
HOW TO WRITE REPEATABLE SOFTWARE

Mark Brummel, Søren Klemmensen, Gary Winter, Vjeko Babic

(Partner Ready Software)

INTRODUCTION

AGENDA

Overview Methodology Out of the box

Δ

Roadmap

Application

Design

NAV Design
Patterns 2015

Power Shell

No. Series

Singleton

Master Data

Blocked Entity

Document

Journal

Ledger Entry

Address

Integration

Copy Document

Leveled Setup

Argument Table

Proxy

Archiving

Posting

Extended Text

UI Instructions

Job Queue Entry

Journal Error

Hooks

EncapsulationReadability

Report Selection

Release

Temporary

Datasets
Transfer Custom

Fields

Architectural

Patterns
Implementation

Patterns
Design Patterns

MBS

4.0

2004

NAV

5.0

2007

NAV

2009

2009

NAV

2013

2012

NAV

2013R2

NAV

2015

NAV

CORFU

2013 2014 2015

UPGRADE UPGRADE

MICROSOFT DYNAMICS NAV VERSIONS

Rollup

1

Jan.

Rollup

2

Feb.

Rollup

3

Mar.

Rollup

4

April

Rollup

5

Rollup

6

Rollup

X

May June ...

ALWAYS CURRENT

MICROSOFT DYNAMICS NAV ROLLUPS

NAV
Design

Patterns

Power
Shell

HOW TO STAY CURRENT

Reduce
footprint

Upgrade in Minutes

Total Cost of Ownership

Methodology

Types of Development

Individual
Programming

Find your niche and
establish a footprint

Standardized
add-ons

Stand out as
industry domain

expert and build a
solid customer base

Repeatable
IP

Leverage your
expertise to produce

software which
creates significant

market shares

How Do I Write Code in a Repeatable Way?

Agents
Medic

At his Office

On Home Visit

In Hospital

Diagnose

Treat

Refer

Invoice

AGENT

ACTIONPROCESS

Agents
Medic

At his Office

On Home Visit

In Hospital

Diagnose

Treat

Refer

Invoice

AGENT

ACTIONPROCESS

Agents
Medic

At his Office

On Home Visit

In Hospital

Diagnose

Treat

Refer

Invoice

AGENT

ACTIONPROCESS

Agents
Medic

At his Office

On Home Visit

In Hospital

Diagnose

Treat

Refer

Invoice

AGENT

ACTIONPROCESS

Paramedic

Agents

Agents

Agents

• Translations:
• Agent => Class => Table

• Action => Method => Function (Codeunit)

• (Not looking at Processes in this context)

• Start any development by by determining who is acting

• The agent is always a class (table)

Classes & Methods

• Classes are tables

• They carry all attributes + methods

• Attributes are fields

Methods are functions

All methods are always declared on the class

Classes & Methods

• All attributes (fields) are declared on the class (table)

Classes & Methods

• All methods (functions) are declared on the class (table)

Method Declaration: Advantages

• You see explicitely …
• which functions exist for each table

• which methods exist for each class

• which actions are defined for each agent

• IntelliSense (F5)

• But …
• methods should not be coded on the class

Methods

Encapsulation

• Each method is a codeunit of its own

Encapsulation

• Each method only has one global function

Encapsulation

• A method is always instantiated through its class

Method Breakdown

• Break all of your processes down into encapsulated methods
• Get the sizing right

• Conceptual work is mandatory (=> professional software production)

• Allows you to put these methods together again as if it was

a scripting language

• Allows you to build new functionality and automated batches

on existing, tested code

Readability

• The global function of each method must be a
readable flow chart of what the method does

• It should include all relevant steps

• Natural Language Code: It should resemble understandable

plain text

• It must not contain any “nerdy” stuff
• Cust.GET is nerdy

• GetCustomer is not

Readability

Process Components

• Method Header

• Validity Check
• If not valid => Exit / Error / Error Handling

• Filter Section

• Loop Section

• Initialize Section

• Database Transactions
• Normally: Modify / Insert

Consistency

• Each action / method follows consistent naming from UI thru Code

Page Action • Post Accruals …

Method on Class • PostAccruals

Codeunit Name • Post Accruals

Method Header • PostAccruals

Extending Consistency

• Naming should be consistant in other contexts as well

• “Posting Accruals” in:
• Process Manual

• Help Server

• Consulting

• Sales Material

• Customer-facing Feature Description

Facade

Decoupling: Facade

Class

•Table

•Declaration

Method

•Codeunit

• Implementation

Class

• Table

• Declaration

Facade

• Codeunit

• Interface

Method

• Codeunit

• Implementation

Decoupling: Facade

Facade

Class Facade

Confirm

Execute

Acknowledge

Facade: UI Separation

Design Patterns

• A facade is a Design Pattern

Design Patterns have always been the „secret source“ of NAV,

enabling developers to learn new areas of the application and

be productive without a huge ramp up. This makes design

patterns key to understanding the architecture of NAV and

writing repeatable code.

PRS is now taking design patterns to a new level by creating

awareness of the existing and creating new patterns.

Michael Nielsen, Director of NAV Development

Design Patterns

• PRS Pre-conference day on Repeatable Software and

Design Patterns

• Friday, 1:30-3:00 p.m.:

The Latest Application Code from a Design Patterns

Perspective

Bogdana Botez, Anders Larsen, Mostafa Balat

An Easy Methodology

• Establish your agents and actions model

• Break your software down into methods and

treat them as building blocks

• Think of your method heads as readable flow charts

• Provide decoupling by facades

• Make your terminology consistent from website down to code

• Think and act in terms of design patterns

Intellectual Property

• Your IP lies in your methods.

• You can give free access to your tables, classes, pages and facades.

• Just protect your methods (if you think you need to).

• Your methods are your IP.

 Full Circle: Agents, facades and other design patterns are about

writing repeatable IP. Applying these concepts allows you to see what

your IP really is.

How Do I Get Started?

• Do not rewrite NAV standard code

• Start with the code you write tomorrow

• Boy Scout Rule: Always leave an area you touch in better

shape than it has been in before

• Set aside a scrum sprint for the key areas of your product

How Do I Get Started?

• NAV partners are becoming software vendors.

• Everything you know about your industry, needs to be clearly

visible in your software. Your chances to teach and explain are

disappearing.

• Align your complete organization: If I need more than ten minutes

to find in your code what your sales rep is selling, we are both lost.

• Be enthusiastic! – Or as Luc would put it: Be passionate!

Hooks

HOOKS RECAP

• Triggered from external code into your IP

• OnPre… OnPost…

• Impacts Upgradability

• Makes PowerShell Merge easier

• Does not solve conflicts, it’s not a holy grail

• …

• So let’s talk about an alternative

• …

Surrogate Keys

What is a Surrogate Key?

A Surrogate key in a database is a unique

identifier for either an entity in the modeled

world or an object in the database.

The surrogate key is not derived from application

data.

Why use Surrogate Keys?

A concept of adding Generic Functionality such

as
• Comments

• Tags

• Documents

• User definable fields

• …

How to implement?

Use an Integer field with the AutoIncrement property

set to TRUE.

Other options can also be use something such as

GUID, but GUID is not great for SQL and all other

options including GUID would require code which

would increase the footprint.

Surrogate Key vs. RecordID
Surrogate Key RecordID

How to add Must be added to each

table as an Integer Field

with AutoIncrement set

to TRUE

Already exist

Rename No Impact Must be managed on

the Rename trigger via

Code or globally trigger

in Codeunit 1

Delete Managed generically

under the Global Delete

trigger in Codeunit 1

Typically managed

under each table delete

trigger but can also be

managed globally in

Codeunit 1

Filtering Filter can be set on the

fly. No Code. Small

footprint.

Filter require Code

Example

Table structure for linking a Document Header

and Line Table with a Document Comment

Table.

Table Structure for linking a Master Data

Table with a Master Data Comment Table

How to do this with a

Surrogate Key!

Step 1: Adding the Surrogate Key

Step 2: Create a generic link-able sub

table

Step 3: Create a List and Sheet Comment

page showing the table information.

This will look exactly like a standard Comment List and Sheet today!

Step 4: Add an Action
This could also be an Factbox or SubPage.

Step 5: Create a Hook for Functions in Codeunit

1 ApplicationManagement if one doesn’t already

exist

Step 6: Create a code to delete records in the

Sub table if a main table record is deleted if this

is required.

This function needs to be called from the Hook created in

Step 5.

Truly Generic and Repeatable

code

Out of the Box

Shipping Delta’s

Detailed example - Deltas

Table 888

Fields

PhoneNo

FirstName

LastName

Table 888

Fields

PhoneNo

Name

Table 888

Fields

PhoneNo

FirstName

LastName

E-mail

Table 888

Add Field

E-Mail

Table 888

Fields

PhoneNo

Name

E-Mail

Power Shell | Merge

Detailed example - Deltas

Table 888

Fields

PhoneNo

FirstName

LastName

Table 888

Fields

PhoneNo

Name

Table 888

Fields

PhoneNo

FirstName

LastName

E-mail

Table 888

Fields

PhoneNo

Name

E-Mail

ORIGINAL TARGET

MODIFIED RESULT

Compute

Delta

Apply

Delta

Power Shell | Shipping Software

Table 888

Add Field

E-Mail

DELTA

Power Shell | A New Star

Table 888

Add Field

E-Mail

DELTA

SHIPPING SOFTWARE VIA DELTA

GOOD

 Save Time

 Applies to all
Databases

BAD

 Version List

 Conflicts are
hard to
handle

UGLY

 Tables and
Fields require
Partner
License

MORE TOMORROW…

Data Conversion

Import FOB File

Execute Pre
Condition &

Table
Synchronization

Execute
Upgrade
Functions

UPGRADE PROCESS

DATA CONVERSION WITH ANY FOB

ANY RELEASE

TEST VERSION

SELF DESTRUCT

Design patterns through .NET

True or False: To have true design patterns, you need an object-oriented language?

.NET and C# are flexible, allow for a vast number of language-level design patterns

C/AL is very inflexible, not object oriented, and only allows for a few basic patterns (hooks, facade)

DotNet interoperability opens a door to a wide range of .NET patterns to be applied in C/AL

DESIGN PATTERNS THROUGH .NET

• Decouples classes from dependencies

• Allows you to write logic that depends on classes whose concrete implementation is not known at compile time

• Allows you to test classes in isolation, without the dependencies

• Divides the application into loosely coupled modules that can be independently developed, tested, versioned, and

deployed

SERVICE LOCATOR PATTERN

Class A

Service A

Service B

Uses

Uses

THE SITUATION

A tightly coupled dependency in a real-life scenario

DEMO

Locator

Service A

Service B

Locates

Locates

Class A Uses

THE SOLUTION

A decoupled dependency through the Service Locator design pattern in a real-life scenario

DEMO

Roadmap

WHAT WE HAVE TODAY

Expand & Collapse Functions

Longer Function Names

Functions are Local

Automatic Population of Variable

Names

“Automatic” Merging

Shipping Delta Files

Documented Patterns

Fresh Patterns

Data Conversion for FOB

Refactored Application Parts

Out of the Box UI Thinking

Mandatory Fields

VISION FOR TOMORROW

Continuous Documentation of

Design Patterns

Continuous Refactoring

Reduce Code Cloning

Adding Design Pattern Metadata

Connect to TFS

Data Dictionary

Try/Catch/Finally

ForEach

Enumerators

Easier integration

Add Tables and Fields without

License Restrictions

Team Foundation Server

Day 1 – Design Patterns for Repeatable Software

Day 2 – RapidStart Code – PowerShell merging

Day 3 – RapidStart Upgrade – Automated Upgrades

Day 4/5 Optional work on partners add-on.

Germany

The Netherlands

Belgium

India - New Delhi

Japan - Tokyo

USA - Atlanta

Canada - Toronto

CLOUD READY DEVELOPMENT METHODOLOGY

WRITING REPEATABLE SOFTWARE

“A Professional Partner Channel

Deserves a Professional

Work Environment”

It’s YOU!

