

You are our demo!

Before we even begin

Before we even begin

Install the Expo client app…

…from your app store

{Connect app}²

• Any 3rd party
app that uses
data from
Business
Central

• REST

• Web hooks

• Your choice

Connect app

What Technology Development

• Any 3rd party
app that uses
data from
Business
Central

• REST

• Web hooks

• Your choice

Connect app

What Technology Development

BOOOOOOOOOORING

UID: ntd2019

PWD: Antwerp.19

What are Custom APIs?

What are Custom APIs?

Can be developed
by any Partner

Included in Add-on
apps

Can be accessed
using specific

endpoints
Easy to create

• You must not break
existing versions

• Any breaking change
requires up-versioning

• API layer does no
versioning validations
for you

• Include SystemId

• lastModifiedDateTime

• Always use camelCase

• Table relationships

• Complex types

• Insertion /
modification behavior

Custom API considerations

Microsoft makes sure all their APIs are consistent

Consistency of your APIs is your responsibility

Versioning principle
Naming and schema

conventions
Consistent behavior

• Include SystemId

• lastModifiedDateTime

• Always use camelCase

• Table relationships

• Complex types

• Insertion /
modification behavior

Custom API considerations

Microsoft makes sure all their APIs are consistent

Consistency of your APIs is your responsibility

Versioning principle
Naming and schema

conventions
Consistent behavior

• You must not break
existing versions

• Any breaking change
requires up-versioning

• API layer does no
versioning validations
for you

• Table relationships

• Complex types

• Insertion /
modification behavior

Custom API considerations

Microsoft makes sure all their APIs are consistent

Consistency of your APIs is your responsibility

Versioning principle
Naming and schema

conventions
Consistent behavior

• You must not break
existing versions

• Any breaking change
requires up-versioning

• API layer does no
versioning validations
for you

• Include SystemId

• lastModifiedDateTime

• Always use camelCase

Microsoft makes sure all their APIs are consistent

Consistency of your APIs is your responsibility

• You must not break
existing versions

• Any breaking change
requires up-versioning

• API layer does no
versioning validations
for you

• Include SystemId

• lastModifiedDateTime

• Always use camelCase

• Table relationships

• Complex types

• Insertion /
modification behavior

Custom API considerations

Versioning principle
Naming and schema

conventions
Consistent behavior

Developing Custom APIs

The basics

APIs are OData

OData web services can be built as:

Pages

Queries

APIs can be developed as:

Pages

Queries

API definition properties

Namespace properties define the endpoint hierarchy:

• Become a part of the endpoint URL

• These are case-insensitive!

• Should use camelCase

APIPublisher = ‘waldo';
APIGroup = ‘killerApp';
APIVersion = ‘v1.0';

APIPublisher = ‘waldo';
APIGroup = ‘killerApp';
APIVersion = ‘v1.0';

API definition properties

https://api.businesscentral.dynamics.com/v2.0/<tenant_id>/<sandboxname>/api/waldo/killerApp/v1.0

APIPublisher = ‘waldo';
APIGroup = ‘killerApp';
APIVersion = ‘v1.0';

Namespace properties define the endpoint hierarchy:

• Become a part of the endpoint URL

• These are case-insensitive!

• Should use camelCase

API definition properties

https://api.businesscentral.dynamics.com/v2.0/<tenant_id>/<sandboxname>/api/waldo/killerApp/v1.0

APIPublisher = ‘waldo';
APIGroup = ‘killerApp';
APIVersion = ‘v1.0';

Entity properties define the EDM (Entity Data Model)
• These are case-sensitive!
• Should use camelCase EntityName = ‘crime’;

EntitySetName = ‘crimes';
EntityName = ‘crime’;
EntitySetName = ‘crimes';

/companies(<company_id>)/

Namespace properties define the endpoint hierarchy:

• Become a part of the endpoint URL

• These are case-insensitive!

• Should use camelCase

API definition properties

https://api.businesscentral.dynamics.com/v2.0/<tenant_id>/<sandboxname>/api/waldo/killerApp/v1.0

APIPublisher = ‘waldo';
APIGroup = ‘killerApp';
APIVersion = ‘v1.0';

EntityName = ‘crime’;
EntitySetName = ‘crimes';

/companies(<company_id>)/crimes

Entity properties define the EDM (Entity Data Model)
• These are case-sensitive!
• Should use camelCase

Namespace properties define the endpoint hierarchy:

• Become a part of the endpoint URL

• These are case-insensitive!

• Should use camelCase

Table considerations

Every entity table must provide required API fields and functionality

• A GUID field

• Virtual field – you don’t
have to create or
maintain it yourself –
but you have to put it
on the API page

• A DateTime field

• Must be modified on
every record
modification.

• The SystemId can’t be
the primary key

• The SystemId is more
durable than the
primary key.

• The id field must
survive a change of the
primary key values
(renaming in AL
terminology).

SystemId field
Last Modified DateTime

field
Primary key

considerations • Fields should follow
Business Central
naming conventions,
and not use camelCase
or PascalCase. Caption
Case must be used
instead.

Field considerations

• A DateTime field

• Must be modified on
every record
modification.

• The SystemId can’t be
the primary key

• The SystemId is more
durable than the
primary key – it
survives the rename
operation.

• Fields should follow
Business Central
naming conventions,
and not use camelCase
or PascalCase. Caption
Case must be used
instead.

Table considerations

Every entity table must provide required API fields and functionality

• A GUID field

• Virtual field – you don’t
have to create or
maintain it yourself –
but you have to put it
on the API page

SystemId field
Last Modified DateTime

field
Primary key

considerations
Field considerations

• The SystemId can’t be
the primary key

• The SystemId is more
durable than the
primary key – it
survives the rename
operation.

• Fields should follow
Business Central
naming conventions,
and not use camelCase
or PascalCase. Caption
Case must be used
instead.

Table considerations

Every entity table must provide required API fields and functionality

• A GUID field

• Virtual field – you don’t
have to create or
maintain it yourself –
but you have to put it
on the API page

• A DateTime field

• Must be modified on
every record
modification.

SystemId field
Last Modified DateTime

field
Primary key

considerations
Field considerations

• Fields should follow
Business Central
naming conventions,
and not use camelCase
or PascalCase. Caption
Case must be used
instead.

Table considerations

Every entity table must provide required API fields and functionality

• A GUID field

• Virtual field – you don’t
have to create or
maintain it yourself –
but you have to put it
on the API page

• The SystemId can’t be
the primary key

• The SystemId is more
durable than the
primary key – it
survives the rename
operation.

SystemId field
Last Modified DateTime

field
Primary key

considerations
Field considerations

• A DateTime field

• Must be modified on
every record
modification.

Table considerations

Every entity table must provide required API fields and functionality

• A GUID field

• Virtual field – you don’t
have to create or
maintain it yourself –
but you have to put it
on the API page

• A DateTime field

• Must be modified on
every record
modification.

• The SystemId can’t be
the primary key

• The SystemId is more
durable than the
primary key – it
survives the rename
operation.

SystemId field
Last Modified DateTime

field
Primary key

considerations

• Fields should follow
Business Central
naming conventions,
and not use camelCase
or PascalCase. Caption
Case must be used
instead.

Field considerations

• All field names must be set to
camelCase explicitly.

• Don’t set ApplicationArea.

• It’s the Name property of a page field
that defines how the field is
referenced in REST requests and
responses.

• SystemId value must not be changed.

• Primary key values can be changed
during a modification call, and this
needs to propagate as a Rename call
in AL.

Page considerations

Every page must provide correct mapping of the entity table to REST
format and behavior

Field names considerations Modify behavior

• All field names must be set to
camelCase explicitly.

• Don’t set ApplicationArea.

• It’s the Name property of a page field
that defines how the field is
referenced in REST requests and
responses.

• SystemId value must not be changed.

• Primary key values can be changed
during a modification call, and this
needs to propagate as a Rename call
in AL.

Page considerations

Every page must provide correct mapping of the entity table to REST
format and behavior

Field names considerations Modify behavior

Page considerations

Every page must provide correct mapping of the entity table to REST
format and behavior

• All field names must be set to
camelCase explicitly.

• Don’t set ApplicationArea.

• It’s the Name property of a page field
that defines how the field is
referenced in REST requests and
responses.

• SystemId value must not be changed.

• Primary key values can be changed
during a modification call, and this
needs to propagate as a Rename call
in AL.

Field names considerations Modify behavior

Useful resources

https://docs.microsoft.com/en-us/dynamics-nav/fin-graph/

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-
itpro/developer/devenv-connect-apps-tips

Useful Tools

Rest Client

A VSCode Extension

Alows you to send HTTP
request and view the response

You can make the files part of
your app

PowerShell

Resetting the environment

Upload data

Quickly and efficiently Test APIs

Create a (manual) release pipeline to easily “reset” multiple environments

RequestBin

https://requestbin.com/

Online tool that creates a
subdomain which you can use to
test an API call.

Requests sent to any path on the
subdomain are forwarded to the
browser in real time.

https://requestbin.com/

OAuth

Two types of authentication

Dynamics 365 Business Central APIs support two types of authentication

• Client uses the credentials directly

• Performs actual authentication

• Lower security

• Potentially exposes user’s secrets

• Works in on-prem, and cloud sandbox
and development environments.

• Does not work in cloud production
environments.

• Client uses a series of REST calls

• Performs authentication delegation

• Higher security

• Does not expose user’s secrets

• Works in all environments when
Azure AD authentication is used.

• Mandatory for all cloud production
environments

Base Authentication OAuth 2.0 Authentication

• Client uses a series of REST calls

• Performs authentication delegation

• Higher security

• Does not expose user’s secrets

• Works in all environments when
Azure AD authentication is used.

• Mandatory for all cloud production
environments

Two types of authentication

Dynamics 365 Business Central APIs support two types of authentication

• Client uses the credentials directly

• Performs actual authentication

• Lower security

• Potentially exposes user’s secrets

• Works in on-prem, and cloud sandbox
and development environments.

• Does not work in cloud production
environments.

Base Authentication OAuth 2.0 Authentication

Two types of authentication

Dynamics 365 Business Central APIs support two types of authentication

• Client uses the credentials directly

• Performs actual authentication

• Lower security

• Potentially exposes user’s secrets

• Works in on-prem, and cloud sandbox
and development environments.

• Does not work in cloud production
environments.

• Client uses a series of REST calls

• Performs authentication delegation

• Higher security

• Does not expose user’s secrets

• Works in all environments when
Azure AD authentication is used.

• Mandatory for all cloud production
environments

Base Authentication OAuth 2.0 Authentication

What is OAuth 2.0

An open standard for access delegation, that allows users to grant
applications access to user information in other applications, without
exposing user credentials.

• User access is delegated to an
application

• No user impersonation takes place

• User credentials are exchanged only
between the user and the
application that “owns” the
credentials (in case of Business
Central, it’s Azure Active Directory)

• Connecting application never has
access to user’s credentials

• Connecting application only has
access to an access token

• Access tokens are short-lived,
issued to a specific client, and
cannot be reused

• Tokens are issued by an
authorization server (Azure Active
Directory) with the approval of the
resource owner (Business Central)

• OAuth is REST-based

• Not applicable to non-HTTP
scenarios

• All communication happens
through HTTP REST endpoints

Delegation Token-based access Web-based protocol

• Connecting application only has
access to an access token

• Access tokens are short-lived,
issued to a specific client, and
cannot be reused

• Tokens are issued by an
authorization server (Azure Active
Directory) with the approval of the
resource owner (Business Central)

• OAuth is REST-based

• Not applicable to non-HTTP
scenarios

• All communication happens
through HTTP REST endpoints

What is OAuth 2.0

An open standard for access delegation, that allows users to grant
applications access to user information in other applications, without
exposing user credentials.

• User access is delegated to an
application

• No user impersonation takes place

• User credentials are exchanged only
between the user and the
application that “owns” the
credentials (in case of Business
Central, it’s Azure Active Directory)

• Connecting application never has
access to user’s credentials

Delegation Token-based access Web-based protocol

• OAuth is REST-based

• Not applicable to non-HTTP
scenarios

• All communication happens
through HTTP REST endpoints

What is OAuth 2.0

An open standard for access delegation, that allows users to grant
applications access to user information in other applications, without
exposing user credentials.

• User access is delegated to an
application

• No user impersonation takes place

• User credentials are exchanged only
between the user and the
application that “owns” the
credentials (in case of Business
Central, it’s Azure Active Directory)

• Connecting application never has
access to user’s credentials

• Connecting application only has
access to an access token

• Access tokens are short-lived,
issued to a specific client, and
cannot be reused

• Tokens are issued by an
authorization server (Azure Active
Directory) with the approval of the
resource owner (Business Central)

Delegation Token-based access Web-based protocol

What is OAuth 2.0

An open standard for access delegation, that allows users to grant
applications access to user information in other applications, without
exposing user credentials.

• User access is delegated to an
application

• No user impersonation takes place

• User credentials are exchanged only
between the user and the
application that “owns” the
credentials (in case of Business
Central, it’s Azure Active Directory)

• Connecting application never has
access to user’s credentials

• Connecting application only has
access to an access token

• Access tokens are short-lived,
issued to a specific client, and
cannot be reused

• Tokens are issued by an
authorization server (Azure Active
Directory) with the approval of the
resource owner (Business Central)

• OAuth is REST-based

• Not applicable to non-HTTP
scenarios

• All communication happens
through HTTP REST endpoints

Delegation Token-based access Web-based protocol

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Implicit Grant On-Behalf-Of

Client Credentials
Grant

Device Authorization
Grant

Resource Owner
Password Credentials

Grant

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Third-party web and
native apps

Implicit Grant On-Behalf-Of

Client Credentials
Grant

Device Authorization
Grant

Resource Owner
Password Credentials

Grant

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Third-party web and
native apps

On-Behalf-Of

Client Credentials
Grant

Device Authorization
Grant

Resource Owner
Password Credentials

Grant

Implicit Grant

Single-page browser
apps

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Third-party web and
native apps

Client Credentials
Grant

Device Authorization
Grant

Resource Owner
Password Credentials

Grant

Implicit Grant

Single-page browser
apps

On-Behalf-Of

Pass-through multi-
layer scenarios

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Third-party web and
native apps

Device Authorization
Grant

Resource Owner
Password Credentials

Grant

Implicit Grant

Single-page browser
apps

On-Behalf-Of

Pass-through multi-
layer scenarios

Client Credentials
Grant

Service-to-service

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Third-party web and
native apps

Resource Owner
Password Credentials

Grant

Implicit Grant

Single-page browser
apps

On-Behalf-Of

Pass-through multi-
layer scenarios

Client Credentials
Grant

Service-to-service

Device Authorization
Grant

Smart devices and IoT

OAuth 2.0 is not a single thing

• There are different flows in OAuth:

Authorization Code
Grant

Third-party web and
native apps

Implicit Grant

Single-page browser
apps

On-Behalf-Of

Pass-through multi-
layer scenarios

Client Credentials
Grant

Service-to-service

Device Authorization
Grant

Smart devices and IoT

Resource Owner
Password Credentials

Grant

First-party apps with
high level of trust

Which flows are supported by Business Central

• OAuth is a feature of Azure Active Directory, not Business Central

• You can obtain tokens using all flows (tokens come from Azure)

• However (and a big one at that):

• Business Central rejects tokens when actual user cannot be identified
• This eliminates service-to-service calls

• Reason: license compliance

• Officially, according to Microsoft, these are supported:

• Authorization Code Grant
• Implicit Grant

Pssssst, don’t tell anyone

Resource Owner Password Credential Grant
works just fine.

Use this one for
service-to-service communication.

Selecting the right grant type

Grant type

First party or third party

Type of app

Token Owner

Who owns
the token?

Machine

Client
Credentials

User

Native

First party

Password
Credentials

Third party

Authorization
Code

Web

Authorization
Code

Browser

First party

Password
Credentials

Third party

Implicit

Authorization Code Grant Flow

• The most typical grant type

• The most comprehensive grant type

• Other grant types perform a subset of operations of Authorization Code
grant

• The grant type most familiar to users

Parties in OAuth 2.0 authorization code flow

OAuth 2.0 process has three parties

Resource owner

The application that owns the resources
the user has access to, and that the user
wants to delegate access to.

Authorization server

An authority trusted by the resource
owner, that will issue access tokens on
behalf of the resource owner.

End-user application

Any application that requires access to the
resources.

How does OAuth 2.0 work in Business Central

2. Presents sign-in form

3. Provides credentials

5. Requests access token
(sends authorization code and client secret)

(client secret = app key)

6. Returns one-time, client-specific access token

Implementing OAuth 2.0 authentication

Implementing the client side of OAuth 2.0 protocol is your responsibility

Your OAuth 2.0 client must provide the described functionality

Redirect to /oauth2/authorize endpoint

When user requests a Business Central
resource, redirect to the known endpoint.

Provide a callback URL that receives
authorization code.

POST to /oauth2/token endpoint

Use HTTP POST method to send the
authorization code to the known endpoint

This is a regular REST invocation.

Response contains the access token.

Use access token with Business Central

Every REST request against Business Central
API must include the token in the
authorization headers.

When token expires, request refresh token.

UID: ntd2019

PWD: Antwerp.19

Get ready for the demo

Install the Expo client app…

…from your app store

UID: ntd2019

PWD: Antwerp.19

Architectural overview

Reads item information (API)

Stores

item images

Tags item with

“likes”

Subscribes to notifications (API)

Sends

prediction

notifications

Sends

prediction

notifications

Automates

new item

creation

Requests “like”

predictions

Architectural Considerations in AL

Dependencies

Only responsible for
REST calls

Helpers for JSON and
HTTP objects

Introduce logging

• Request/Response

• Duration

• Timings

• …

Events

• OnBeforeSend

• OnAfterSend

• ...

Helper to call all http-
methods in the right

order

Data

•Setup

•Tags

Methods

•Get TagsCreate
TagCreate Image

•Create Image

•Create Tag Create
Image

•Create Image

•Create Image

•Predict

•Train

•...

Objects

•Image

•ImageReponse

•Tag

Uses the REST
App

The actual functionality

•New business logic

•New data model

•API
Uses CustomVision

“Objectification”

Try to make it easy to work with the objects that needs to be sent to an
API call, and the objects you get back.

ImageClass CreateImageObject

ImageObject.SendImageClass.SendMethodHttpClient.Send

ImageResponseClass ImageResponse.GetIdWebResponse

Notifications
Don’t call us, we will call you

Notifications

• Webhooks for Business Central APIs

• Interested parties can subscribe to data changes

• Business Central sends out notifications when changes occur

• Both standard and custom APIs expose the /subscriptions endpoint

https://api.businesscentral.dynamics.com/v2.0/<tenant_id>/<sandboxname>
/api/waldo/killerApp/v1.0

/subscriptions

Notifications

• Webhooks for Business Central APIs

• Interested parties can subscribe to data changes

• Business Central sends out notifications when changes occur

• Both standard and custom APIs expose the /subscriptions endpoint

https://api.businesscentral.dynamics.com/v2.0/<tenant_id>/<sandboxname>
/api/waldo/killerApp/v1.0/subscriptions

Operations on the /subscriptions endpoint

• Retrieves list of existing
subscriptions

GET • Creates a new
subscription

• Renews an existing
subscription

• Deletes an existing
subscription

POST PATCH DELETE

https://api.businesscentral.dynamics.com/v2.0/<tenant_id>/<sandboxname>

Operations on the /subscriptions endpoint

• Retrieves list of existing
subscriptions

GET • Creates a new
subscription

• Renews an existing
subscription

• Deletes an existing
subscription

POST PATCH DELETE

Operations on the /subscriptions endpoint

• Retrieves list of existing
subscriptions

GET

• Creates a new
subscription

• Renews an existing
subscription

• Deletes an existing
subscription

POST PATCH DELETE

Operations on the /subscriptions endpoint

• Retrieves list of existing
subscriptions

GET

• Creates a new
subscription

• Renews an existing
subscription

• Deletes an existing
subscription

POST PATCH DELETE

Operations on the /subscriptions endpoint

• Retrieves list of existing
subscriptions

GET

• Creates a new
subscription

• Renews an existing
subscription

• Deletes an existing
subscription

POST PATCH DELETE

Parties involved in subscription

Business Central

Provides subscription endpoints.

End-user application

Application that requires notifications

Parties involved in subscription

Business Central

Provides subscription endpoints.

Notification dispatcher

A middleware component needed in case
the end-user application is a native
application or a single-page browser
application.

End-user application

Application that requires notifications

• Handshake occurs

Create a new subscription

• Send a POST request to the /subscribe endpoint

• clientState a random string known only to the subscribing party

• notificationUrl URL that Business Central calls to confirm the subscription

• resource API entity to subscribe to

• clientSecret a random string known only to the subscribing party

• notificationUrl URL that Business Central calls to confirm the subscription

• resource API entity to subscribe to

Create a new subscription

Calls the
notificationUrl

Passes
clientSecret and
validationToken

Sends a 200 OK
response

Echoes back the
validationToken

• Handshake occurs

notificationUrl

Receiving notifications

• Business Central automatically sends notifications to notificationUrl

• Changes are accumulated in 30-second chunks
• When the first change occurs, a timeout is created

• Any change happening within the next 30 seconds is noted

• After timeout elapses, all noted changes are sent as one message

Receiving notifications

• Notification payload

• Does not contain the actual changes that occurred
• Contains the list of endpoints to invoke and the change type that

occurred

Receiving notifications

Sends the notification
payload

Notifies the client
whichever way
(push, pull, etc.)

Click to add title

• _vjeko & _waldo

• bros

• Give us feedback in the App!

• TODO: make at least 2 jokes

Click to add title

• _vjeko & _waldo

• bros

• Give us feedback in the App!

• TODO: make at least 2 jokes

