
NAV'S SECRET CODE: DESIGN PATTERNS OF
TODAY AND TOMORROW

Mark Brummel, Eric Wauters, Gary Winter

Gary Winter Vjekoslav Babić Eric Wauters Mark Brummel

Partner Ready
Software

-
Design

Patterns

Introduction

AGENDA

Function
Libraries,
Variants,
Hooks, ...

Prepare

Where do we
come from

History

Our Vision
-

The Tool

The Future

Q & A

PARTNER READY SOFTWARE
• Started in 2010 as thinktank for NAV cloud solutions

• Community efforts since 2011 on NavTechDays & Directions

• New and fresh ideas on structuring repeatable NAV solutions

• Design software that can be understood and maintained
by others

• Closely linked to Microsoft, yet independant

PRS EVOLUTION
2010 Book NAV Application Design by Mark Brummel

2011 First presentation NavTechdays with facade codeunits,
 and data and transaction models

2012 Invitation to MDCC sharing ideas

2013 Design pattern initiative by Microsoft

DESIGN PATTERNS HISTORY

Who of you has heard of
•GoF
•POSA?
•Pavel Hruby

DESIGN PATTERNS HISTORY
Originated late 70‘s

Formalised in 90‘s by

• Gang of Four (not us) and

• Patterns Oriented System Architecture

Design Patterns Definition

• “In software engineering, a design pattern is a general
reusable solution to a commonly occurring problem within
a given context.”

DESIGN PATTERNS HISTORY
Gang of Four Patterns Focus:

• Creational Patterns: creating objects

• Structural Patterns: class and object compositions

• Behavioral Patterns: communication between objects

No ERP Patterns

INTRODUCTION TO NAV DESIGN PATTERNS
Team:

• Abshishek Ghosh, Microsoft
• Anders Larsen, Microsoft
• Bardur Knudsen, Microsoft
• Bogdan Sturzoiu, Microsoft
• Bogdana Botez, Microsoft
• Nikola Kukrika, Microsoft
• Eric Wauters, iFacto, PRS
• Gary Winter, agiles, PRS
• Mark Brummel, Brummel Dynamics Services, PRS
• Vjeko Babic, Fortempo, PRS
• Claus Lundstrøm, Abakion
• Natalie Karolak, Tectura

• David Studebaker, Studebaker Technology
• Mike Doster, Mergetool
• Søren Klemmensen, IndustryBuilt
• Arend-Jan Kauffmann, Xperit Products

DESIGN PATTERNS INITIATIVE

MICROSOFT & PARTNERS

Microsoft

• Product focussed

• IT People

• Localisation Issues

• One Project

• Support 2 major versions,
5 service packs in
17 countries= 140 versions

Partners

• Project focussed

• Business People

• One localisation

• Project Issues

• Support older versions for
existing customers

DESIGN PATTERNS INITIATIVE

HISTORY OF DYNAMICS NAV
• Navision 1.0 has about 1000 objects vs. 4000 today
• It is properly designed but for ISAM databases and in a

world without integration
• Todays patterns in NAV are easier to recognise in version 1.x
• Should be mandatory material for all new developers
• Still has a lot of anti patterns
• NAV today is „poluted“ by new application areas introducing

new patterns but increasing complexity and emphasizing
implicit design patterns

• The architecture has never been updated both from
a designer and an application perspective in close to
20 years.

DESIGN PATTERNS TODAY | MSDN
• Blocked Entity

• Copy Document

• Multi Language Application

• Single Setup Table

• Standard Journal

• No. Series

• Silent File upload/download

Find the complete content on the NAV Patterns Wiki and on NAV TEAM Blog
(Published after TechDays.)

NAV Patterns Wiki

https://community.dynamics.com/nav/w/designpatterns/default.aspx

https://community.dynamics.com/nav/w/designpatterns/default.aspx
http://blogs.msdn.com/b/nav/archive/tags/patterns/
https://community.dynamics.com/nav/w/designpatterns/default.aspx

ANTI PATTERNS IN DYNAMICS NAV
Boat anchor
• Retaining a part of a system that no longer has any use

(Alt. Search Field)

Hard code
• Embedding assumptions about the environment of a system in its implementation

Coding by exception
• Adding new code to handle each special case as it is recognized

(Table 37, OnValidate Quantity)

Copy and paste programming
• Copying (and modifying) existing code rather than creating generic solutions

(Codeunit 80/90, VAT Etc.)

http://en.wikipedia.org/wiki/Anti-pattern

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern

THE FUTURE
• Naming Design Patterns in Metadata

• Compiler check on good pattern use

• Macros enabling implementation of design patterns

• Namespaces vs. Object numbering

• Data Dictionairy

• Transferring OO-Concepts to NAV

• Implementing libraries for VAT, Pricing, Discount etc.

PRS TOOL

OUR VISION

SU
CC

ES
SF

UL
L

DE
VE

LO
PM

EN
T
Dicipline

10+ Years Experience

External Tooling

How can

Help Create Repeatable Software?

TOOLING

W
HA

T H
AV

E W
E T

RI
ED

 Version Management Software

Object Tracking Tools

Intellisense

Cross Referencing

It does not solve our issues, but it
helps us manage our issues

Symptom
Treatment

No Quality
Insurance

W
HA

T W
E D

O
NE

ED

Data Dictionairy

Design Patterns

Code Snippet Management

API’s

Solving

Quality

Merging Upgrades

Refactoring

DA
TA

 D
IC

TIO
NA

IR
Y

Unified Naming Experience

Guide New Developers

Improves Quality

Reqiured for CfMD

SCENARIO 1

SCENARIO 2

MORE SCENARIO’S

DE
SI

GN
 PA

TT
ER

NS

Known Success

Easy to Adopt

Improves Quality

Linked to Metadata

Blocked Entity

Master Data

Ex
am

pl
e

Field

Code
Snippet

Optional Member

Blocked

Table

Field

Function

Code
Snippet

Page

Codeunit

Report

Query

XML Port

Design Pattern

API

D
e

si
gn

 P
a

tt
e

rn

Design Pattern

API

Only one exists

Engines that make NAV work

Reused in Add-Ons

Well designed

Referred to from design patterns

Not changed - hardcoded in NAV

EX
AM

PL
ES

 | A
PI

Company Initialise | Codeunit 2

Navigation | Page 344

Number Series Mgt | Cu. 396

Format Address | Codeunit 365

CH
EC

KI
NG

 N
AV

 CO
DE

 Start with Design Patterns

Manage Code Cloning

API Interfacing

XX% of NAV Documented

CHECK USAGE OF PATTERNS

SNIPPETS
A snippet is a piece of code that is part of a design pattern
and repeated (cloned) throughout the application

CO
DE

 CL
ON

IN
G

Forking (Copy Code)

Improving code readability

All over the place in NAV

Considered powerfull

C:/Users/Mark/Documents/cloneboard.swf
C:/Users/Mark/Documents/cloneboard.swf

RE
FA

CT
OR

IN
G

Already started

Dimensions | Codeunit 12

Unavoidable, but freezed

Code markers

Same feature can be used to
recognize code clones and help
us manage them until they are

normalized

Code
Markers

Code
Cloning

FUNCTIONAL DESCRIPTIONS
• Example Codeunit 80

• If in a new version a functional area is moved into a function
or its own object the marker moves with it allowing hopefully
automatic merge or at least guidance to the developer

• Same goes for code clones, when redesigned developers are
guided to where to make changes

ENUMERATORS (OPTIONS)
• Everyone is extending the same optionfields

• Everyone leaves extra spaces for MSFT

• When merging add-ons we end up with overlapping options

• Parsing enumerators to functions is a nightmare

• Functions do not support enumerators as return values

• Solutions:
• Enumerators defind in metadata and inheritted on objects
• Using partner id from license to number the enumerators

• Complication
• Refactoring by partners

BONUS!!
WIZARDS – BASED ON DESIGN PATTERNS
• Generate new objects from design patterns

• Enhance existing objects from design patterns

• Find code that needs updating based on design patterns

PREPARE FOR THE FUTURE

PREPARE FOR THE FUTURE
Minimize Code (Cloning)
• Function Libraries
• Enumerators | Add-on Options/strmenu
• Variants
• Hooks

FUNCTION LIBRARIES

VARIANTS

VARIANTS

VARIANTS

HOOK PATTERN
Define the place you want to hook into
Any object can be hooked (not only tables)
Enormous impact on “Upgradability”
Also when re-engineering code.

HOOK PATTERN
Some rules:
- A hook is only used once
- A hook always starts with “On...”
- The name of a hook describes where it is hooked, not what it

should do
- Default objects should only have one custom variable, which is

its hook codeunit
- A hook always contains the main record-variable (by

reference)
- To exclude default business logic, try to use the “IF THEN EXIT”

HOOK PATTERN
Some stats:
- Update from NAV2013 to NAV2013R2
- Custom version: 481 changed objects
- Mergetool.com
- 462 objects got automagically merged
- 19 objects to do manually = 30 minutes
- Even code was redesigned..
- After intensive testing: no issues were reported

MERGE TODAY | HOOKS

MERGE TODAY | HOOKS

 Next Steps

Tooling c

Workshops
Germany

Pattern
Project

• Data Dictionairy
• Versioning – TFS
• Automated Merge
• Where Used
• Compiler Checking design Patterns
• Managed Code Cloning
• Wizards

