B Microsoft Dynamics 365

Lessons learned from ’
migrating to .NET Core

\
w

Wael AbuSeada
Vladislav Nagornyi

Why .NET Core?
Planning the migration
Migration techniques

Common challenges and
solutions

Handling non-migratable
components

Results and benefits post-
migration

QA

Why .NET Core?

.NET Core

Modular Performance Cross-platform Flexible Better/simpler
deployment build tools

- small framework + significant runtime * not just Windows, - exe can be self- - powerful CLI,
assemblies, faster performance also supports Linux contained, or use simplified dev
load and less RAM improvements and macOS system-wide runtime experience, faster
use comparing to .NET compilation

Framework

Open-source Containers

- community - with small footprint
contributions and and support for Linux
transparent and Windows Nano
development process Server, great match

for containers and
microservices

Planning the
migration

.NET Framework vs .NET Core

.NET Framework .NET Core

o :_I_lnJ WPF ASP.NET CoreWCF MAUI
an
< CE) WinForms WCF ASP.NET Core

0
A Base Class Library Core Library
< &
il

|

Common infrastructure

.NET Standard

.NET Framework .NET Core

WPF ASP.NET CoreWCF MAUI

APP
MODELS

WinForms WCF ASP.NET Core

.NET STANDARD LIBRARY
One library to rule them all

Common infrastructure

.NET migration guide

.MiCTOSOft | Learn Documentation Training Certifications Q&A Code Samples Assessments Shows Events

.NET Languages - Features ~+ Workloads ~ APls -~ Resources v

%8 Filter by title Learn / .NET / Migration guide /

NET migration guide

- Overview of porting from .NET Framework to
v General infarmation . N ET

> About .NET
> NET Upgrade Assistant tool Article + 04/05/2023 + 29 contributors & Feedback

> Breaking changes

Pre-miarati In this article
~ Pre-migration

> Assess the portability of your project Windows desktop technologies

Needed changes before porting code

~ Migration .NET Framework compatibility mode
R . Target framewark changes in SDK-style prajects
> Create a porting plan
Unavailable technologies
> Application porting guides .
Cross-platform
v Post-migration The future of .NET Standard
Modernize Tools to assist porting
C! Download PDF Considerations when porting
See also

Show less

https.//learn.microsoft.com/en-us/dotnet/core/portin

https://learn.microsoft.com/en-us/dotnet/core/porting/

.NET Upgrade Assistant

Easiest way to start — possibly the only step needed

https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-
assistant-overview

https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview

.NET Upgrade Assistant

ﬂ[l\ MyAddin
‘c C:\repos\Scratchpad\BCTechDays\MyAddin

Leave Feedback
Welcome to the Upgrade Assistant!

This experience will guide you through the process of upgrading your project towards newer technologies.

Upgrade Assistant can help upgrade .NET Framework or .NET applications to newer .NET versions, bringing its cross-platform, high-performance
capabilities to your product. Learn more

Ready for upgrade? Select how you want to upgrade MyAddIn

+t_ In-place project upgrade

Upgrades project and its components in place using transformations applicable for the project.

L [Z] Side-by-side project upgrade

Upgrades project and its components in a copy project using transformations applicable for the project.

* Side-by-side incremental project upgrade

Selects or creates new target project and establishes a link between current and target projects to allow continuous move of
project components one at a time.

.NET Upgrade Assistant

n MyAddin

‘c “ Leave Feedback
C\repos\Scratchpad\BCTechDays\MyAddIn

®© Target framework

What is your preferred target framework? —

® NET60 LTS

Supported until november, 2024

O NET70 STS

Supported until maj, 2024

(O NET 80 PREVIEW

Try latest preview features

(O .NETStandard 2.0

O .NETStandard 2.1

Which target framework is right for you?

.NET Upgrade Assistant

n
‘él MyAddin Leave Feedback
C\repos\Scratchpad\BCTechDays\MyAddIn

©® Target framework > Select components > Upgrade

Upgrade selected components

Complete: 6 succeeded, 0 failed, 2 skipped. 8/8

3 MyAddIn.csproj

o0 System

o0 System.Data
p o0 System.Xml

0% Finalize project dependencies
b C# Classl.cs

b C# Class2.cs

00000000

b CH AssemblyInfo.cs (Properties)

Done?

Manual migration

- List incompatible functionality and components
- Establish dependencies between components

- Define migration strategy for each component
- Start executing

Migration
techniques

Target technology

\/ Is there an alternative functionality in .NET Core?

o Is there an alternative functionality in a third-party NuGet?

; Has component been planned for refactoring or deprecation?

In-place vs side-by-side project migrations

- In-place
- Make changes directly in the project

- Suitable for small or relatively isolated
components

£ Solution 'BCTechDays' (1 of 1 project)

A
WL L il

b Apr _
b EH Re Rebuild
b c# Clean
b cu | View

Analyze and Code Cleanup

Upgrade

Scope to This

In-place vs side-by-side project migrations

- Side-by-side

Create another project
- Move functionality gradually
- Reduces complexity for migration of

|a rger com ponents 4 Solution 'BCTechDays' (2 of 2 projects)
I} 4 MyAddin
e.g. ASPNET WebAPI |ayer b & Properties

b £ References

P C# Classl.cs

P C# Class2.cs

P &0 Dependencies
P C# Class3.cs

OWIN/ASP.NET

- Was one of the biggest tasks during

migration — Business Central Server e _——= S
had 11 endpoints based on OWIN : S

. OWIN and ASPNET Core are very ==
similar, yet there's a lot of nuances e el

' | gty acicn [roing ides] |

- ASPNET Core up until 2.2 is —— s
supported by .NET Framework, helps IS S s 8
gradual migration _ [%UL '

- SignalR vs SignalR Core, same name La@‘iﬂ |
but different protocols _ e

er
httpsys listener Kestrel systemweb/IS integration E server-level authentication
y g) £l - gl

Host
I depend;y infection ﬂ

System.Text.Json vs Newtonsoft.Json

- ASPNET Core 3.0 uses System.Text.Json by default, Newtonsoft.Json
Is still available

- System.Text.Json is faster

- Keeping Newtonsoft.Json may be a better short-term solution for
API compatibility

WCF

- Evaluate alternatives

- Prefer replacement based on ASP.NET Core for future-proof solution

- CoreWCF — ASPNET Core based middleware that partially implements WCF
- Plain controllers

- gRPC

- WebSocket

- Custom middleware

app.config/web.config vs appsettings.json

- app.config/web.config are still available via
System.Configuration.ConfigurationManager

- Some settings are silently ignored
- <gcServer enabled="true" />

App. Ll
pp-config X appsettings.json + X

<?xml version="1.0" encoding="utf-8" ?> ; —
Schema: https://json.schemastore.org/appsettings.json

-I<configuration>
-1 <appSettings> 1 -{)
<add key="Settingl" value="Valuel"/> 2 =1 "AppSettings": {
<add key="Setting2" value="Value2"/> 3 "Settingl": "Valuel",
</appSettings> 4 "Setting2": "Value2"
- <connectionStrings> 5 3,
<add name="MyDatabase" connectionString="Data Source=(local);Initial Catalog=MyDB;Integrated % 6 =l "ConnectionStrings": {
Security=True" providerName="System.Data.SqlClient"/> 7 "MyDatabase": "Data Source=(local);Initial Catalog=MyDB;Integrated Security=True"
</connectionStrings> 8 }
</configuration> 9 }
10 |

Updating AL assembly probing paths

settings.json X

vscode >
1
2
3
4
5
B
7}
8

settings,json > []al.assemblyProbingPaths

"al.packageCachePath": "C:\\AllExtensions",
"al.assemblyProbingPaths": [

]

"C:\\Windows\\Microsoft.NET\\assembly",
"C:\\Program Files\\Microsoft Dynamics 365 Business Central\\220\\Service"

»qJ launch.json settingsjson X
vscode > settings.json > []al.assemblyProbingPaths
1 {
2 "al.packageCachePath": "C:\\AllExtensions",
3 "al.assemblyProbingPaths": [
4 "C:\\Program Files\\dotnet\\shared\\Microsoft.AspNetCore.App\\6.0.18",
5 "C:\\Program Files\\dotnet\\shared\\Microsoft.NETCore.App\\6.0.18",
5 "C:\\Program Files\\dotnet\\shared\\Microsoft.WindowsDesktop.App\\6.0.18",
7 "C:\\Program Files\\Microsoft Dynamics 365 Business Central\\220\\Service"
8 1
9 }

[y
[<)

Target technology

\/ E;Pe%re an alternative functionality in NET Compatibility Mode

o) Is there an alternative functionality in
K a third-party NuGet?

—_—

; Has component been planned for
refactoring or deprecation?

Type forwarding

Supported in AL compiler

[assembly:TypeForwardedTo(typeof(AwesomeDemo))] AwesomeDemo

TechDays22.dll TechDays23.dll

Type forwarding in net standard

[+ =3 mscorlib (4.0.0.0, msil)

4 =3 netstandard (2.1.0.0, msil, METCorefpp vB.0)
[% Metadata
b (@pl References

A @ Forwarded types

@ Microsoft. Win32.5afeHandles, CriticalHandleMinusOnelsinvalid (Systern. Runtime, 6.0.0.0)

@ Microsoft. Win3d.5afeHandles, CriticalHandleferoOrMinusOnelslnvalid (Systerm.FRuntirme, 6.0.0.0)

@ Microsoft.Win32.5afeHandles. SafeFileHandle (System.Runtime, 6.0.0.0)

@ Microsoft. Win32.5afeHandles. SafeHandleMinusOnelsinvalid (Systern.Runtime, £.0.0.0]

@ Microsoft. Win32.5afeHandles. S5afeHandleeroOrMinusOnelsinvalid (Systerm. Runtime, 6.0.0.0)

@ Microsoft.Win32.5afeHandles. SafeMemoryMappedFileHandle (System.|O.MemoryMappedFiles, £.0.0.0)
@ Microsoft.Win32.5afeHandles. SafeMemoryMappedViewHandle (System | O.MemoryMappedFiles, £.0.0.0)
@ Microsoft.Win32.5afeHandles. S5afePipeHandle (Systern. 0. Pipes, £.0.0.0)

@ Microsoft.Win32.5afeHandles. S5afeProcessHandle (System.Diagnostics.Process, 6.0.0.0)

@ Microsoft.Win32.5afeHandles. 5afeWaitHandle (Systemn.Runtime, 6.0.0.0]

@ Microsoft.Win32.5afeHandles. 5afeX509ChainHandle (Systermn. Security. Cryptography X509Certificates, 6.0.0.0)
@ Systern.AccessViolationException (Systern. Runtime, £.0.0.0]

@ Systemn.Action (System.Runtime, 6.0.0.0)

@ Systemn.Action™ (Systern.Runtime, 6.0.0.0]

@ Systern.Action™0 (Systern.Runtime, £.0.0.0)

@ Systern.Action™1 (System.Runtime, 6.0.0.0)

@ Systern.Action™2 (Systern.Runtime, £.0.0.0)

@ Systern.Action™3 (System.Runtime, 6.0.0.0)

@ Systern.Action™14 (Systern.Runtime, £.0.0.0)

@ Systern.Action™5 (System.Runtime, 6.0.0.0)

.NET Framework Compatibility Mode

t allows referencing .NET Framework
Ibraries

- Possible thanks to type forwarding
- Why not just use compatibility mode?

- Compile fine (v

- Doesn’t cover all NET Framework, but only .NET Standard NET Framework dll
subset of .NET APlIs

- Runtime error for unsupported APls @
- This happened to our OneDrive integration

- Your .NET framework dlls will be loaded in compatibility
mode, so you might get runtime errors

.NET Standard .NET Core

How to handle the

stress of migrating
huge project?

Wake up scared

O
@

ReRreanbiengvab duhvmigoatibtest

coverage on platform and application

Always invest in test automation

Target technology

\/ IC:::,(;cPee?re an alternative functionality in NET Compatibility Mode

o) Is there an alternative functionality in
K a third-party NuGet?

—_—

Move to a
— microservice

; Has component been planned for
refactoring or deprecation?

Moved to a microservice

« Reporting service

 Application proxy service
« Electronic Invoicing in MX
« Digipoort in NL

 Dataverse 9.1 integration add-in

Reporting Service

OnPrem

Application proxy

Service

Moved to a microservice

« Reporting service

 Application proxy service
« Electronic Invoicing in MX
« Digipoort in NL

 Dataverse 9.1 integration add-in

Application proxy

Service

Azure Function

Azure Function
System module

Reporting Service

SaaS

Other interesting changes in .NET Core

- Encoding.Default in .NET Core is always UTF8

- In .NET Framework it was always the system's active code page

- The documentation warns against using Encoding.Default due to the possible changes
between .NET versions, from machine to machine, and within the same machine over time

- Debug.Assert in .NET Core will crash the process when assertion fails

- In .NET Framework it would show interactive dialog, offering to ignore, to attach a debugger
or to abort application execution

- Readonly fields in .NET Core cannot be modified using reflection
- It was possible to write to a readonly field in .NET Framework using reflection

Results and
benefits of
migration

Performance

- In general, there are consistent computational performance
Improvements across all areas

- App scenarios up to 30% faster ~

- Admin tasks (server startup, AL compilation, environment start-up,
...) up to 55% faster

Performance

Name @Create Customers @Create Gen Journal Line @ Create Item Journal ... @ Create Puchase Order @ Create Sales Order @ Post Gen Journal ... @Post Item Journ... @ Post Purchase ... @Post Sales Order

20%

NST .NET6 uptake

0%

-20%

Performance

Build nav binaries (cold) 11:04.0 08:31.0 -23%
Build nav binaries (warm) 05:25.0 04:01.0 -25.8%

Any Questions?

mibusc.com

OOOOOOOO

	Slides
	Slide 1: Lessons learned from migrating to .NET Core
	Slide 2: Agenda
	Slide 3: Why .NET Core?
	Slide 4: .NET Core
	Slide 5: Planning the migration
	Slide 6: .NET Framework vs .NET Core
	Slide 7: .NET Standard
	Slide 8: .NET migration guide
	Slide 9: .NET Upgrade Assistant
	Slide 10: .NET Upgrade Assistant
	Slide 11: .NET Upgrade Assistant
	Slide 12: .NET Upgrade Assistant
	Slide 13: Done?
	Slide 14: Manual migration
	Slide 15: Migration techniques
	Slide 16: Target technology
	Slide 17: In-place vs side-by-side project migrations
	Slide 18: In-place vs side-by-side project migrations
	Slide 19: OWIN/ASP.NET
	Slide 20: System.Text.Json vs Newtonsoft.Json
	Slide 21: WCF
	Slide 22: app.config/web.config vs appsettings.json
	Slide 23: Updating AL assembly probing paths
	Slide 24: Target technology
	Slide 25: Type forwarding
	Slide 26: Type forwarding in net standard
	Slide 27: .NET Framework Compatibility Mode
	Slide 28: How to handle the stress of migrating huge project?
	Slide 29
	Slide 30: Always invest in test automation
	Slide 31: Target technology
	Slide 32: Moved to a microservice
	Slide 33: Moved to a microservice
	Slide 34: Done
	Slide 35: Other interesting changes in .NET Core
	Slide 36: Results and benefits of migration
	Slide 37: Performance
	Slide 38: Performance
	Slide 39: Performance
	Slide 40
	Slide 41

