
Lessons learned from 

migrating to .NET Core

Wael AbuSeada

Vladislav Nagornyi



Agenda

• Why .NET Core?

• Planning the migration

• Migration techniques

• Common challenges and 

solutions

• Handling non-migratable 

components

• Results and benefits post-

migration

• Q&A



Why .NET Core?



.NET Core

Performance

 significant runtime 

performance 

improvements 

comparing to .NET 

Framework

Cross-platformModular

 small framework 

assemblies, faster 

load and less RAM 

use

 not just Windows, 

also supports Linux 

and macOS

Flexible 

deployment

 exe can be self-

contained, or use 

system-wide runtime

Better/simpler 

build tools

 powerful CLI, 

simplified dev 

experience, faster 

compilation

Open-source

 community 

contributions and 

transparent 

development process

Containers

 with small footprint 

and support for Linux 

and Windows Nano 

Server, great match 

for containers and 

microservices



Planning the 
migration



.NET Framework vs .NET Core

.NET Framework .NET Core

WPF

WCFWinForms

ASP.NET CoreWCF MAUI

ASP.NET Core

Base Class Library Core Library

Common infrastructure

A
P

P
 

M
O

D
E
L
S

B
A

S
E
 

L
IB

R
A

R
IE

S



.NET STANDARD LIBRARY

One library to rule them all

.NET Standard

.NET Framework .NET Core

WPF

WCFWinForms

ASP.NET CoreWCF MAUI

ASP.NET Core

Common infrastructure

A
P

P
 

M
O

D
E
L
S



.NET migration guide

https://learn.microsoft.com/en-us/dotnet/core/porting/

https://learn.microsoft.com/en-us/dotnet/core/porting/


.NET Upgrade Assistant

Easiest way to start – possibly the only step needed

https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-

assistant-overview 

https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview


.NET Upgrade Assistant



.NET Upgrade Assistant



.NET Upgrade Assistant



Done?



Manual migration

 List incompatible functionality and components

 Establish dependencies between components

 Define migration strategy for each component

 Start executing



Migration 
techniques



Target technology

Is there an alternative functionality in .NET Core?

Is there an alternative functionality in a third-party NuGet?

Has component been planned for refactoring or deprecation?



In-place vs side-by-side project migrations

 In-place
 Make changes directly in the project

 Suitable for small or relatively isolated 

components



In-place vs side-by-side project migrations

 Side-by-side
 Create another project

 Move functionality gradually

 Reduces complexity for migration of 

larger components,

e.g. ASP.NET WebAPI layer



OWIN/ASP.NET

 Was one of the biggest tasks during 

migration – Business Central Server 

had 11 endpoints based on OWIN

 OWIN and ASP.NET Core are very 

similar, yet there’s a lot of nuances

 ASP.NET Core up until 2.2 is 

supported by .NET Framework, helps 

gradual migration

 SignalR vs SignalR Core, same name 

but different protocols



System.Text.Json vs Newtonsoft.Json

 ASP.NET Core 3.0 uses System.Text.Json by default, Newtonsoft.Json 

is still available

 System.Text.Json is faster

 Keeping Newtonsoft.Json may be a better short-term solution for 

API compatibility



WCF

 Evaluate alternatives

 Prefer replacement based on ASP.NET Core for future-proof solution
 CoreWCF – ASP.NET Core based middleware that partially implements WCF

 Plain controllers

 gRPC

 WebSocket

 Custom middleware



app.config/web.config vs appsettings.json

 app.config/web.config are still available via 

System.Configuration.ConfigurationManager

 Some settings are silently ignored
 <gcServer enabled="true" />



Updating AL assembly probing paths



Target technology

Is there an alternative functionality in .NET 
Core?

Is there an alternative functionality in 
a third-party NuGet?

Has component been planned for 
refactoring or deprecation?

Done?

Compatibility Mode

No



Type forwarding

AwesomeDemo

TechDays22.dll

AwesomeDemo

TechDays23.dll

[assembly:TypeForwardedTo(typeof(AwesomeDemo))]

Supported in AL compiler



Type forwarding in net standard



.NET Framework Compatibility Mode

 It allows referencing .NET Framework 

libraries

 Possible thanks to type forwarding

 Why not just use compatibility mode?
 Compile fine ✅

 Doesn’t cover all .NET Framework, but only .NET Standard 

subset of .NET APIs

 Runtime error for unsupported APIs ⛔

 This happened to our OneDrive integration

 Your .NET framework dlls will be loaded in compatibility 

mode, so you might get runtime errors

.NET Framework dll

.NET Standard .NET Core



How to handle the 

stress of migrating 

huge project?



Dreaming about migrationRemember we have good test 

coverage on platform and application

Wake up scared



Always invest in test automation



Target technology

Is there an alternative functionality in .NET 
Core?

Is there an alternative functionality in 
a third-party NuGet?

Has component been planned for 
refactoring or deprecation?

Done?

Compatibility Mode

No

Move to a 

microservice



Moved to a microservice

• Reporting service

• Application proxy service
• Electronic Invoicing in MX 

• Digipoort in NL

• Dataverse 9.1 integration add-in

NST

Reporting Service
Application proxy

Service

OnPrem



Moved to a microservice

• Reporting service

• Application proxy service
• Electronic Invoicing in MX 

• Digipoort in NL

• Dataverse 9.1 integration add-in

NST

Reporting Service

Application proxy

Service

SaaS

Azure Function

Azure Function 

System module



Done



Other interesting changes in .NET Core

 Encoding.Default in .NET Core is always UTF8
 In .NET Framework it was always the system's active code page

 The documentation warns against using Encoding.Default due to the possible changes 

between .NET versions, from machine to machine, and within the same machine over time

 Debug.Assert in .NET Core will crash the process when assertion fails
 In .NET Framework it would show interactive dialog, offering to ignore, to attach a debugger 

or to abort application execution

 Readonly fields in .NET Core cannot be modified using reflection
 It was possible to write to a readonly field in .NET Framework using reflection



Results and 
benefits of 
migration



Performance

 In general, there are consistent computational performance 

improvements across all areas

 App scenarios up to 30% faster ↗️

 Admin tasks (server startup, AL compilation, environment start-up, 

…) up to 55% faster



Performance



Performance

Scenario Time 21.x Time 22.x Improvement %

Build nav binaries (cold) 11:04.0 08:31.0 -23%

Build nav binaries (warm) 05:25.0 04:01.0 -25.8%

Start new tenant (NST) 01:39.0 00:43.0 -56.6%

Add new NST node 00:38.0 00:29.0 -23.7%

Restart NST 00:14.0 00:08.0 -42.9%

Stop tenant (NST) 00:05.0 00:04.2 -16%

Restart tenant (warm) 00:04.6 00:02.0 -56.5%

AL runtime - calculate SHA512 x 1000 00:18.1 00:11.1 -38.7%

AL runtime - calculate SHA512 x 5000 01:30.2 00:52.2 -42.1%

AL debugger - download table 37 DAL over the ocean 00:17.0 00:03.0 -82.4%



Any Questions?




	Slides
	Slide 1: Lessons learned from migrating to .NET Core
	Slide 2: Agenda
	Slide 3: Why .NET Core?
	Slide 4: .NET Core
	Slide 5: Planning the migration
	Slide 6: .NET Framework vs .NET Core
	Slide 7: .NET Standard
	Slide 8: .NET migration guide
	Slide 9: .NET Upgrade Assistant
	Slide 10: .NET Upgrade Assistant
	Slide 11: .NET Upgrade Assistant
	Slide 12: .NET Upgrade Assistant
	Slide 13: Done?
	Slide 14: Manual migration
	Slide 15: Migration techniques
	Slide 16: Target technology
	Slide 17: In-place vs side-by-side project migrations
	Slide 18: In-place vs side-by-side project migrations
	Slide 19: OWIN/ASP.NET
	Slide 20: System.Text.Json vs Newtonsoft.Json
	Slide 21: WCF
	Slide 22: app.config/web.config vs appsettings.json
	Slide 23: Updating AL assembly probing paths
	Slide 24: Target technology
	Slide 25: Type forwarding
	Slide 26: Type forwarding in net standard
	Slide 27: .NET Framework Compatibility Mode
	Slide 28: How to handle the stress of migrating huge project?
	Slide 29
	Slide 30: Always invest in test automation
	Slide 31: Target technology
	Slide 32: Moved to a microservice
	Slide 33: Moved to a microservice
	Slide 34: Done
	Slide 35: Other interesting changes in .NET Core
	Slide 36: Results and benefits of migration
	Slide 37: Performance
	Slide 38: Performance
	Slide 39: Performance
	Slide 40
	Slide 41


