
BEST PRACTICES TO GET AUTOMATED TESTS RUNNING ON

YOUR SOLUTION

LUC VAN VUGT

THE LEARNING NETWORK

JAMES CROWTER

TECHNOLOGY MANAGEMENT

And you’re all part of it …

History is made @NAVTechDays

History is made @NAVTechDays

The talest
presentation duo ever

at NAV TechDays
!!!!!!!!!!!

History is made @NAVTechDays

James Crowter

&

Luc van Vugt

History is made @NAVTechDays

You can take
pictures now

History is made @NAVTechDays

Do you know the Testability
Framework that is build in NAV?

i.e. technical features like test
codeunits, ASSERTERROR, etc.

Introduction - And You

Did you already build and execute
test yourself?

Introduction - And You

Agenda

Why automated testing

How to write automated tests

What about MS automated tests

Take-aways / Do’s & Don’ts

Why automated testing

a business justification

Everyone expects
what you do, to be
perfect first time

every time

Even when they
don’t know what
they really want

They expect a
lifetime warranty,

even for what they
don’t currently use

Oh and the
timescales better

be yesterday,
instantly is to long

Then your
expected to

remember, every
last detail, forever

And that even if
you did write the

original code!

The NAV developers role is
hard !

Many more deployment cycles than
historically

• Monthly CU’s need implementing more regularly
as ‘fixes’

• No choice on Tenerife Saas platform with limited
time to prepare

Annual & now Biannual Full Version
updates force refactoring

More dependencies with Office and API
integration

More complexity with more ISV’s via
Extensions and AppSource

And our world is
changing

Timescale
reasons

• Signoff of
requirements or
design

• Development
overran (its not a
precise science)

• Preparation of
test data

• Rework was
required

• The client doesn’t
have the required
people available

• Its too close to the
mandatory go-live
to have time

Budget
Reasons

• The test budget
was used in the
analysis or
development
phase

• Sales didn’t factor
in the need to test
at all

Philosophy
Reasons

• The client doesn’t
see the need to
spend the time

• Develop fast & fix
it in next release,
(Microsoft style?)

Its always
testing
that gets
squeezed

•Your clients and colleagues expect instant
perfection
•Blaming the specification is just an excuse
•You have to know the full implications of
every change you make
•Any errors they find in testing are all your
fault

•But How?
•When you have little extra time
•And clients demand ever more productivity

Its your reputation that suffers

Automated Testing is your
answer

Build it once –
use forever

Its not hard –
its just a small

new skill

Go on, on top
of/compared

to

VS Code,
Docker,

Extensions V2

it’s easy!

More reliable
design with up
front test
definition

01
Defined signed
off use cases

02
More
permutations
are quickly
possible

03
Run whenever it
helps without
waiting for data
prep

04
Its definitive
rather than
subjective

05
Unintended use
is highlighted
even years later

06
Your test library
to go with your
code library

07

Lose less sleep and reduce your stress

Once they’ve
experienced it

they won’t want
anything else

Who enjoys
testing, not you

but not them
either

Management like
the reduced risk

and higher
satisfaction

Once learning
curves over, its can

often be quicker
than manual

Its lasts forever,
every object set

release can have a
full test

It enables complex
repeatable code,

Spend your future
adding new

features instead of
chasing bugs

Selling it to your clients & colleagues

So enough justification – let ’s see how it works!

How to write automated tests

learn how to walk

Where to start

Testability Framework

Test Design

How to write automated tests

Each time code is changed

Automated Testing - When

Bug fixing

Changing business critical feature

Developing (complex) feature

Code refactoring

Automated Testing – Where to Start

Repeatable

&

Fast

Automated Testing

Testability Framework

History

NAV Test Framework (NTF)
•UI based automated tests
•C#
•Time consuming

Multiple
•Builds per day
•Versions
•Localization

Introduction
•In platform
•NAV 2009 SP1

•Headless (at first)
•Approx. 10 times faster

Purpose

Testing app code
•No load test
•No config test
•No license test

Running isolated
•Only result matters, i.e. success or
failure

Testability Framework …

… for Dummies

Testability Framework …

Test Runner

TestIsolation property

Disabled (default value)
•Do not roll back any changes to the
database
Tests are not isolated from each other

Codeunit
•Roll back all changes to the database
after each test codeunit executes

Function
•Roll back all changes to the database
after each test function executes

Test Function

TransactionModel property

AutoCommit (default value)
•Commit is issued at the end of test function
Standard Error handling

AutoRollback
• Transaction is rolled back after test execution
Calls to COMMIT will fail with an error

None
• Test function does not have open write
transaction
At end of each trigger changes are
committed to database
If error occurred changes are rolled back at
end of transaction.
Used primarily with TestPages

Test Isolation

… for Dummies

Testability Framework …

Test Design

Architecture

Functional test vs. unit test

NAV vs. structured programming

Headless vs. UI

Positive & Positive-Negative

Data agnostic

Terminology & Patterns
•xUnit Test Patterns

Patterns

Test Case Patterns
•4 Phase testing
•ATDD
•Acceptance Test-Drive Development

•preferred pattern

Test Data Patterns
•Built Fixture
•Lazy Setup
•Fresh Setup

Test Design

Setup

Exercise

Verify

Teardown

Test Case Patterns - 4 Phase testing

Given
•Setup

When
•Trigger

Then
•Verification

Test Case Patterns - ATDD

aka Fixture or Test Fixture

Setup at different stages in tests

•CRONUS
•Prebuilt Fixture

•Data shared by multiple tests
•Lazy Setup or Shared Fixture

•master, supplemental & setup data

•Test specific data
•Fresh Setup or Fresh Fixture

•document & custom master data

Test Data

But even more important is a …

Test Plan

Test Design

Create before app coding

Review to get agreement

Based on requirements/use cases
•Use Cases = Test Plan
•Minimalism

Test Plan

Create before app coding

Review to get agreement

Based on requirements/use cases
•Use Cases = Test Plan
•Minimalism

Test Plan

Some Test Case Examples

based on a Test Plan for
Seminar Registration application

Some Test Case Examples

based on a Test Plan for
Seminar Registration application

When deleting a seminar with comments
lines these lines should also be deleted

[SCENARIO 0005]

When deleting a seminar registration with
status <> Canceled an error should be

thrown

[SCENARIO 0030] - ASSERTERROR

Change Seminar Price on header having
registered lines

[SCENARIO 0028] - ConfirmHandler

What about MS automated tests

walk with seven-mile boots

It’s a humongous collection of tests

•NAV 2016 16.000+

•NAV 2017 19.000+

MS Test Suite

Image you writing this amount of tests

•Assume 10 minutes per test, writing it

•6 per hour

•Approx. 3000 hours, being 2+ years of work

MS Test Suite

Image you could get this working within a couple of weeks

We did imagine

And we did get it working in approx. 6 weeks

… well, 90 % …

… on NAV 2016 ..

MS Test Suite

Context

•The Learning Network
•No. 1 schoolbooks reseller in the
Netherlands

•NAV 2016
•RTM (techically CU11)

•Customization
•Approx. 400 standard
•Approx. 630 own

What did we do?

Ran tool and saw 23 % succeed
•3.690 of 16.128 on NAV NL

Analysis showed mainly missing setup
data due to our customizations

Fixing missing data increased successful
tests to 72 % within a couple of days
•11.464 of 16.128 on NAV NL

Additional effort raised it to 79 %
•12.647 of 16.052 on NAV NL
•Another couple of days

Now at 90% and using successful tests in
nightly run

* 16.052: we removed a number of failing tests

What did we do?

1. Run Test Tool

2. Collect and analyze results using
Excel

3. Find most occurring error

4. Fix minimalistic
i.e. only code what is needed to fix,
nothing more

Eventually allowing us to focus on
relevant areas

What did we do? – Action Plan

Statistical

Approach

1. Connect to clean CRONUS
database with DE

2. Import Test Toolkit
•CALTestCodeunits.fob

•CALTestLibraries.fob

3. Import your code

4. Recompile all
• If not OK, fix the issues

5. Open Windows Client

6. Open Test Tool

7. Add test codeunits using Get Test
Codeunits action

8. GO … click Run action

What did we do? – Setup

https://dynamicsuser.net/nav/b/vanvugt/posts/how-to-run-standard-tests-against-your-code

Test Data

Test Data

Well … 90 % …

Some
test fixture fixes

Failures

Unknown Label: ''

The Unit of Measure does not exist

Test Fixture Fixes – Example 1

OWSD-1 -> 3

Failures

Unknown Label: ''

The Unit of Measure does not exist

Test Fixture Fixes – Example 1

OWSD-1 -> 3

Lazy?

We had to insert call to Initialize

in approx. 480 codeunits

Failure

You cannot create this type of
document when Vendor
GL00000013 is blocked with type All.

Test Fixture Fixes – Example 2

OWSD-6 -> 7

RTM – 23 %

Succesful0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1
3

4
0

0
0

1
3

4
0

0
9

1
3

4
0

1
6

1
3

4
0

2
2

1
3

4
0

2
8

1
3

4
0

3
3

1
3

4
0

3
8

1
3

4
0

4
8

1
3

4
0

7
3

1
3

4
0

7
8

1
3

4
0

8
3

1
3

4
0

9
0

1
3

4
1

0
1

1
3

4
1

0
8

1
3

4
1

2
7

1
3

4
1

3
5

1
3

4
1

4
0

1
3

4
1

4
6

1
3

4
1

6
2

1
3

4
2

2
9

1
3

4
2

5
2

1
3

4
2

6
3

1
3

4
3

2
5

1
3

4
3

3
0

1
3

4
3

3
5

1
3

4
3

7
6

1
3

4
3

8
1

1
3

4
3

8
6

1
3

4
3

9
1

1
3

4
4

0
2

1
3

4
4

1
1

1
3

4
4

2
0

1
3

4
4

7
5

1
3

4
4

8
0

1
3

4
5

5
1

1
3

4
5

5
7

1
3

4
5

9
0

1
3

4
6

6
2

1
3

4
7

6
0

1
3

4
8

0
0

1
3

4
8

0
7

1
3

4
8

1
4

1
3

4
8

2
1

1
3

4
9

0
2

1
3

4
9

0
7

1
3

4
9

1
3

1
3

4
9

1
8

1
3

4
9

7
6

1
3

4
9

8
4

1
3

4
9

9
2

1
3

4
9

9
7

1
3

6
1

0
4

1
3

6
1

1
0

1
3

6
1

1
5

1
3

6
1

2
0

1
3

6
1

2
5

1
3

6
1

3
0

1
3

6
1

3
5

1
3

6
1

4
2

1
3

6
1

4
8

1
3

6
2

0
4

1
3

6
2

0
9

1
3

6
3

0
1

1
3

6
3

0
7

1
3

6
3

1
2

1
3

6
3

5
4

1
3

6
3

5
9

1
3

6
4

0
2

1
3

6
5

0
2

1
3

6
6

0
3

1
3

6
6

1
0

1
3

6
9

0
3

1
3

7
0

0
1

1
3

7
0

0
6

1
3

7
0

1
1

1
3

7
0

1
7

1
3

7
0

2
4

1
3

7
0

3
3

1
3

7
0

3
8

1
3

7
0

4
3

1
3

7
0

4
8

1
3

7
0

5
3

1
3

7
0

5
9

1
3

7
0

6
4

1
3

7
0

6
9

1
3

7
0

7
4

1
3

7
0

7
9

1
3

7
0

9
1

1
3

7
0

9
6

1
3

7
1

0
2

1
3

7
1

0
9

1
3

7
1

5
2

1
3

7
1

5
8

1
3

7
2

0
1

1
3

7
2

0
7

1
3

7
2

1
2

1
3

7
2

2
5

1
3

7
2

6
2

1
3

7
2

8
5

1
3

7
2

9
3

1
3

7
3

0
1

1
3

7
3

0
6

1
3

7
3

1
1

1
3

7
3

5
3

1
3

7
4

0
1

1
3

7
4

0
6

1
3

7
4

1
1

1
3

7
5

0
4

1
3

7
6

0
6

1
3

7
6

1
4

1
3

7
8

0
1

1
3

7
9

0
6

1
3

7
9

1
1

1
3

7
9

2
6

1
3

8
0

0
3

1
3

8
0

1
5

1
3

8
0

2
6

1
3

8
0

3
2

1
4

4
0

0
1

1
4

4
0

1
0

1
4

4
0

1
5

1
4

4
0

2
6

1
4

4
0

3
4

1
4

4
0

4
4

1
4

4
0

5
1

1
4

4
1

0
1

Succesful

Failure

Succesful0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1
3

4
0

0
0

1
3

4
0

0
9

1
3

4
0

1
6

1
3

4
0

2
2

1
3

4
0

2
8

1
3

4
0

3
3

1
3

4
0

3
8

1
3

4
0

4
8

1
3

4
0

7
3

1
3

4
0

7
8

1
3

4
0

8
3

1
3

4
0

9
0

1
3

4
1

0
1

1
3

4
1

0
8

1
3

4
1

2
7

1
3

4
1

3
5

1
3

4
1

4
0

1
3

4
1

4
6

1
3

4
1

6
2

1
3

4
2

2
9

1
3

4
2

5
2

1
3

4
2

6
3

1
3

4
3

2
5

1
3

4
3

3
0

1
3

4
3

3
5

1
3

4
3

7
6

1
3

4
3

8
1

1
3

4
3

8
6

1
3

4
3

9
1

1
3

4
4

0
2

1
3

4
4

1
1

1
3

4
4

2
0

1
3

4
4

7
5

1
3

4
4

8
0

1
3

4
5

5
1

1
3

4
5

5
7

1
3

4
5

9
0

1
3

4
6

6
2

1
3

4
7

6
0

1
3

4
8

0
0

1
3

4
8

0
7

1
3

4
8

1
4

1
3

4
8

2
1

1
3

4
9

0
2

1
3

4
9

0
7

1
3

4
9

1
3

1
3

4
9

1
8

1
3

4
9

7
6

1
3

4
9

8
4

1
3

4
9

9
2

1
3

4
9

9
7

1
3

6
1

0
4

1
3

6
1

1
0

1
3

6
1

1
5

1
3

6
1

2
0

1
3

6
1

2
5

1
3

6
1

3
0

1
3

6
1

3
5

1
3

6
1

4
2

1
3

6
1

4
8

1
3

6
2

0
4

1
3

6
2

0
9

1
3

6
3

0
1

1
3

6
3

0
7

1
3

6
3

1
2

1
3

6
3

5
4

1
3

6
3

5
9

1
3

6
4

0
2

1
3

6
5

0
2

1
3

6
6

0
3

1
3

6
6

1
0

1
3

6
9

0
3

1
3

7
0

0
1

1
3

7
0

0
6

1
3

7
0

1
1

1
3

7
0

1
7

1
3

7
0

2
4

1
3

7
0

3
3

1
3

7
0

3
8

1
3

7
0

4
3

1
3

7
0

4
8

1
3

7
0

5
3

1
3

7
0

5
9

1
3

7
0

6
4

1
3

7
0

7
0

1
3

7
0

7
5

1
3

7
0

8
7

1
3

7
0

9
2

1
3

7
0

9
7

1
3

7
1

0
4

1
3

7
1

1
0

1
3

7
1

5
3

1
3

7
1

5
9

1
3

7
2

0
2

1
3

7
2

0
8

1
3

7
2

2
0

1
3

7
2

2
9

1
3

7
2

7
0

1
3

7
2

8
7

1
3

7
2

9
4

1
3

7
3

0
2

1
3

7
3

0
7

1
3

7
3

1
2

1
3

7
3

9
0

1
3

7
4

0
2

1
3

7
4

0
7

1
3

7
4

1
2

1
3

7
5

1
0

1
3

7
6

0
8

1
3

7
6

1
6

1
3

7
8

1
1

1
3

7
9

0
7

1
3

7
9

1
2

1
3

7
9

2
7

1
3

8
0

0
4

1
3

8
0

1
6

1
3

8
0

2
7

1
3

8
0

3
3

1
4

4
0

0
3

1
4

4
0

1
1

1
4

4
0

1
8

1
4

4
0

2
9

1
4

4
0

3
6

1
4

4
0

4
6

1
4

4
0

5
6

1
4

6
9

1
1

Succesful

Failure

Now – 90 %

What did we gain?

A huge test collateral

• covering a major and essential part
of our application
• i.e. standard functionality we use

and have customized

• being run every night
• while we sleep peacefully
• drop in success rate showing us

something wrong with latest code
changes

• great help for refactoring and
coming upgrade to NAV 2018

Take-aways / Do’s & Don’ts

Test Creation

Testing is “all” about data
•most time consuming part

Plan, for existing code, what and when
to write tests for

Using MS Tests

Testing is “all” about data
•most errors fixed in test fixture

Solving "first" failures
•will probably reveal next ones

The more fixed, the longer the test run
will take

Testing will be done while you’re
sleeping

Test collateral will grow with each
version upgrade

Take-away

Dos

Design tests before app code is ready

Code minimalistic & generic

Pay attention to test fixture

Always verify result

Version management on test code

Use standard libraries

Don’ts

Do not wait till app code ready to
design your tests

Run in production

Dos & Don’ts – Test Creation

Dos

Find most occurring errors

Fix minimalistic & generic

Fix in test fixture (… unless …)

Version management on test code

Use standard libraries

Don’ts

Run in production

Fix errors in app code (… unless …)

Fix test fixture manually

Dos & Don’ts – Using MS Tests

NAV
•https://msdn.microsoft.com/en-
us/dynamics-nav/testing-the-
application

xUnite Test Patterns
•http://xunitpatterns.com

Four-Phase Test
•https://robots.thoughtbot.com/four-
phase-test

Acceptance Test–Driven
Development
•https://en.wikipedia.org/wiki/Accept
ance_test%E2%80%93driven_develop
ment

Blogs
•http://www.fluxxus.nl
•http://thenavblog.com/

References

https://msdn.microsoft.com/en-us/dynamics-nav/testing-the-application
http://xunitpatterns.com/
https://robots.thoughtbot.com/four-phase-test
https://en.wikipedia.org/wiki/Acceptance_test%E2%80%93driven_development
http://www.fluxxus.nl/
http://thenavblog.com/

Dynamics NAV Test Tool Excel

Dynamics NAV Debugger SQL Server Management Studio

Tools Used

THANX

LUC VAN VUGT

THE LEARNING NETWORK

JAMES CROWTER

TECHNOLOGY MANAGEMENT

