
DYNAMICS NAV APPLICATION DESIGN
Bogdana Botez, Nikola Kukrika, Anders Larsen, Bogdan Sturzoiu

(Microsoft MDCC)

DYNAMICS NAV APPLICATION DESIGN
Creating reusable solutions for Dynamics NAV Implementations

Session overview

• Introduction to NAV Design Patterns
• Design Patterns used in NAV - examples
• Mini App (C5) Introduction
• Design Patterns used in Mini App

INTRODUCTION TO NAV DESIGN PATTERNS

Purpose:
• Increase code quality
• Increase developer productivity

How
• Use a common language
• Explain the reasoning behind a certain design
• Share knowledge
• Create a community shared project

INTRODUCTION TO NAV DESIGN PATTERNS

Team:

• Abshishek Ghosh, Microsoft
• Anders Larsen, Microsoft
• Bardur Knudsen, Microsoft
• Bogdan Sturzoiu, Microsoft
• Bogdana Botez, Microsoft
• Nikola Kukrika, Microsoft
• Eric Wauters, iFacto, PRS
• Gary Winter, agiles, PRS
• Mark Brummel, Brummel Dynamics Services, PRS
• Vjeko Babic, Fortempo, PRS
• Luc van Vugt, Fluxxus
• Claus Lundstrøm, Abakion
• Natalie Karolak, Tectura

• David Studebaker, Studebaker Technology
• Mark Doster, Mergetool
• Søren Klemmensen, IndustryBuilt
• Arend-Jan Kauffmann, Xperit Products

COMMUNITY

Patterns have been published on NAV Team Blog, until now.

However
• We want this to be a community project

Community NAV Patterns Wiki on
https://community.dynamics.com/nav/w/designpatterns/default.aspx

Join us.

DESIGN PATTERNS USED IN NAV
The following patterns are lined up for the presentation:

• Journal Error Processing
• Temporary Dataset Reports
• Using Query Objects to Detect Duplicates
• Using Query Objects Instead of Nested Loops
• Mapping W1 Features to Local Data Structures

Find the complete content on the NAV Patterns Wiki and on NAV TEAM Blog (Published after TechDays.)

https://community.dynamics.com/nav/w/designpatterns/default.aspx
http://blogs.msdn.com/b/nav/archive/tags/patterns/

JOURNAL ERROR PROCESSING

JOURNAL ERROR PROCESSING
Context
Data entered by users can be affected by human error.
How to best help the user when data is: invalid, incomplete, or inconsistent?

Problem
• The “traditional” way of implementing error processing, serial data processing validation:
• After entering data, the user invokes an action (e.g. SEPA export file)
• The processing stops at the first error
• The user fixes the error
• Repeat

• Repetitive: The action is invoked multiple times. The user cannot predict the total volume of corrections needed.

Solution
Show all errors once, at the end:
• Find and store all data validation errors
• Prompt for correction of all, at the end
• Show an overview of the affected lines (e.g. by sorting them first and highlight in red)

JOURNAL ERROR PROCESSING
The Final Result

Example from the implementation of SEPA Credit Transfer

JOURNAL ERROR PROCESSING
Example from the implementation of SEPA Credit Transfer

JOURNAL
ERROR
PROCESSING

JOURNAL ERROR PROCESSING
Examples in Dynamics NAV 2013

• SEPA Credit Transfer feature - for export of vendor payments
• SEPA Direct Debit feature - for export of customer payment instructions

The same concept of storing error messages (but with a different flow) is also present in:
• Planning Error Log table (5430) - Supply Planning feature
• Costing table (5890) - Costing feature

TEMPORARY DATASET REPORT

TEMPORARY DATASET REPORT
Problem
• The built-in NAV iterator is limited. It can only run through records written into the database.
• Some reports need complex data calculated at runtime, from more than one table

Solution
• Parse the data sources to create a record buffer in a temporary record variable.
• Iterate through a DataItem of the Integer table and display one record from the temporary recordset in each

iteration.

TEMPORARY DATASET REPORT
Step 1
Combining data sources to
create a dataset

Step 2
Iterating through
the Integer dataitem

TEMPORARY
DATASET
REPORT
Step 1
Combining data sources to create a dataset:
• process the existing data
• create a temporary recordset

TEMPORARY DATASET REPORT
Step 2
Iterate through the Integer dataitem

Problem: The report controller in NAV cannot
iterate through temporary records or
through the results of a query.

Solution: This is where the Integer table
comes into use.

There are two ways to use the Integer
dataitem to iterate through the temporary
recordset:
• Loop for an indeterminate number of

times until you reach the end of the
recordset.

• Calculate the number of records in the
temporary recordset in advance and then
iterate that many number of times.

TEMPORARY DATASET REPORT
Step 2
Iterate through the Integer dataitem

Integer - OnPreDataItem:

ContactDocumentBuffer.SETCURRENTKEY("Document Date");

SETRANGE(Number,1,ContactDocumentBuffer.COUNT);

Then we must move the record pointer by one record every time we loop through the Integer dataitem. So, in Integer –
OnAfterGetRecord, we add the following lines of code:

IF Number = 1 THEN

 ContactDocumentBuffer.FINDFIRST

ELSE

 ContactDocumentBuffer.NEXT;

TEMPORARY DATASET REPORT
Examples in Dynamics NAV 2013

• Report 204 – Sales - Quote
• Report 205 – Order Confirmation
• Report 206 – Sales - Invoice

USING C/AL QUERY OBJECTS TO DETECT DUPLICATES

USING C/AL QUERY OBJECTS TO DETECT
DUPLICATES
Problem
Detection of duplicate data in a table is needed in many business scenarios, such as to:
• Find duplicate entries in a business entity table (e.g. Customer), as a first step for data clean-up.
• Find contacts that have the same name, to merge them.

Solution
Pre-Dynamics NAV 2013:
• Define the relevant field as a primary key (Not practical)
• Loop through the table and filter the same table in a sub-loop (Expensive due to extensive use of filters)

Starting with Dynamics NAV 2013, we can use the query object to solve this problem.

USING C/AL QUERY OBJECTS TO DETECT
DUPLICATES
Pattern Elements

• A query object:
• The dataitem is the table that we want to check for duplicates
• The field we want to search for is a grouped field
• A totaling field using the Count method
• Filter on Count > 1

• The query is then invoked in code. If it returns any row, it means that there are duplicates on that field.

USING C/AL QUERY OBJECTS TO DETECT
DUPLICATES
Implementation Example
• Before Dynamics NAV 2013, using nested loops and filtering:

USING C/AL QUERY OBJECTS TO DETECT
DUPLICATES
Implementation Example

• In Dynamics NAV 2013, using queries:

USING C/AL QUERY OBJECTS TO DETECT
DUPLICATES

Examples in Dynamics NAV 2013
• Codeunit 762 Acc. Sched. Chart Management, methods CheckDuplicateAccScheduleLineDescription and

CheckDuplicateColumnLayoutColumnHeader
• Codeunit 770 Analysis Report Chart Mgt., methods CheckDuplicateAnalysisLineDescription and

CheckDuplicateAnalysisColumnHeader

Limitations
• Does not scale. A new query must be defined for every field (or group of fields) that needs to be checked.
• Queries cannot be created on the fly.
• Queries do not take parameters at runtime.

USING C/AL QUERY OBJECTS
INSTEAD OF NESTED LOOPS

USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS
Problem
Table 274, Bank Acc. Reconciliation Line, and table 271, Bank Account Ledger Entry, are connected through the Bank
Account No field. Identify the matching pairs of records based on having the same remaining amount and transaction
date.
• Solving this kind of problem involves inspecting data from two different tables using a join operation.

Solution
Pre-Dynamics NAV 2013:
• Loop through the first table, and then again through the second table.
• Nested loops are costly, because they require intense database querying.
• The code is hard to read and doesn’t scale well with the number of connected tables.

Starting with Dynamics NAV 2013, we can use the query object to solve this problem.

USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS

USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS
Solution Using Nested Loops

The classic C/AL approach is to:
• Set the necessary filters on the left table, i.e. table 274.
• Loop through the filtered records.
• For each record in the filter, find the related records in the right table (table 271) and set the required filters on it.
• For each pair of records from the left and right table, decide if they are a solution and if so, apply them to each other.

USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS
Solution Using Query

The new query-based approach involves:
• Define a query that returns the full filtered join of tables 271 and 274.
• Loop through the records returned by the query.
• For each query record, decide if it represents a solution and then apply them.

CODE EXAMPLE:
USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS

USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS
Advantages of the New Pattern
• A query joins the tables faster than loops.
• The query approach leverages the power of SQL Server.
• A query is scalable (in the sense that it allows reusing its definition for a larger set of problems).
• The code is cleaner and easier to read.
• Better and easier maintenance.

Limitations
• Requires defining new query objects.
• Queries have a static definition (cannot be created on the fly).

USING C/AL QUERY OBJECTS INSTEAD OF
NESTED LOOPS
Example

In Microsoft Dynamics NAV 2013 R2, we can see the query object used in the bank account reconciliation matching
algorithm.

The object is query 1252, Bank Rec. Match Candidates. It is called by the matching engine in codeunit 1252, Match
Bank Rec. Lines.

MAPPING W1 FEATURES TO LOCAL DATA STRUCTURES

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Problem
• A feature has been created for a country version at a certain time in history.
• Later, a similar feature is developed in W1.
• The two use different tables but have similar functionality.

How to make them coexist?

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Solution
• Use a proxy pattern

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Example

SEPA Credit Transfers
• Export of vendor payments to an xml file
• Performed through an action on the Payment Journal, based on the General Journal Line table (81)
• Local equivalent country features
• Vendor Bills in Italy
• Payment Slips in France
• Cartera in Spain
• Payment History in Holland

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Pattern Elements

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
W1 Workflow

COD1209 – Export
Payment File (Yes/

No)

COD 1220 – SEPA
CT-Export File

XML1000 - SEPA CT
pain.001.001.03

COD1221 –
SEPA CT-Fill

Export Buffer

COD1222 –
SEPA CT-

Prepare Source

Processing codeunit extracted from the
Bank Export/Import Setup for the

selected Bank Account

Wrapping codeunit for the Export

action on the Payment Journal

XML port configured on the
Bank Export/Import Setup for

the selected Bank Account

Populates a
temporary table

with payment
data collected
from TAB81.

The connection point
with any local

features

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Integration with the Country Version flow

• A proxy codeunit has been added in W1: 1222 – SEPA CT-Prepare Source.
• In W1, the codeunit simply outputs the same set of Gen. Journal Lines that it receives as an input
• In a country version, such as Italy, COD1222 :

1. Gets an empty set of Gen. Journal Lines (as opposed to the real set of records to be exported, like in W1) that
carry the local payment document key as a filter on the Document No. field.

2. Selects the local payment data. E.g., in Italy, the Vendor Bill Header and Lines.
3. Transforms the local payment data into temporary Gen. Journal Lines.
4. Outputs the temporary Gen. Journal Lines, that will be further processed and exported exactly as in W1.

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Country Version Workflow

TAB12181 – Vendor Bill
Header - Export

function

COD 1220 – SEPA CT-
Export File

XML1000 - SEPA CT
pain.001.001.03

COD1221 – SEPA
CT-Fill Export

Buffer

COD1222 – SEPA
CT-Prepare

Source

Processing codeunit extracted from the Bank
Export/Import Setup for the selected Bank

Account

Function invoked by the Export action in
the Vendor Bill List Sent page

XML port configured on the Bank
Export/Import Setup for the selected

Bank Account

Populates a
temporary table

with payment data
collected from

TAB81.

Builds a set of TAB81
records – Gen. Journal

Lines, based on the
Vendor Bill Header where

the Export action was
invoked and its Lines.

MAPPING W1 FEATURES TO LOCAL DATA
STRUCTURES
Limitations

• The empty Gen. Journal Line record set carries a filter on the Document No. field.
• The local payment document key must be maximum CODE 20 (size of the Document No. field in table 81)

• The pattern needs thorough testing on the country version
• The constraints used when exporting in W1 might not match those of the legacy country feature
• Easy to miss integration points.

MINI APP

INTRODUCTION TO MINI APP (C5 2014)

What?
Why?
How?

Mini App Demo
Mini App Patterns

INTRODUCTION TO MINI APP (C5 2014)
Goals
• Intuitive and usable out of the box
• Focus on Sales and Purchasing (Invoicing)
• Must not impair existing NAV functionality
• Simple upgrade from C5 to NAV (reuse existing code base)

INTRODUCTION TO MINI APP (C5 2014)
Implementation overview
• Added new set of objects (1300 – 1399 range)
• For behavior change we have:
• Added code in CodeUnits (referenced from the pages)
• Added logic to the tables (no modifications)

• Standard application pages are still accessible from Mini, but hard to get to
• Implemented automatic removal of the pages, parts and actions that are not within the license (check for object and

source table) - few unsupported UI elements remaining on Standard objects

MINI APP DEMO

USE CONFIGURATION TEMPLATES TO SIMPLIFY AND
SPEED UP DATA CREATION

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION
Problem
• Setting data combinations is difficult for new users (e.g. posting groups, dimensions - not sure if it is set right)
• Tedious
• Error prone

Solution
• Use templates to apply data combinations
• Users need to provide only information that varies

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION
Flow

Insert a record
Apply a Template

COD 8612
Function UpdateRecord

Insert Related
Templates

Custom Code

Gets template and applies all lines

Config. Template
Header

Table 8618
Template Definition

Config. Template Line
Table 8619

Field Value or
Related Template

1 : N Get related templates
Type = Related Template

Repeat for every related template

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Code – Table 1300 Mini Customer Temlate

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Code sample to insert related templates

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION
Surfacing actions in UI
• Recommended – Create New from template action
• Optional - Apply Template Action, used to change type

• Mini App Implementation – Remove New by configuration and add a application action named New

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Maintaining Template Definitions Option 1
• Use Configuration Template Header Page

Advantages:
• Generic – no additional code needed, can be used for any

template.

Disadvantages
• Difficult to use and error prone – there is no validation, lenght

of the field is unknown, no lookups.
• Many users will not be able to use it.

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Maintaining Template Definitions Option 2
• Make a page that resembles a document
• Use Temperary Record
• Store data to Configuration Template Header and Configuration

Template Lines table

Advantages
• Better usability – lookups, simple validation, form resembles the

document
• Users will be able to use it themselves

Disadvantages
• More code needed

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Implementation

Master Table

Template Table
Should be used as

Temporary

Copy fields to be used for templates
Remove all of the logic
Keep only simple rules

Write a test to ensure they match

Config. Template
Header

Config. Template Lines

New Page to Edit
Template

Temporary Source table

1 : N

OnInsert, OnModify and OnDelete triggers
 are writing changes to

Config Template Header and
Config Template Lines Tables

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Code – Table 1300 Mini Customer Template

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Code – Table 1300 Mini Customer Template

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION

Test implementation

USE CONFIGURATION TEMPLATES TO SIMPLIFY
AND SPEED UP DATA CREATION
Ideas for Improvement
• Implement the solution in the standard application
• Personalized templates – templates per user

EASY UPDATE OF SETUP OR SUPPLEMENTARY
INFORMATION

EASY UPDATE OF SETUP OR SUPPLEMENTARY
INFORMATION
Problem
• Setup information is missing and validation error is shown
• User has to stop task at hand and figure out where to find a page in NAV and enter information needed
• Difficult and interupting
• Then user can go back and continue task that was in process

Solution
• Instead of raising validation error promt a page where user can supply requested information

EASY UPDATE OF SETUP OR SUPPLEMENTARY
INFORMATION

Implementation

EASY UPDATE OF SETUP OR SUPPLEMENTARY
INFORMATION
Ideas for Improvement
• Make a more generic platform implementation that launches the corresponding card page for Rec on Rec.testfield

with an asterisk mark for the field that needs a proper value.

Anti-Pattern
• The anti-pattern is to do a testfield on a field that is not in the table that you are currently updating.

CREATING CUSTOM CHARTS WITH THE BUSINESS
CHART ADD-IN (CHARTS IN THE WEB CLIENT)

CREATING CUSTOM CHARTS WITH THE
BUSINESS CHART ADD-IN (CHARTS IN THE WEB
CLIENT)
Problem
• We would like to display charts in the Web Client and Windows Client
• Cannot add custom functionality to Generic Chart
• Reuse same chart on multiple pages

Solution
• Implement CardParts with Business Chart add-in

CREATING CUSTOM CHARTS WITH THE
BUSINESS CHART ADD-IN (CHARTS IN THE WEB
CLIENT)
Implementation

CardPart

Implements Add-In events
Implements actions

Add-in Buffer Table

Handles data (.NET/CAL
conversion)

Captions
DrillDown and Click events

Other data helper functions

Business Chart Add-in

Events – AddinReady,
OnClick, OnDoubleClick

Provides Chart component

Field

Source Table

CREATING CUSTOM CHARTS WITH THE
BUSINESS CHART ADD-IN (CHARTS IN THE WEB
CLIENT)

Preserving and applying user personalization

CREATING CUSTOM CHARTS WITH THE
BUSINESS CHART ADD-IN (CHARTS IN THE WEB
CLIENT)

Showing more charts inside single part

ENHANCING LEARNABILITY WITH INTEGRATING HELP
AND INSTRUCTIONS WITHIN UI

ENHANCING LEARNABILITY WITH INTEGRATING
HELP AND INSTRUCTIONS WITHIN UI
Problem
• Some functionality in NAV is difficult to use or undiscoverable
• It is impossible or very difficult to fix the the problem
• Difficult to provide training to end users

Solution
• Integrate instructions within UI
• Instructions must be dismissable – not to impair productivity or anoy the user

ENHANCING LEARNABILITY WITH INTEGRATING
HELP AND INSTRUCTIONS WITHIN UI
Implementation overview

ENHANCING LEARNABILITY WITH INTEGRATING
HELP AND INSTRUCTIONS WITHIN UI
Getting Started Group on Role Center
• Implement an action group on Activities hosting instructional actions
• Link help topics by creating an empty action with help icon – will invoke help topic
• Create instructional videos by using VideoPlayer add-in

Dismissable dialogs
• Use strmenu to avoid adding a new page and users dismissing the dialogs without reading it

Fast Tabs with instructional text
• Instructional text on fast tab can hold longer text without elipsis which makes it ideal for showing messages.

Tooltips
• Possible to implement tooltips for fields and actions

ENHANCING LEARNABILITY WITH INTEGRATING
HELP AND INSTRUCTIONS WITHIN UI
Ideas for Improvement
• Implement tooltips and help actions across the NAV – based on the feedback we could provide out of box tooltips

and some of the help topics for rest of the NAV pages. Tooltips for existing fields could be populated by a tool.
• Provide the support for the Invoking of the Help topics from C/AL code. Then we would be able to promote help

actions or launch them from C/AL code if needed.

LAST BUT NOT LEAST

NAV Patterns Wiki

https://community.dynamics.com/nav/w/designpatterns/default.aspx
https://community.dynamics.com/nav/w/designpatterns/default.aspx
https://community.dynamics.com/nav/w/designpatterns/default.aspx
https://community.dynamics.com/nav/w/designpatterns/default.aspx

