

waldo

Eric “waldo” Wauters

Microsoft MVP, Business Applications
me@waldo.be

@waldo1001
http://www.waldo.be

Business:
Owner @ Dynex bv

Partner @ iFacto Business Solutions nv
Partner @ Hodor nv

Coding tips to

- improve performance of business logic

- to improve user experience

Things to consider while choosing for certain scenarios

Goals

With every “win” comes a “loss”
With every “positive” comes a “negative”

With every “gain” comes a “cost”
Every “pattern” is also an “anti-pattern”

The ambiguity in performance challenges

Whatever I talk about
Will be valid in some situations

But will be invalid in other

Conclusion

Whatever I talk about
Will be valid in some situations

But will be invalid in other

It’s about understanding what’s possible and when
to use it.

Conclusion

Whatever I talk about
Will be valid in some situations

But will be invalid in other

It’s about understanding what’s possible and when
to use it.

Or in other words......

Conclusion

An app that can run performance scenarios

“Just Some Table”:
• A BIG table with LOTS of records
• Not all keys are ok (go figure)

“Just Some Extension Table”:
• 4 tables, with the same amount or records, but which were extended

The Demo App and Demo Data

Code Review checklist ✓Performance

✓Readability (Understandability)

✓Maintainability

✓Extensibility

✓Testability

✓Patterns

✓Reusability

✓Security

✓Documentation

✓Code cloning

✓Scalability

✓Unintentional change of settings

✓...

Keys

SIFT
DeleteAll

Bulk Inserts
RecRef

Subscribers

Temp Tables

Lazy Evaluation

Wrappers

Code Review - Performance

Code Review - Performance

Coding

Queries

Publishers

Subscribers

Temp Tables

DataTypes
Lazy

Evaluation

Wrappers

Retention
Policy

Background
Processing

Data
Access

Keys

Find(Set)

SIFT

Partial
Records

DeleteAll
Bulk

Inserts

NST
Caching

RecRef

Queries

• Keys

• Find(Set)

• SIFT

• Partial Records

• DeleteAll

• Bulk Inserts

Let’s have a look at some examples in code ...

Ext1

Table1 Table2 Table3 Table4

Ext2 Ext3 Ext4 Ext5 Ext6 Ext7 Ext8

Table Extensions

Keys (IncludedFields)
• For heavy operations – make sure keys are

ok
• Let SQL do what it’s designed for

Find(Set)
• Lock when necessary (and don’t when it’s

not)
• Use the right FIND-instruction
• Use ISEMPTY when applicable

SIFTs (and AutoCalcFields)
•Carefully choose whether to
•SIFT
•Included Fields
•Nothing

•Don’t forget about AutoCalcFields

SetLoadFields (Partial Records)
•ALWAYS use SetLoadFields when it makes

sense
•You don’t know whether the tables will have

been extended (in the future)
•Try to avoid BLOBs on TableExtensions

Conclusion

Try to avoid BLOBs on TableExtensions

SetLoadFields(Message)

Blob-fields in TableExtensions

DeleteAll
• Don’t forget the “IsEmpty”

Bulk Inserts
• On by default
• Know it exists, but also know its

constraints:
•AutoIncrement/NumberSeq
•Blobs
•Get/Find/Modify/Calc/..
•OnInsert-subscribers
•IF Rec.Insert Then...

Conclusion

New AL type for transferring “huge” amount of data between tables

Happens a lot in upgrade-scenarios
• Move data between extension-tables
• Move data from obsoleted fields/tables

Supports:
• CopyFields
• CopyRows

Does NOT run triggers, nor events →Only runs during Upgrade

V21 – DataTransfer Object Type

DataTransfer

Code Review - Performance

Coding

Queries

Publishers

Subscribers

Temp Tables

DataTypes
Lazy

Evaluation

Wrappers

Retention
Policy

Background
Processing

Data
Access

Keys

Find(Set)

SIFT

Partial
Records

DeleteAll
Bulk

Inserts

NST
Caching

RecRef

Queries

• Queries

• Publishers

• Subscribers

• DataTypes

• Lazy Evaluation

• Retention Policy

• Background Processing

Let’s have a look at some examples in code ...

Queries
• Great for getting joined data
• Great for grouping and totalling
• Also benefit from SIFT and covering

indexes
• No benefit from NST Caching
• Test alternatives

Publishers
• Go nuts!
• Check out the Generic Method Pattern

Conclusion

Subscribers
•DOES impact performance
•Be as efficient as you can
•Use SingleInstance
•Codeunit size doesn’t matter, but it does

impact readability
•Mind global vars though
•Avoid OnInsert/OnModify/OnDelete
•Subscription binding only helps

performance because when business logic
isn’t executed – it still kills
ModifyAll/DeleteAll and Bulk Inserts

https://alguidelines.dev/docs/patterns/generic-method-pattern/

Data Types
• Use “the new stuff” whenever you can
•TextBuilder
•Dictionaries
•JSON types

Lazy Evaluation
• Remember it
• Test Near, Test Far, Do it, Clean Up
• Only “Test Far” when when the “Test

Near” has passed

Conclusion

• Created immediately

• Runs on same server

• Does not survive a server
restart

• Page Background Task

• Queued

• Only a limited amount of
“workers” running at the
same time.

• Any server in a cluster
can start it

• Survives server restarts

• No logging

• Uses the TaskScheduler

• Defined Schedules

• Recurrence

• Any server in a cluster
can start it

• Survives server restarts

• Logging of results

• Can (will) be canceled

• Read-only

• Call back to parent
session

• Lightweight

Only use StartSession when you’re sure it’s not in a batch.

TaskScheduler is much better, but no logging.

Job Queue makes most sense to use in general.

Don’t forget about Page Backgroundtasks

Conclusion

Tools

Tools

Page
Inspector

Debugger

BCPT

InClient
Profiler

Event
Log

AL
Profiler

Tools

Page
Inspector

Debugger

BCPT

InClient
Profiler

Event
Log

AL
Profiler

SQL Mgt
Studio

SQL
Profiler

DMV

Query

Store

Tools

Page Inspector

Debugger

BCPT

InClient
Profiler

Event Log

AL Profiler

SQL Mgt
Studio

SQL Profiler

DMV

Flame

Graph

Pyroscope

waldo ’s

BCPerfTool

...

Query

Store

Debugger
Flame Graph

Pyroscope
waldo.BCPerfTool

Debugger
• Get locking info

• Get SQL Info

• For SQL profiling – there’s still the SQL
Profiler

FlameGraph

..

Conclusion

@SXShadowXS

Source: https://github.com/SShadowS/AL-Flamegraph

What?

Service to generate, based on the .alcpuprofile:

- An svg – generated using FlameGraph by Brendan Gregg

- Folded files – used by Pyroscope

Want to know more? Keep an eye on Torben’s blog!

https://blog.SShadowS.dk/

and/or, have a look at ...

FlameGraph for Business Central

https://github.com/SShadowS/AL-Flamegraph
https://github.com/brendangregg/FlameGraph
https://pyroscope.io/
https://blog.sshadows.dk/

• Easily run Performance Tests
• Not using TestRunners (!)
• SelectLatestVersion
• Performance Profiling (Sampling)
• FlameGraph
• Pyroscope (Flamegraph diff)

• Batch running to get averages
• Graphs
• Averages
• Actuals
• FlameGraph

• Run and analyze any Object
• Adding your own tests
• PerfTool-Interface (with Snippet)

waldo.BCPerfTool

Where?

https://github.com/waldo1001/waldo.BCPerfTool

waldo.BCPerfTool

https://github.com/waldo1001/waldo.BCPerfTool

