
EASIER AND DEVOPS-FRIENDLY DYNAMICS NAV

ENVIRONMENTS USING DOCKER / WINDOWS CONTAINERS

FREDDY KRISTIANSEN

MICROSOFT MDCC

TOBIAS FENSTER

AXIANS INFOMA

JAKUB VAŇÁK

MARQUES OLIVIA

Freddy Kristiansen (@freddydk)

Technical Evangelist at Microsoft

Jakub Vanak (@vanakjakub)

Software Developer at Marques Olivia

Tobias Fenster (@TobiasFenster)

Chief Technical Officer at Axians Infoma

Microsoft MVP

Speakers

Introduction to Docker / Windows Containers

Architecture of NAV on Docker

Extend the standard NAV image

Build and reuse your own images

Resource governance

Running a Multi-CU Environment

Heplful PowerShell-Scripts

What is Microsoft shipping

Just a glimpse: advanced topics

Q&A

Agenda

Introduction to Docker / Windows Containers

On Windows Server – slight differences on Windows 10

Leading cross platform software container environment

What is a Docker container and a Docker image?

An image is a template with the minimum amount of os, libraries and
application binaries needed

A container is an instance of an image with an immutable base and it’s
changes on top

A container is NOT a VM, you especially don’t have a GUI and nothing you
can connect to with RDP!

What is a Docker host?

The (physical or virtual) machine where the containers are running

What is Docker?

Virtual Machines vs Containers

Virtual Machines vs Containers

VMs vs Containers – Image Storage

VMs vs Containers – Runtime

VMs vs Containers – Instance storage

Host / Container resource sharing

Standard resource setup: nothing configured

Container limited resource usage

Specific resource setup: limits are configured, e.g. -m 4g --cpus 2

Host / Container networking

Standard network setup: NAT

Host / Container networking

Standard network setup: NAT

Host / Container networking

Standard network setup with port mapping, e.g param -p 81:80

Host / Container networking

Transparent network setup: host and container “share” the network adapter

Host / Container file system

Standard fs setup: nothing configured

Host / Container file system

fs setup with a volume mapping, e.g. -v c:\data\container-temp:c:\temp

Run your first Container

Demo

Architecture of NAV on Docker

Base image

+ SQL Express + IIS

+ Installation scripts

+ parts of NAVDVD

Run Install Scripts

microsoft/windowsservercore

microsoft/dynamics-nav-generic

microsoft/dynamics-nav:ver[-rel]

NAV Container Image Architecture

Add Application /

Change settings

Override scripts

Partner image or partner instance

+ Country database microsoft/dynamics-nav:ver[-rel]-loc

Specific

Generic

Format

microsoft/dynamics-nav:tag

tag is

[<version>[-<release>][-<localization>]]

Examples:
2017
2016-cu5
2017-cu9-dk
2017-gb
devpreview-finus

NAV on Docker Image Tags

Start SQL Server (if necessary)

Start IIS (if necessary)

Create Certificate (if necessary)

Reconfigure NAV Service Tier

Start NAV Service Tier

Setup Web Client (if necessary)

Setup File Share (if necessary)

Setup Users (if necessary)

What happens when running a specific image

NAV devpreview

Docker Host

NAV 2016 CU5 NAV 2017 DK

SQL ServerIIS

Extend the standard Docker NAV images

Scenarios

Use your own license file

Use your own database

Use your own domain name and Ssl Certificate

Publish ports on the host for public access

Add your control add-ins

Use ClickOnce for the Windows Client

Setup additional users

Modify customsettings.config

Modify web.config

And many many more…

Extend NAV containers – Mechanism

c:\run\

SetupConfiguration.ps1

c:\run\navstart.ps1

SetupConfiguration.ps1

Extend NAV containers – Mechanism

c:\run\

SetupConfiguration.ps1

c:\run\navstart.ps1

SetupConfiguration.ps1

c:\run\my\

SetupConfiguration.ps1

Invoke default behavior BEFORE…
. (Join-Path $runPath
$MyInvocation.MyCommand.Name)

…
[Your custom code]
…

… OR invoke default behavior AFTER
. (Join-Path $runPath
$MyInvocation.MyCommand.Name)

SetupConfiguration.ps1

NAV service configurations

Use cases:
Set environment specific settings
E.g. Web Service language, disable Buffered Insert (dev only!!!) etc.

Extend NAV containers – Why, How & Where

AdditionalSetup.ps1

The standard file is empty

Purely for custom purposes

Database + Services are already on

Use cases:
Create NAV users (e.g. for a specific security group in your OU)
Import your custom PS Modules etc.

Extend NAV containers – Why, How & Where

And more and more extension points…

SetupDatabase.ps1

SetupAddIns.ps1

SetupLicense.ps1

SetupVariables.ps1

SetupWebClient.ps1

SetupWebConfiguration.ps1

SetupFileShare.ps1

… and more …

Extend NAV containers – Why, How & Where

Extending the Container

Demo

Build and reuse your own images

Problem: After extending the standard NAV Docker images, you need to
persist that and reuse your images

Partner perspective: Changes need to be reliably delivered to customers

Customer/hoster perspective: Your additional changes need to be persisted
and reused

All: Internal / dev / qa / test needs to be as close to production as possible

Build and reuse your own images

Solution: Create and reuse your own images

Extend images as we just showed you

Docker commit “saves changes” by creating a new image based on a
changed Container

Docker tags allow you to identify different “versions”

Docker registries allow you to store and distribute custom images

Step 1: Make the changes and commit your image with your own tag

Step 2: Pull and run the image

Better: create your own Dockerfile = “image recipe” and build images

Build and reuse your own images

Resource governance

Problem: If a NAV Server instance goes crazy, there is no way to stop it from
bringing the whole machine down

We don’t have tooling to limit resource consumption

Partner/development perspective: errors in development might block your
whole dev / QA team (if you work with a centralized dev environment)

Customer/hoster perspective: a problem in one NAV instance can block all
other instances

You can work with one instance per machine but this is a waste of
ressources

Resource Governance

Solution: Use resource limits for Containers

There are limits for RAM and CPU usage

You have to add them when starting the Container and won’t be able to
change them while the Container is running

If the main process in a Container hits an OutOfMemoryExceptions, it stops
and restarts the Container (if configured that way)

But users on that instance will lose their session

If you run in “Swarm mode” Docker will automatically make sure multiple
instances are always running

Resource Governance

Running a Multi-CU environment

Problem: You can’t run multiple NAV Cumulative Updates (CUs) for the
same release well on one machine

Different CUs use the same files, links etc, just with different versions, so there
is no good and clean way to install them in parallel on the same machine

Microsoft delivers monthly CUs, which makes this a permanent issue

Customer/hoster perspective: Fixes / enhancements include or depend on
new CUs

Update test / staging and later production environments with new CUs

Sometimes you might want to go back

Parallel business tests might collide with the technical CU tests

Running a Multi-CU Environment

Partner perspective: Customers running on different CUs need support on
different CUs

Problems need to be reproduced on the same CU / custom dll version as
the customer has

Fixes need to be delivered using the same CU as the customer has

Fixes by Microsoft need to be tested (are bugs fixed and no new bugs or
different behaviour introduced)

Sometimes compatibility between CUs breaks

Running a Multi-CU Environment

Solution: Multiple Containers with different CUs can safely run in parallel on
the same machine

A Container instance has it’s own separate file system

We don’t get conflicts for NAV Server and Web Clients

With ClickOnce we can even deploy separate Windows Clients and Dev
Environments

The Container can optionally include it’s own database or you can
connect it to the right one

Update is only an easy docker pull of the new image

Going back means just throwing away the new Container and creating or
re-starting the old one

Running a Multi-CU Environment

Running a Multi-CU environment

Demo

Helpful PowerShell scripts

Open source project

http://www.github.com/microsoft/navcontainerhelper

Examples:
New-navcontainer
Enter-navcontainer
Import-DeltasToNavContainer
Convert-ModifiedObjectsToAl
Publish-NavContainerApp
Remove-NavContainer
Replace-NavServerContainer

And many many more…

navcontainerhelper

http://www.github.com/microsoft/navcontainerhelper

NavContainerHelper

Demo

What is Microsoft shipping?

Now

• NAV 2016 and NAV 2017 on-prem

• Dev preview

Soon

• NAV 2018 on-prem

Supported for test and development

All on docker hub

Cumulative Updates

Now

• NAV Developer Preview

• NAV Workshop VMs

Soon:

• Azure Demo Environments

• Financials Sandbox Environments

• NAV Developer Preview

All combined into one Azure template

using docker – http://aka.ms/getnav

Azure Images/Templates

From Autumn 2017:

• Stable: Releases, CUs, Current SaaS builds

• Slow ring: SaaS preview (Insider)

• Fast ring: Daily builds (Insider)

Going forward

Stable

Slow
Ring

Fast
Ring

Communication on the team blog

Collaboration on github

http://www.github.com/microsoft/nav-docker

Documentation on MSDN

HOLs also on github

docker

http://www.github.com/microsoft/nav-docker

Questions?

You also might want to check

https://blogs.msdn.microsoft.com/freddyk/ (Freddy’s blog)

https://github.com/Koubek/nav-docker-examples (Jakub’s Github repo)

https://navblog.axians-infoma.de (Tobias’ blog)

https://blogs.msdn.microsoft.com/freddyk/
https://github.com/Koubek/nav-docker-examples
https://navblog.axians-infoma.de/

Just a glimpse: advanced topics

Docker compose allows you to configure and start multiple connected /
dependend containers at once (on the same machine)

Docker swarm allows you to scale your compose “groups” as services over
multiple hosts and have docker maintain multiple instances of the same
container  scaling and failure resistance

Other orchestrators include Kubernetes, Mesos, and DC/OS (Marathon)

Azure Container Instances allow you to on-demand deploy containers
without maintaining the Docker infrastructure

Azure Container Services allow orchestration and scaling (currently only
Kubernetes for Windows containers)

Advanced topics (only a select few)

A GUI for Docker: Portainer

Demo

