
• Freelance BC Developer

• github.com/StefanMaron/MSDyn365BC.Code.History

• github.com/StefanMaron/BusinessCentral.LinterCop

• Reach out to me on Twitter/LinkedIn/GitHub via: StefanMaron

Stefan Maron

https://github.com/StefanMaron/MSDyn365BC.Code.History
https://github.com/StefanMaron/BusinessCentral.LinterCop

• Business
Managing Partner at

• Community

Tobias Fenster

• Reach out via

tobiasfenster on Twitter and LinkedIn

tobias.fenster@hachyderm.io on
Mastodon

tfenster on Github

tobiasfenster.io: Blog and Podcast
« Window on Technology »

A lot of our content is either very early days and experimental or relying on
implementation details which might change without notice. It works today, but it
might not work tomorrow and you need to make a conscious decision for which
scenarios to use it.

But it should be fun
and give you a glimpse into the future

Disclaimer

Wasm

• What is Wasm, where does it come
from?

• Why does it matter in general and
especially for BC developers?

• Demos!

Agenda

Linux, devcontainers, Codespaces

• AL on Linux, why and how?
• Demo!
• Devcontainers and Codespaces, why

and how?
• Even more demos!

Bonus topic if we have time in the end:
AL Language Linux Patcher behind the scenes

• Safe, portable, low-level code format
• Near-native performance in a sandboxed

environment
• Hardware-, platform- and language-independent

• Small, efficiently executable files
• Modular, binary format
• Streamable and parallelizable

• Open standard:
https://webassembly.github.io/spec/core/

• First implementation in browsers
• Safe, portable, small, efficient, streamable, …

What is WebAssembly (Wasm)?

• Examples:
• BananaBread, built in 2012

as one of the first starting
points:
kripken.github.io/Banana
Bread

• Photoshop, Figma,
AutoCAD on the web

• Google Earth

https://kripken.github.io/BananaBread/cube2/bb.html
https://kripken.github.io/BananaBread/cube2/bb.html

• Systems programming languages (e.g. C/C++, Rust, Go)
• Relatively easy as compilation to various targets were already in place

• Bytecode languages (e.g. Java, Kotlin, C#)
• More difficult as they used to compile only into their own intermediate language

• Scripting languages (e.g. Python, JavaScript, Ruby)
• Only interpreter needs to be ported

• Can run e.g. in all major browser

• Otherwise needs execution environment
• By default no access to anything local (network, files, …)
• WebAssembly System Interface (WASI) makes it possbile

How to create and run Wasm “things”?

• Hello world in Wasm with WASI using Rust
• Security sandbox for file access
• Portability

Codespace

Inspired by https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-
tutorial.md

Demo

https://github.com/codespaces/tfenster-legendary-space-sniffle-g4rjp76qgjwc9v66

• Already widely used mechanism to make “anything” available in a browser

• Great fit for IoT / edge devices → small, secure, portable, efficient

• Allows “use right tool for the job” approach → one Wasm module can interact with
another Wasm module even if created in totally different languages

• Cloud usage for serverless functions has picked up recently

Why does it matter in general?

• Client side
• Use best (or only) library / tool / product for

a task

Why does it matter for BC?

• Server side
• Lightning fast, secure, scalable way to

do things BC can’t

https://apps.powerapps.com/play/e/4d32fd9b-41c9-416e-b841-1632d2fe1c54/a/0716f93a-fa83-48cf-aeb2-4ee35711f307?tenantId=92f4dd01-f0ea-4b5f-97f2-505c2945189c&source=AppSharedV3&hint=178b892d-c0b1-4eb5-aa93-8bc69cfcae6d
https://apps.powerapps.com/play/e/4d32fd9b-41c9-416e-b841-1632d2fe1c54/a/0716f93a-fa83-48cf-aeb2-4ee35711f307?tenantId=92f4dd01-f0ea-4b5f-97f2-505c2945189c&source=AppSharedV3&hint=178b892d-c0b1-4eb5-aa93-8bc69cfcae6d

• Live image manipulation for customer pictures in BC
• Image manipulation using Go, delivered as Wasm module to the browser
• BC integration with a control addin
• Wasm module called via JavaScript

Codespace

Inspired by https://github.com/agnivade/shimmer

Demo client-side

https://github.com/codespaces/tfenster-ubiquitous-space-giggle-pjw46p9rxrx297g6

• Fast check of a backend service on open page
• Implemented in Go with Fermyon Spin: “Spin is a framework

for building and running event-driven microservice
applications with WebAssembly (Wasm) components”

• Walkthrough on how to create a Spin module
• See performance
• Use pre-built storage example with BC integration via HttpClient

Codespace

Inspired by https://developer.fermyon.com/spin/kv-store-tutorial

Demo server-side

https://github.com/codespaces/tfenster-verbose-eureka-695qp4w9vv7f4q64

Wasm

• What is Wasm, where does it come
from?

• Why does it matter in general and
especially for BC developers?

• Demos!

Agenda

Linux, devcontainers, Codespaces

• AL on Linux, why and how?
• Demo!
• Devcontainers and Codespaces, why

and how?
• Even more demos!

Why Linux?
• Full control, transparency,

configurability
• Huge developer-centric open-source

ecosystem
• Less demanding on your hardware,

more performance
• No license cost typically
• It’s fun ☺

Why AL on Linux?
• If you are used to the benefits of Linux

especially for development, why not AL?
• Maybe only AL is blocking you…

AL on Linux

Why isn’t everyone using it?

• Sometimes struggles with hardware
components

• Very few pre-installed options

• Not everything you might need for your
job is (directly) available – Office, report
designer, Windows container, C/SIDE, BC
Server (see other session?), AL
extension…

• Less gaming

Why doesn’t it work out of the box?

• Almost there thanks to migration to .NET Core

• Precompiled Windows executable directly called, instead we need to call the
generic dll via the dotnet executable

• Small cosmetics to make it work (JSON data types)

How can we fix it?

AL on Linux

https://apps.powerapps.com/play/e/4d32fd9b-41c9-416e-b841-1632d2fe1c54/a/0716f93a-fa83-48cf-aeb2-4ee35711f307?tenantId=92f4dd01-f0ea-4b5f-97f2-505c2945189c&source=AppSharedV3&hint=178b892d-c0b1-4eb5-aa93-8bc69cfcae6d

Devcontainers and Codespaces, why?

SERVERLESS

PRODUCTION

MANUAL

DEV TOOLS

Containerized development ftw!

Container Container

• Cleanly separated development systems with better resource utilization than e.g.
with VMs
• No version conflicts and side effects
• No "littering" → simply discard and rebuild

• All dependencies, tools, etc. including versions described in configuration files in
the repo
• IaC approach for local development environments
• No configuration drift between different developers
• Clear and simple rollout of changes in the development stack

• Extremely fast setup of development environments
• Thus also extremely fast onboarding of new development
• Easy and clean switching between projects

Containerized dev – Why?

• Visual Studio Code development container (devcontainer)
• Containerized, configurable, local development environment
• Connection via VS Code
• Full functionality incl. extensions, access to local resources and offline support

→ Very good development environment for all scenarios (except Windows-based
development...)

• Ideal starting point for GitHub Codespaces (same technology)

Containerized dev – How?

Source: https://code.visualstudio.com/docs/devcontainers/containers

VS Code devcontainers

https://apps.powerapps.com/play/e/4d32fd9b-41c9-416e-b841-1632d2fe1c54/a/0716f93a-fa83-48cf-aeb2-4ee35711f307?tenantId=92f4dd01-f0ea-4b5f-97f2-505c2945189c&source=AppSharedV3&hint=178b892d-c0b1-4eb5-aa93-8bc69cfcae6d

VS Code devcontainers

• No support for Windows containers

• But for Windows hosts! → Windows Subsystem for Linux (easiest with Docker
Desktop)

https://apps.powerapps.com/play/e/4d32fd9b-41c9-416e-b841-1632d2fe1c54/a/0716f93a-fa83-48cf-aeb2-4ee35711f307?tenantId=92f4dd01-f0ea-4b5f-97f2-505c2945189c&source=AppSharedV3&hint=178b892d-c0b1-4eb5-aa93-8bc69cfcae6d

GitHub Codespaces

Source: https://docs.github.com/en/codespaces/overview

https://apps.powerapps.com/play/e/4d32fd9b-41c9-416e-b841-1632d2fe1c54/a/0716f93a-fa83-48cf-aeb2-4ee35711f307?tenantId=92f4dd01-f0ea-4b5f-97f2-505c2945189c&source=AppSharedV3&hint=178b892d-c0b1-4eb5-aa93-8bc69cfcae6d

GitHub Codespaces

Source: https://docs.github.com/en/codespaces/overview

• Use a devcontainer “feature” to clone the repo into the Codespace:

• Check https://github.com/tfenster/azdevops-codespaces and
https://tobiasfenster.io/al-development-in-a-github-codespace-with-sources-in-
an-azure-devops-repo for the details

DevOps Repo

https://github.com/tfenster/azdevops-codespaces
https://tobiasfenster.io/al-development-in-a-github-codespace-with-sources-in-an-azure-devops-repo
https://tobiasfenster.io/al-development-in-a-github-codespace-with-sources-in-an-azure-devops-repo

Any Questions?

Bonus topic

	Intro
	Slide 1: Stefan Maron
	Slide 2: Tobias Fenster
	Slide 3: Disclaimer
	Slide 4: Agenda

	Wasm
	Slide 5: What is WebAssembly (Wasm)?
	Slide 6: How to create and run Wasm “things”?
	Slide 7: Demo
	Slide 8: Why does it matter in general?
	Slide 9: Why does it matter for BC?
	Slide 10: Demo client-side
	Slide 11: Demo server-side
	Slide 12: Agenda

	Linux etc
	Slide 13: AL on Linux
	Slide 14: AL on Linux
	Slide 15: Devcontainers and Codespaces, why?
	Slide 16: Containerized development ftw!
	Slide 17: Containerized dev – Why?
	Slide 18: Containerized dev – How?
	Slide 19: VS Code devcontainers
	Slide 20: VS Code devcontainers
	Slide 21: GitHub Codespaces
	Slide 22: GitHub Codespaces
	Slide 23: DevOps Repo

	Outro
	Slide 24
	Slide 25: Bonus topic
	Slide 26

