
Kamil Sáček, Jeremy Vyska
NAVERTICA a.s., Spare Brained Ideas

What does it mean „Architecture“?

Few quotes...

Multi-Application Architecture

„Architecture represents the significant design
decisions that shape a system, where significant is

measured by cost of change.“

Grandy Booch

Multi-Application Architecture

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

C
o

st
 o

f
C

h
an

ge

Cost of change during time

Exponential Linear Constant

Multi-Application Architecture

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

C
o

st
 o

f
C

h
an

ge

Cost of change during time

Exponential Linear Constant

We want to be here!

„When software is done right, it requires a fraction of the
human resources to create and maintain. Changes are

simple and rapid. Defects are few and far between.
Effort is minimized, and functionality and flexibility are

maximized.“

Clean Architecture, Robert C. Martin (Uncle Bob)

Multi-Application Architecture

0
10
20
30
40
50
60
70
80
90
HR needed

Cost of Change

Defects

Effort

Functionality

Flexibility

Current Ideal

Multi-Application Architecture

0

20

40

60

80

100
HR needed

Cost of Change

Defects

Effort

Functionality

Flexibility

Current Ideal

„The goal of software architecture is to
minimize the human resources required to

build and maintain the required system“

Robert C. Martin (Uncle Bob)

Multi-Application Architecture

„The only way to go fast, is to go well.“

Robert C. Martin (Uncle Bob)

Multi-Application Architecture

„If you think good architecture is expensive, try
bad architecture.“

Brian Foote and Joseph Yoder

Multi-Application Architecture

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

C
o

st
 o

f
C

h
an

ge

Cost of change during time

Exponential Linear Constant

„Making messes and clean them is always slower
than staying clean“

Multi-Application Architecture

Look for “Bad habits of AL Developers” session!

• And do not forget:
• We are creating Software:
•Soft-ware – soft – easily change the behavior of machines (of Hardware).

Multi-Application Architecture

• And do not forget:
• We are creating Software:
•Soft-ware – soft – easily change the behavior of machines (of Hardware).

Multi-Application Architecture

Prepare your phones for a poll!

• What is better?
• Software which perfectly works but is impossible to change
• Software which doesn’t work but is easy to change?

Multi-Application Architecture

• Software which doesn’t work but is easy to change is BETTER!

• WHY?
• You can change it easily to work correctly...

Multi-Application Architecture

#CostOfChangeMatters

#MSDyn365BCDesignMatters

• Important vs Urgent

Intermezzo - Eisenhower Matrix

Important vs Urgent

• Urgent –YES! Call the Fire Department!

• Important –

• YES if you are in danger => RUN/fire extinguisher etc.!

• NO if you are not in danger => you have delegated it to Fire Department

Fire!
Fire !
Help me!

• Feature (urgent) vs Architecture (important)
• Managers and customers wants Features
• We tend to prioritize URGENT but NOT IMPORTANT things
• Developers must fight for Architecture (“managers do not understand

architecture – that’s why they hired developers/consultants”)
• Development team is responsible to assert the importance of

architecture over the urgency of features

Architecture vs Features

Architecture

Fe
at

u
re

s

#CostOfChangeMatters

#MSDyn365BCDesignMatters

• Levels
• Source code/functions
• Objects/Classes
• Source files
• Modules/Apps
• Components/Solutions

• Same principles could be applied on all levels

• We will focus on Modules/Apps

Architecture level

#CostOfChangeMatters #MSDyn365BCDesignMatters

A story to help us connect to the ideas…

AmuseYou
AmuseYou Inc. is a small company. They have a variety of bounce castles, slides, and
other amusements that people can book them by the day.

The AmuseYou team has been growing through some strategic mergers and now has
facilities for
• Laser Tag Arenas
• Go-Kart Tracks
• Escape Rooms
• Paintball Fields

For the next year or two, they want to use the existing Booking system, but they
know they want to potentially leave their options open to change that in the future.

AmuseYou Solution Today

Business Central

AmuseYou – Bounce, Bookings, Everything

• S.O.L.I.D.
• Single Responsibility Principle (SRP)
• Open-Closed Principle (OCP)
• Liskov Substitution Principle (LSP)
• Interface Segregation Principle (ISP)
• Dependency Inversion Principle (DIP)

Based on book “Clean Architecture”, Robert C. Martin (Uncle Bob)

Design principles

#CostOfChangeMatters #MSDyn365BCDesignMatters

Single Responsibility Principle (SRP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

• A module should be responsible to one, and only one, reason to change

• A module should be responsible to one, and only one, user or stakeholder

• A module should be responsible to one, and only one, actor

• What is module?
• Unit of deployment (have own version, could be deployed)
•Extension in BC

Single Responsibility Principle (SRP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

#CostOfChangeMatters

#MSDyn365BCDesignMatters

Single Responsibility Principle (SRP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

AmuseYou

Sales

Booking

Fun
Center

Laser
Arena

Go-Kart
Tracks

Mobile

Bounce

Industrial
Park

Escape
Rooms

Paintball
Fields

AmuseYou – A Better Plan (right?) – v1.0

Business Central

Bookings

Bounce Arena Tracks Escape Fields

• Can be applied to any part of the code, not only modules/apps
• Standard example of breaking this rule:
•Reservation table
•Monolithic applications

• What can help?
• Ask “What is the responsibility of the app/object/function/component?”
• Add Actor/User/Stakeholder to the User Story
•If one US changes another US but for different Actor/User/Stakeholder, solve the
conflict (create new app or process, discuss with the original actor/user etc.)

• Do not create multi-purpose objects/tables/Apps

Single Responsibility Principle (SRP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

Open-Closed Principle

#CostOfChangeMatters #MSDyn365BCDesignMatters

• “Software artifacts should be open for extension but closed for modification.”

• Changing by adding, not changing existing
• Basic feature of the platform – USE IT!
• Waldo’s “Generic Method” pattern
• Eventing
• Interfaces

• Separate functionality based on how, why and when it changes and organize
that separated functionality into a hierarchy of components.
• High level policies (central concern, business rules...) vs peripheral concerns

(specific implementation, low-level access...)
• High level component is protected from changes in low level components

Open-Closed Principle

Low level High level

#CostOfChangeMatters #MSDyn365BCDesignMatters

Open-Closed Principle Example

#CostOfChangeMatters #MSDyn365BCDesignMatters

Business Central

Bookings

Bounce Arena Tracks Escape Fields

Open-Closed Principle Example

#CostOfChangeMatters #MSDyn365BCDesignMatters

Bookings

Event:
OnBookingConfirmed

Event:
OnBookingCancelled

Many Events!

Business Central

#CostOfChangeMatters

#MSDyn365BCDesignMatters

• Use the known patterns to open the app for dependencies

• Do not change the existing code if the kind of the change is different than
the original code (different concern, responsibility, stability etc.)

• Check if dependency is in correct directions (Low to High)
• Specific to generic
• Low level to High level
• Not important to important/critical
• Not stable (often changed) to stable (not so often changed)

Open-Closed Principle

#CostOfChangeMatters #MSDyn365BCDesignMatters

Low level High level

Liskov Substitution Principle (LSP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

• Introduced by Barbara Liskov in 1988

• You can replace one part with something else without need to change the
depending part without change of behavior

• Originally about super-classes and sub-classes, but could be applied even
for AL

• Solution: Interfaces, Events

• Violation of substitutability cause pollution with a significant amount of
extra mechanisms (if-then-else/case switch for different cases)

Liskov Substitution Principle (LSP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

Liskov Substitution Principle (LSP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

Business Central

Bookings

Bounce Arena Tracks Escape Fields

Liskov Substitution Principle (LSP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

Business Central

Bounce Arena Tracks Escape Fields

Uh Oh…

AmuseYou – An even better plan (?) – v2.0

Business Central

Bookings Bounce Arena Tracks Escape

Common

Fields

AmuseYou – An even better plan (?) – v2.0

Business Central

Bookings Bounce

Common

Common : Bounce Management :
procedure BounceBlocked(Rec: “Bounce Unit”)

FireCancelBookings(Enum::Type::Bounce, Rec.Code);

AmuseYou – An even better plan (?) – v2.0

Business Central

Bounce Arena Tracks Escape

Common

Fields

#CostOfChangeMatters

#MSDyn365BCDesignMatters

• If you tend to put new If-then-else or Case to make something different
on some Enum/option, consider using Interface

• Use interface, whenever it is possible that implementation of the specific
process/function could be different for different cases

• Do not be depending on specific implementation, rather prepare interface
which will be generic enough and then implement it in specific way –
develop the main process for “Unknown”

• If something should be interchangeable:
• Inputs cannot be stricter (original -1 000..1 000, new -100..100 etc.)
• Output cannot be wider (original -1..1, new -100..100 etc.)

Liskov Substitution Principle (LSP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

Interface Segregation Principle (ISP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

• “Clients should not be forced to depend upon interfaces that they do not use.”

• We do not want to pollute application or interface with not needed dependencies

Interface Segregation Principle (ISP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

AmuseYou – An even better plan (?) – v2.0

Business Central

Bookings

Common

Common : Field Management :
procedure FieldBlocked(Rec: “Field”)

FireCancelBookings(Enum::Type::Field, Rec.Code, PlayerList);

Fields

Common : Bounce Management :
procedure BounceBlocked(Rec: “Bounce Unit”)

FireCancelBookings(Enum::Type::Bounce, Rec.Code, EmptyList?!);

#CostOfChangeMatters

#MSDyn365BCDesignMatters

• If applications are loosely coupled, do not make them dependent (A can
exists without B)

• Use dependency only if the functionality is tightly coupled (A have no
meaning without B)

• If only part of the app is tightly coupled, maybe it is better to split the app.

• Keep interface minimal – do not pollute it with unnecessary things

• For specific things create new interface

Interface Segregation Principle (ISP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

Dependency Inversion Principle (DIP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

• Normal is to have dependency in same directions as flow of control (A
calls B, A depends on B)
• Direct function calls etc.

• DIP is switching the direction of the dependency – dependency is in
opposite direction than flow of control (A “calls” B, B depends on A)

• DIP is tool helping to implement previous principles

• Solution in AL
• Events
• Interfaces

Dependency Inversion Principle (DIP)

A B A B

Calls Calls

#CostOfChangeMatters #MSDyn365BCDesignMatters

AmuseYou – An ever betterer plan (?!) v3.0

Business Central

Bookings Bounce Arena Tracks Escape Fields

AmuseYou – An ever betterer plan (?!) v3.0

Business Central

Bounce Arena Tracks Escape Fields

AmuseYou – Final Final Really Plan (?!) v4.0

Business Central

Bookings Bounce Arena Tracks Escape Fields

Booking-Bounce Bridge

Tools you may already know/use (if not, you should!):

Dependency Inversion Principle (DIP)

Bookings

Booking-Bounce Bridge

AmuseYou – Final Final Really Plan (?!) v4.0

Business Central

Bookings Bounce Arena Tracks Escape Fields

Booking-Bounce Bridge

AmuseYou – Final Final Really Plan (?!) v4.0

Business Central

Bounce Arena Tracks Escape Fields

#CostOfChangeMatters

#MSDyn365BCDesignMatters

• If you find out that dependency should goes opposite, use Events or
Interface to invert it
• Specific depends on generic
• Low-level depends on high-level
• Unstable depends on stable

• If we want to protect A from changes in B, B must depend on A

• (Remember the Open-Close Principle)

• We are protecting modules containing “policies” or „rules“

Dependency Inversion Principle (DIP)

A B A B

#CostOfChangeMatters #MSDyn365BCDesignMatters

Don’t be soft, be SOLID!

#CostOfChangeMatters #MSDyn365BCDesignMatters

When Monday Comes

Selling SOLID
•Start small
•Work from ‘outer’ towards
inner

Benefits: Cost/HR/Sales
•Small changes are easier to
delegate and safer
•Re-useable!
•Cross-ISV Partnerships?

When Monday Comes

Selling SOLID
•You will pay it, just like testing
•Investing now saves bigger

Benefits: Cost/Flexibility
•Easier to do big changes
•Less time on defects

When Monday Comes

Selling SOLID
•Segregation keeps you from
having to fix the “fixes”
•Hand off parts

Benefits: Work
•Easier to break up projects
•Smaller can be faster
•Defect Hunting is much faster

#CostOfChangeMatters

#MSDyn365BCDesignMatters

SOLID
•Single Responsibility Principle (SRP)
•Open-Closed Principle (OCP)
•Liskov Substitution Principle (LSP)
•Interface Segregation Principle (ISP)
•Dependency Inversion Principle (DIP)

Remember the Principles

#CostOfChangeMatters #MSDyn365BCDesignMatters

SOLID
Single Responsibility Principle (SRP)
Open-Closed Principle (OCP)
Liskov Substitution Principle (LSP)
Interface Segregation Principle (ISP)
Dependency Inversion Principle (DIP)

#CostOfChangeMatters #MSDyn365BCDesignMatters

