




This session is about…

Making control add-in development work

Practices that work

… and practices that don’t

… and why they work and why they don’t

Developing for web like web developers do

… not like accountants do 



Practices that don’t work

Hoping to do

36 demos
in a single session



Building control add-ins is easy… in AL

• All-in-one environment

• Manifest and interface in one place

• Familiar language and type system

• Free folder structure

Manifest

Interface



easy is tricky



Global scope pollution



Performance Global scope pollution



Debugging Performance



Browser compatibility



Separation of concerns Browser compatibility



Practices that don’t work

Developing in

one file



Practices that don’t work

Good for browser.
Not good for you.







Front-end frameworks





DaysSinceLastJavaScriptFramework.com



Practices that don’t work

Developing a
yet another

JavaScript framework



Let’s forget about framework
(for a while)



Let’s talk bundles



JavaScript bundles

Group separate files into one

Reduce HTTP traffic

Improve page loading and processing



What is gulp

• https://gulpjs.com/

• “The streaming build system”

• Toolkit for automating development tasks

• Based on JavaScript and Node.js

• Integrates with VS Code

https://gulpjs.com/


What can you use gulp for?

• 12,307 gulp-related packages on npm

• 4,074 gulp plugins

• Bundling

• Automating transpilation

• Minifying JavaScript, CSS, HTML, even images

• Linting

• Automating git tasks (especially complex ones)

• Compressing / decompressing files

• Run shell commands (including PowerShell)



What is Babel

• https://babeljs.io/

• Babel is a JavaScript compiler

• Turns next (or any) generation JavaScript into compatible code

• Things it does:
• Transforms syntax

• Polyfills missing features

• Optimizes code
• And more…

• You can integrate Babel with gulp

https://babeljs.io/


What (else) can gulp do for AL and BC?

• Build Control Add-ins for pre-AL and pre-BC

• Bundle
• Zip

• Deploy through PowerShell

• Build documentation from source AL files

• Extract Control Add-in resource file from *.app files

• Automatically maintain controladdin definition

• Probably a lot more, but you got the idea





Practices that don’t work

Keeping Node.js 
inside the AL 
workspace



Practices that work

Use Multi-root 
Workspaces



Multi-root Workspaces

• Combine multiple workspaces into one

• Useful for related projects
(especially when different technologies are involved)

• Each workspace can have its own:
• Debug/launch configurations

• Compilers and setup

• Extensions
• Even git



AL with Multi-root Workspaces

• AL doesn’t play nice with VS Code

• Hijacks F5

• Replaces build task with its own

• “Detects” if project type is AL, and if it is…

… treats every loaded workspace as AL

… even injects its artifacts into other workspaces



Remember frameworks?



Front-end frameworks



The big three

Angular
(from Google)

Superheroic JavaScript 
Model-View-Whatever 

Framework



The big three

React
(from Facebook)

A JavaScript library 
for building user 

interfaces



The big three

Vue
(from Evan You)

Reactive component-
oriented view layer for 
modern web interfaces



What do these three have in common

• Don’t just work in browsers (kind of)

• Require pre-compilation (for full functionality)

• Depend on toolchains (for best productivity)

• Huge developer base

• Deep knowledge base

• Wide learning resources availability

• Great support in VS Code



Which one to choose?

• All three are great

• All three use bundles

• All three will work with Business Central

• Choose whatever suits your development style/philosophy the best



Which one to choose?

• All three are great

• All three use bundles

• All three will work with Business Central
(as a matter of fact, you can make all JavaScript frameworks work with Business Central)

• Choose whatever suits your development style/philosophy the best



Which one to choose?



Which one to choose?



Which one to choose?



Which one to choose?



Which one to choose?



Which one did I choose, and why?



I choose React



Why React?

• Straightforward and simple

• Component based (vs. template based)

• Imperative (vs. declarative)

• Flexible about architecture

• Fits best with how AL and JavaScript 
work together

• Numbers do matter. React is #1.



Getting started with React

Create-react-app
https://code.visualstudio.com/docs/nodejs/reactjs-tutorial

React Starter Kit
https://reactstarter.com/

Yeoman + Cheetah
https://bitbucket.org/MarcAdlington1/cheetah/src/master/

Yeoman + generator-react-webpack
https://github.com/react-webpack-generators/generator-react-webpack

Manually from scratch
https://blog.usejournal.com/creating-a-react-app-from-scratch-f3c693b84658

https://code.visualstudio.com/docs/nodejs/reactjs-tutorial
https://reactstarter.com/
https://bitbucket.org/MarcAdlington1/cheetah/src/master/
https://github.com/react-webpack-generators/generator-react-webpack
https://blog.usejournal.com/creating-a-react-app-from-scratch-f3c693b84658


My preference: Manually from scratch

Takes 2 minutes to set up

Complete control over the content and setup

Completely unopinionated, especially about:
• Package manager: yarn or npm, both okay
• Version of dependencies
• Test framework
• State management

Minimum dependencies installed
• No unnecessary dependencies
• Maybe hot loader, but you can simply skip the step



What is webpack

https://webpack.js.org/

• Static module bundler

• Processes all application source code

• Generates a bundle file
(or more, depending on your configuration)

• Heavily configurable
(through loaders and plugins)

https://webpack.js.org/


• A single file containing all code

• Built from dependency graph

• Code is transformed and optimized

• Not limited only to code. It can contain:

• Stylesheets

• Image resources
• Other kinds of assets

webpack output bundle



webpack treeshaking optimization

A

B C

ED F

HG I J



webpack treeshaking optimization

A

B C

E

I



• React uses specific JavaScript dialect: JSX

• Most React code is either ES6 or TypeScript

• Browsers don’t natively process any of this

• Uses babel loader to transpile JSX

• Bundles all transpiled code 
(including dependency code)
into a single bundle file

webpack with React



Hello, World!

class HelloWorld extends Component {
render() {

return <h1>Hello, World!</h1>;
}

}



View

Simpler in React

Data Container Summary

Data Entry Data Entry

Summary Details

Summary Entry

Summary Entry



View

Simpler in React

Data 

Container
Summary

Data Entry
Summary 

Details

Summary 

Entry

Data Entry

Summary 

Entry

Basic structure



View

Simpler in React

Data 

Container
Summary

Data Entry
Summary 

Details

Summary 

Entry

[{...}, {...}, {...}, ...]

[{...}, {...}, {...}, ...]

{
"entryNo": 2433,
"customerNo": "30000",
"customerName": "John Haddock Insurance Co.",
"documentDate": "2020-12-31",
"dueDate": "2021-01-31",
"amount": 76167.75,
"currency": ""

}

???

???

???

Data Entry

Summary 

Entry

Basic structure with data



View

Simpler in React

Data 

Container
Summary

Data Entry
Summary 

Details

Summary 

Entry

[{...}, {...}, {...}, ...]

[{...}, {...}, {...}, ...]

{
"entryNo": 2433,
"customerNo": "30000",
"customerName": "John Haddock Insurance Co.",
"documentDate": "2020-12-31",
"dueDate": "2021-01-31",
"amount": 76167.75,
"currency": ""

}

???

???

???

Data Entry

Summary 

Entry

on click

State, step 1



View

Simpler in React

Data 

Container
Summary

Data Entry
Summary 

Details

Summary 

Entry

[{...}, {...}, {...}, ...]

[{...}, {...}, {...}, ...]

{
"entryNo": 2433,
"customerNo": "30000",
"customerName": "John Haddock Insurance Co.",
"documentDate": "2020-12-31",
"dueDate": "2021-01-31",
"amount": 76167.75,
"currency": ""

}

[{...}, {...}, {...}, ...]

(calculate summaries per currency)

(currency and amount properties)

Data Entry

Summary 

Entry

on click

State, step 2



View

Simulating BC

Data 

Container
Summary

Data Entry
Summary 

Details

Summary 

Entry

Triggering the same function AL will trigger
[{...}, {...}, {...}, ...]

[{...}, {...}, {...}, ...]

{
"entryNo": 2433,
"customerNo": "30000",
"customerName": "John Haddock Insurance Co.",
"documentDate": "2020-12-31",
"dueDate": "2021-01-31",
"amount": 76167.75,
"currency": ""

}

[{...}, {...}, {...}, ...]

(calculate summaries per currency)

(currency and amount properties)

Data Entry

Summary 

Entry

on click

• Develop the control completely in 
React workspace

• Copy the bundle to AL and control 
add-in uses it without changes



React + Business Central



Architecture: what is React?

MVC MVP

MVVM MVW



None
of these

Architecture: what is React?



React Architecture

It all starts with state



Lessons learned so far

1. this.state object contains component state

2. You cannot manipulate state directly

3. … or rather: you should not manipulate state directly

4. You manipulate state through this.setState method

5. React refreshes the UI automatically on state change

6. It’s good to manipulate state through dedicated methods



What do we have so far?

• All-in-one component:

• Model = State
• View = JSX

• “controller” = onClick logic

• Can we do better?

• Let’s separate concerns a bit more:
• Moving state out of component

• Moving “controller” out of component



What is Redux

https://redux.js.org/

• Library for managing application state

• Extremely popular and wide-spread

(12.094 redux-related packages on npm)

The only correct way to manage state in React

… but it is not limited to React

https://redux.js.org/


Redux principles

• State is centralized

• State is immutable (directly)

• State changes are only possible through reducer functions

• Data flow is strictly unidirectional



Redux terminology

• State = Application data

• Store = state container

• Reducers = functions that manipulate state

• Actions = functions that indicate intent to change state



ActionsReducers

Store

State

Redux unidirectionality

UI

defines

triggers

invoke

update

contains



State
Action

Creators
Reducers

Actual Redux flow

UI

(previous state, action)

(new state)

dispatch (action)

(state)
user interaction

(e.g. click)

Store



{
type: "TODO.ADD",
payload: {
todo: "Sleep",
time: "a.s.a.p.",
completed: false

}
}

Action

Creator

Inside an action

actionpayload

{
todo: "Sleep"

}



state

{
type: "TODO.ADD",
payload: {
todo: "Sleep",
time: "a.s.a.p.",
completed: false

}
}

Inside an action

action

(dispatch) ReducerReducerReducerReducerStore



Inside a reducer

state

action

Reducer
(pure function, no side effects)

My 

action to 

handle

state

new state

no

yes

CRITICALLY IMPORTANT

Must not mutate the 

original state object!



Inside the store

result

Store

state 
=== 

result

yes

no

do nothing

trigger bindings

(updates UI)



View

Our demo with Redux

Data 

Container

Summary

Data Entry

Summary 

Details

Summary 

Entry

Data Entry

Summary 

Entry

Store

Reducer

substate

substate

substate

substate
select

update



A final touch

Mocking
Business Central

web client



Tomorrow 11am






