A

Table B

Table C

Table D

Table E

RAD Demo

Visual Studio Code commands:

Shortcut
Command

Ctrl + Alt+ F5 Rapid Application Publish without debugging

Alt + F5 Rapid Application Publish with debugging

• RAD publishing requires a baseline

• Changes in the manifest (name, publisher, version) are not supported for RAD

• If RAD publishing fails a full publishing is needed

• RAD state (Rad.json) is kept until a successful publishing is performed within
an instance of VSCode.

• Application Object ID rename refactoring are not the best candidate for RAD.

• RAD publishing would not package files that are otherwise packaged within an
app file:
• Translation files
• Permission files
• Layout files
• Web service definitions

Things to be aware:

