
Application Designer’s Guide

APPLICATION DESIGNER’S GUIDE

DISCLAIMER

This material is for informational purposes only. Microsoft Business Solutions ApS
disclaims all warranties and conditions with regard to use of the material for other
purposes. Microsoft Business Solutions ApS shall not, at any time, be liable for any
special, direct, indirect or consequential damages, whether in an action of contract,
negligence or other action arising out of or in connection with the use or performance
of the material. Nothing herein should be construed as constituting any kind of
warranty.

COPYRIGHT NOTICE

Copyright © 2003 Microsoft Business Solutions ApS, Denmark.

TRADEMARK NOTICE

Microsoft, Great Plains, bCentral and Microsoft Windows 2000 are either registered
trademarks or trademarks of Microsoft Corporation or Great Plains Software, Inc. in
the United States and/or other countries. Great Plains Software, Inc. and Microsoft
Business Solutions ApS are wholly owned subsidiaries of Microsoft Corporation.
Navision is a registered trademark of Microsoft Business Solutions ApS in the United
States and/or other countries. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners. No part of this
document may be reproduced or transmitted in any form or by any means, whole or in
part without the prior written permission of Microsoft Business Solutions ApS.
Information in this document is subject to change without notice. Any rights not
expressly granted herein are reserved.

Published by Microsoft Business Solutions ApS, Denmark.

Published in Denmark 2003.

DocID: NA-370-DVG-001-v01.00-W1W1

PREFACE

This manual provides information about the C/SIDE® development system. It is part of
the documentation and Help materials for Microsoft® Business Solutions–Navision®.

When you create a C/SIDE application, you combine five types of application objects
into a whole that solves a business problem. Each of the five types of application
objects has its own part in this manual. The order in which the parts appear
corresponds to the order in which you are most likely to need them when you design a
new application.

The manual is divided into seven parts. Each part contains one or more chapters. The
first chapter in a part always deals with the fundamentals, for example, "Form
Fundamentals," and the succeeding chapters present more advanced information.

In addition to this manual, C/SIDE has an online Reference Guide. Here you can find
reference information about programming issues: functions, triggers, properties, and
so on.

You may also find it useful to refer to the following manuals and online Help:

Installation & System Management: Microsoft Business Solutions–Navision
Database Server
This manual explains the more technical aspects of Navision. You will find information
about user administration, backup procedures and other items that are also relevant
for application developers.

Installation & System Management: Microsoft Business Solutions–Navision
SQL Server Option

This manual explains how to install and maintain the SQL Server Option for Navision.
This program is designed to run on SQL Server 2000.

Installation & System Management: Microsoft Business Solutions–Navision
Application Server
This manual explains how to install and maintain Navision Application Server.

Development Guide for Communication Components

This online Help describes the Navision Communication Component, Navision Named
Pipe Bus Adapter and Navision MS-Message Queue Bus Adapter. These components
allow applications to communicate easily with each other.

TABLE OF CONTENTS
PART 1 FUNDAMENTALS . 1

Chapter 1 C/SIDE Fundamentals . 1

The C/SIDE User Interface . 2

What Is a C/SIDE Application? . 5

The Physical and the Logical Database . 8

Chapter 2 Designing a C/SIDE Application . 11

Introduction to C/SIDE Application Design . 12

PART 2 TABLES . 17

Chapter 3 Table Fundamentals . 19

What Is a Table? . 20

What Are Keys?. 26

Identifiers, Data Types and Data Formats in the SQL Server Option for
Navision. 32

Saving, Viewing, and Sorting Data . 38

Dividing the Database into Companies . 41

Special Table Fields . 42

Chapter 4 Customizing and Maintaining Tables. 49

Viewing and Modifying Properties . 50

Using Table and Field Triggers . 58

Setting Relationships Between Tables . 60

Changing Tables That Contain Data . 65

Linked Objects. 66

Chapter 5 Special C/SIDE Tables . 71

What Is a Temporary Table? . 72

What Is a System Table? . 74

What Is a Virtual Table? . 79

Overview of C/SIDE Virtual Tables . 80

PART 3 FORMS . 97

Chapter 6 Form Fundamentals. 99

What Are Forms? . 100

Creating Forms . 102

Selecting, Moving and Adjusting Controls . 108

Saving, Compiling and Running Forms . 113

Chapter 7 Designing Forms . 115

Form and Control Properties . 116

Types of Controls . 119

Table of Contents
Adding Controls . 121

Tools for Customizing Controls . 124

Setting Control Properties . 125

How to Use Controls in Applications . 129

Chapter 8 Extending the Functionality of Your Forms 139

Main Forms and Subforms . 140

Looking Up Values and Validating Entries . 143

Drilling Down to the Underlying Transactions . 147

Launching Another Form. 149

Designing Menu Buttons . 150

Form and Control Triggers . 154

PART 4 REPORTS . 157

Chapter 9 Report Fundamentals . 159

What Are Reports? . 160

What Happens When a Report Runs? . 164

The Report Designer . 167

Saving, Compiling and Running Reports. 170

Chapter 10 Designing Reports . 173

Report Properties . 174

Designing a Simple Report . 178

Designing a More Advanced Report . 186

Chapter 11 Extending the Functionality of Your Reports 191

Grouping and Totaling . 192

Triggers in Reports . 198

Advanced Sample Reports . 200

PART 5 CODEUNITS. 215

Chapter 12 Codeunit Fundamentals . 217

What Is a C/SIDE Codeunit? . 218

Creating Codeunits . 220

Using Codeunits . 229

Chapter 13 Introducing the C/AL Language 233

What Can You Do with C/AL? . 234

What Are Statements, Expressions, and Operators? 235

Introducing the Elements of C/AL Expressions . 243

The C/AL Control Language . 252

Chapter 14 Using C/AL . 261

Overview . 262

System-Defined Variables . 264

Handling Runtime Errors . 265

Table of Contents
The Essential C/AL Functions . 266

Chapter 15 Debugging C/AL Code. 279

What Are Bugs? . 280

Syntax Errors. 281

Runtime Errors . 282

Program Logic Errors . 287

The Microsoft Business Solutions–Navision Debugger. 289

The Code Coverage Tool . 297

Chapter 16 Extending C/AL . 299

What Is COM?. 300

Using COM Technologies in C/SIDE. 302

Using C/SIDE as an Automation Controller. 306

Receiving Events in C/SIDE . 322

Using Custom Controls from C/SIDE . 326

Acquiring Controls . 333

PART 6 DATAPORTS . 335

Chapter 17 Dataports . 337

What Are Dataports? . 338

Designing Dataports . 344

Exporting Data. 350

Importing Data . 357

PART 7 MULTILANGUAGE FUNCTIONALITY . 367

Chapter 18 Multilanguage Functionality . 369

Multilanguage Functionality . 370

Developing Multilanguage-Enabled Applications 376

Learning the Code Base Language. 380

Number Ranges for Text Constants . 383

PART 8 BEYOND THE BASICS . 387

Chapter 19 Type Conversion . 389

Type Conversion in Expressions . 390

Type Conversion Mechanisms . 392

Chapter 20 SumIndexFields . 401

SumIndexFields. 402

SIFT and the SQL Server Option for Navision . 404

Chapter 21 Numbering in Navision . 423

How Does Number Sorting Work? . 424

Table of Contents
Chapter 22 C/SIDE in Multiuser Environments. 427

Ensuring Data Integrity in a Multiuser Environment 428

Locking in Navision – a Comparison of the two Server Options 436

Chapter 23 Caption Class Functionality . 441

Syntax . 442

Function Code . 448

Chapter 24 Supporting Record Level Security 455

Record Level Security . 456

Chapter 25 Performance. 457

The DBMS Cache . 458

The Commit Cache . 460

The Command Buffer . 462

Keys, Queries and Performance . 464

C/AL Database Functions and Performance on SQL Server 466

Configuration Parameters . 467

Bulk Inserts . 471

PART 9 APPENDIXES . 473

Appendix A C/SIDE Specifications . 475

Specifications for the DBMS . 476

Specifications for C/SIDE Application Objects . 477

Appendix B Report Flow Charts . 479

Report Flow Charts . 480

Report.Run . 481

DataItem.Run . 482

Section.Run. 483

Header.Run . 484

Footer.Run. 485

TransHeader.Run . 486

TransFooter.Run . 487

GroupHeader.Run . 488

GroupFooter.Run. 489

Body.Run. 490

NewPage. 491

GetRecord . 492

Appendix C Dataport Flow Charts . 493

Dataport Flow charts . 494

Dataport.Import/Export . 495

DataItem.Export. 496

VariableRecord.Export . 497

FixedRecord.Export. 498

Table of Contents
DataItem.Import. 499

VariableRecord.Import. 500

FixedRecord.Import . 501

Appendix D NDBCS – The Database Driver 503

NDBCS – the Database Driver . 504

A Brief History of Performance Improvements . 512

Table of Contents

Part 1
Fundamentals

Chapter 1
C/SIDE Fundamentals

A C/SIDE® application is composed from five types of
application objects. Each type of application object is
created using a specific tool called a designer. The
application objects you create using these designers are all
based on some general concepts. A fundamental
knowledge of these concepts speeds up the C/SIDE
application development process.

This chapter introduces you to the C/SIDE user interface
and presents the general concepts that underlie C/SIDE
application objects.

· The C/SIDE User Interface

· What Is a C/SIDE Application?

· The Physical and the Logical Database

Chapter 1. C/SIDE Fundamentals
1.1 THE C/SIDE USER INTERFACE

This section introduces you to the user interface in C/SIDE. If you have not already
installed C/SIDE, refer to the installation manual. If you have already installed C/SIDE,
the installation program has created a new group that contains all the icons you need
to work with C/SIDE. When the Integrated Development Environment (IDE) is running,
your screen will look like this:

The user interface gives you access to a number of tools and functions. Some parts of
the user interface also provide information about the current state of the system. The
table below explains when to use the most important parts of the C/SIDE user
interface.

(A) DEPENDING ON THE TASK YOU ARE WORKING ON, THE SYSTEM AUTOMATICALLY CHANGES THE
ICONS.
(B) THIS IS ALSO WHERE THE USER INTERACTS WITH YOUR APPLICATIONS.

To... Use the...

get information about the name and path of the current database title bar

access functions on drop-down menus menu bar

access the most commonly used functions quickly toolbar (A)

work with the application design tools work area(B)

see basic status information about your system (such as the
current date and your user ID)

status bar

The menu bar
The toolbar

The work area

The status bar

The title bar
2

1.1 The C/SIDE User Interface
Designing Application Objects
Any application designed in C/SIDE is based on five different types of application
objects:

Tables are the
fundamental objects
that store the actual
data

Tables are the fundamental objects that store the actual data; you need other
application objects to insert, modify, delete or show data from tables. You will typically
use a form to enter or retrieve data from the database and use a report to print data.

.
Note

All application objects are identified by an ID number. There are, however, restrictions
about which numbers you should use when you create your own application objects.

.
Please contact your NTR for more information.

The main tool used for developing applications in C/SIDE is the Object Designer
(choose Tools, Object Designer). This is the tool you use to view and design tables,
forms, reports, dataports and codeunits.

In the Object Designer you choose the type of application object you want to work on.
From the Object Designer you can run an application object or start an application
object designer to modify the design of an existing application object or create a new
application object. The following picture shows how to use the Object Designer in
more detail.

This is where you
access the
designers for
different objects.
You simply choose
the type of object
you want to work on
here.

Create a new object
Change the design of
the current object Run the current

object
3

Chapter 1. C/SIDE Fundamentals
The Object
Designers

The table below lists the tools you can access via the Object Designer and when you
should use them.

As you can see, there is a specific designer for each type of application object. When
you create or modify an application, you can work on any number of application
objects at the same time, and each application object is shown in its own designer. For
example, if you work on three new forms at the same time, then each form will be
displayed in its own form designer. The only designer that you cannot create more
than one copy of is the Object Designer. You will learn more about how to use each of
these designers as you read the following parts of this book.

Use the... When working on ...

Table Designer tables

Form Designer forms

Report Designer reports

Dataport Designer dataports

C/AL™ editor codeunits
4

1.2 What Is a C/SIDE Application?
1.2 WHAT IS A C/SIDE APPLICATION?

The C/SIDE Integrated Development Environment (IDE) is specially designed for
creating accounting and business management applications. Any C/SIDE application
consists of the same objects as a C/SIDE database. The difference between the term
database and the term application is that when we speak about a database, we mean
simply a collection of application objects, whereas when we speak about an
application, we mean a set of application objects tied together to form a coherent
whole.

General C/SIDE Concepts
You have already learned that there are five different types of application objects in
C/SIDE. All five types are based on some general concepts. Some of these concepts
are restricted to one type of application object while others apply to several types.
When you understand these fundamental concepts, you have a good foundation for
creating your own applications. The following figure illustrates how the application
objects are related to these general concepts.
5

Chapter 1. C/SIDE Fundamentals
The table below summarizes the information in the figure, and explains what each
type of application object is used for.

The terms in the third column have the following descriptions:

Properties Properties control the appearance and behavior of application objects
and all subobjects. Properties are used to control the appearance of data, specify
default values, specify colors and define relationships.

C/AL C/AL is the language used for writing functions in C/SIDE. In the table above,
"C/AL" refers to functions written in this language.

Triggers When specific things happen to the application objects, the system
automatically activates a trigger. Inside a trigger you can add your own C/AL code if
you want to modify the default behavior of the application object or extend its
functionality.

Keys A key defines the order in which data are stored in your tables. You can speed
up searches in your tables by defining several keys which sort your information in
different ways.

Fields A field is the smallest unit of information in your database. A field typically
stores information such as a name or a number.

Controls Controls are objects on a form or report that display data, perform actions
or decorate the form. Typical examples are command buttons and text labels.

Application Object
Type

What is it used for? Which concepts is
it based on?

Table A table is used for storing the actual data. Typically
a business application will have a Customer table
that stores information such as name, address,
phone number and contact person for each of your
customers.

Properties, Fields,
Keys, C/AL

Form A form is used to access the information in your
tables. Forms are used both when you enter new
information and when you view existing information.

Properties, C/AL,
Controls

Report A report is used to present data that contains
summary information. For example, you will use a
report to print a list of customers.

Properties, C/AL,
Controls, DataItems,
Sections, Templates,
RequestForm

Dataport A dataport is used to import and export information
to and from other programs (a comma-separated
file from a spreadsheet, for example).

Properties, C/AL,
DataItems,
RequestForm

Codeunit A codeunit contains user-defined functions written
in C/AL code. These functions can be used from the
other objects in your application. This minimizes the
size of the application because the same code can
be reused over and over again.

C/AL
6

1.2 What Is a C/SIDE Application?
Request Form A request form is a form that is used in a report. Before a report is
run, a request form appears to let the user specify filters and options for the report.

Template A template defines the overall layout of a report.

Data Items A data item is a building block you use for defining a model of your data
when you create a report. By using a hierarchy of data items you define which data
your report should include. A data item represents a table, and when you run a report,
the system cycles through the records in the associated table. A data item can have
one or more sections.

Sections A section is a substructure of a data item. A section is where you place
controls to display information. You will typically use sections defining the body,
header, and footer in your report.
7

Chapter 1. C/SIDE Fundamentals
1.3 THE PHYSICAL AND THE LOGICAL DATABASE

The previous section described the general concepts underlying all five types of
application objects in C/SIDE. This section presents another view of C/SIDE
applications. In this view we are concerned only with how the information in your
application is structured.

As a typical database user, you are not concerned with where each piece of data is
stored on the hard disk or what its size is; you just want to be sure that when you refer
to a name, for example, the correct value is returned. This is why the C/SIDE
database system provides you with a conceptual representation of data that does not
include too many details of how the data is stored. An abstract data model is used for
this conceptual representation. This data model uses logical concepts (such as
objects, their properties and their relations) which are easier to understand.

This leads us to distinguish between the logical and the physical database. When we
speak about the logical database we are concerned only with the structure of the data
and the relationships between different bits of information. That is, we do not deal with
how these structures and relations are implemented. When we speak about the
physical database we deal only with how the structures in the logical database and the
search paths between them are implemented.

In this book the term database should be interpreted to mean the logical database
unless otherwise noted.

What the user sees as a coherent set of information in the C/SIDE database system
can be stored in several physical disk files, but this is transparent to the user. The
figure below illustrates how one logical database can be physically stored on three
hard disks but still comprise a single (logical) database.

The Logical Structures in Your Database
Access to the data is made possible by a well-defined logical organization composed
of:

Fields A field is the smallest logical structure used in the C/SIDE database. A field is
used to hold a single bit of information, such as a name, "Joe," or an amount,
"2,352.00." Any particular field can hold information of only one specific type. (The
C/SIDE database system distinguishes between 10 different types of information.)
Fields are assembled into a structure called a record. On its own, a field is not very
useful, as it can hold only a limited amount of information. By assembling these small
bits of information into records we get a much more flexible "information-holder" that is
also better organized because it keeps together fields that belong together.

Records A record is a logical structure assembled from an arbitrary number of fields.
It is used to store a single entry in the database. The fields in a record are used to

LogicalOne logical
database Database

= Physical
Disk File

Physical
Disk File

Physical
Disk File

+ + ... +
Several physical
disk files
8

1.3 The Physical and the Logical Database
store information about important properties of the entry. Records are organized in
tables.

Tables A table can be thought of as an N times M matrix. Each of the N rows
describes a record and each of the M columns describes a field in the record. Tables
are organized in companies.

Companies A company is the largest logical structure used in a C/SIDE database. A
company may be considered as a subdatabase; its primary use is to separate and
group large portions of data in a database. A company can contain private tables as
well as tables shared with other companies.

Database

Record

Companies are
the largest logical
structures in a
C/SIDE database

Fields are the
smallest logical
structures in a
C/SIDE database

Field

Company
Table
9

Chapter 1. C/SIDE Fundamentals
10

Chapter 2
Designing a C/SIDE Application

Carefully planning the details of your database applications
will help you end up with a sound design. A properly
designed application is easier to build and maintain.

This chapter provides guidelines for creating quality
applications in C/SIDE using the well-known methodology
of analysis, design, and implementation.

· Introduction to C/SIDE Application Design

Chapter 2. Designing a C/SIDE Application
2.1 INTRODUCTION TO C/SIDE APPLICATION DESIGN

In this section we will briefly outline the procedures involved in designing a C/SIDE
database application. It usually includes the following steps:

Understanding the Problem Make sure you understand the business problem you
are trying to solve. Be sure you know who will be using the application and what they
will be trying to accomplish.

Designing the Tables Begin by designing a data model that you use to determine
how the data will be stored and how it can be most meaningfully utilized. The data
model determines:

· which tables the database must contain.

· what kind of data you want to store in the fields in the tables.

· how the data in the tables are related to each other.

· constraints that are necessary to ensure data integrity.

Designing the Application When you have completed the design of the database
tables, you are ready to begin designing the application itself. This involves:

· designing forms (to enter and retrieve data) and reports (to retrieve and present
data).

· creating C/AL code to connect the application objects.

The above steps depend on each other. When you go from one step to another you
will often have to rethink some of the decisions you made in the previous step.

Understanding the Problem
To decide which information you should store in C/SIDE, you have to determine the
purpose of the database and how it will be used. The easiest way to do this is to talk to
the people who will use it. Involving the end user as early as possible eliminates
problems that can stem from misunderstandings about the purpose of the database.
Interviewing the end users will help you get a better understanding of the tasks they
expect the system to be able to solve. Based on this, you can determine the data
(tables) necessary for completing these tasks. This will often be the most difficult part
of the design process and also the most important, as the usefulness of the entire
application depends on whether the tables have been designed correctly.

Your interviews of the end users will give you a good knowledge of which questions
the end users want answered and thus of the information that forms and reports
should provide. This does not necessarily tell you how you should structure your
tables, however.
12

2.1 Introduction to C/SIDE Application Design
Designing the Tables
Your next task is to divide the information you want to store in the database into basic
categories such as customers, products, employees, and so on.

You begin by defining a data model. This model should describe:

· the tables in the database.

· the fields in the tables.

· the relations between the fields in your tables.

· constraints for fields and relations.

A model suitable for this purpose is the ER model (Entity-Relationship model). An ER
model is capable of mapping real-world situations to a relational database system
such as C/SIDE.

Basically, an ER model divides all the elements of a real world situation into two
categories: entities and relations. An entity is a "thing" in the real world with an
independent existence. An entity may be an object with a physical existence, such as
a particular car or person, or it may be an object with a conceptual existence, such as
a company or a job. Relationships describe how the entities are related.

To use the ER model, you will complete the following steps:

1 Identify the types of entities associated with your problem. Create tables to
represent each of these types of entities.

2 Identify the properties of each entity type and create fields in the tables to represent
each of these properties.

3 Identify the relationships between the entities and add these relationships to the
tables.

The following subsections are not intended to serve as a description of all facets and
implications of the ER model but are rather intended to give you an overview of the
model and at the same time show you the benefits of applying a formalized design
method.

How Are ER Model Concepts Related to C/SIDE Concepts?

A real world problem will usually contain groups of entity types that are similar. For
example, consider a company having hundreds of customers. All of the customers are
entities. These customer entities share the same properties, but each entity will have
its own values for the properties. Such similar entities define an entity type, that is, a
set of entities that have the same properties. When you implement the abstract ER
model in C/SIDE, you will transform all the abstract elements in your model into
concrete representations. Each entity type corresponds to a table in C/SIDE, and each
of the entity’s properties corresponds to a field in the table.
13

Chapter 2. Designing a C/SIDE Application
The following table summarizes how basic ER model concepts relate to C/SIDE
concepts.

Determining Field Types

In the ER model, after you have identified the entity types and their properties, your
next step is to determine the types of values these properties can have. In C/SIDE this
corresponds to determining the data types of the fields in your tables.

EXAMPLE

Suppose that your analysis using the ER model has revealed that you have an entity type
describing your company’s customers. This has led you to define a Customer table:

Your analysis has shown that you need fields such as Company Name, Contact Person, Phone
and Payment Method. When you implement the Customer table, you select the following field
types:

Refer to Choosing Data Types on page 23 for a description of the C/SIDE field types.

Role of Keys in C/SIDE

The ER model places a very important constraint on the entities in an entity type
(records in a table). This is the key or uniqueness constraint on the properties (fields).
An entity type usually has at least one property whose values are distinct for each

ER Model Concept Corresponding Concept in C/SIDE

An entity type A table

An entity A record

A property A field

Field Name Description Field Type

Company Name This field is used to store the name of the customer
(for example, "Microsoft Business Solutions ApS").

string

Contact Person This field identifies the contact person in the
company (for example, "JLJ").

string

Phone This field contains the customer’s phone number
(for example, "45662111").

string

Payment Method This field describes the payment method for the
customer (for example, "pay in cash").

option

Company Name Contact Person Phone ...

......

Payment MethodCustomer Table
14

2.1 Introduction to C/SIDE Application Design
individual entity. The table below shows how the ER model concepts are related to
C/SIDE concepts.

For C/SIDE to be able to operate efficiently on the data in tables, the records must be
arranged according to some criterion (that is, a key). For example, an Employee table
can be ordered according to the employees’ social security numbers because this
number uniquely identifies each employee.

In order for a field to be a key for a table, the uniqueness constraint above must hold
for every record in the table. This constraint prevents any two records from having the
same value for the key field. It is not a constraint on a specific record but a constraint
for all records in the table, considered together.

Sometimes a key consists of several fields together; in this case the combination of
the field values must be distinct for each record.

Sometimes you will be able to define several keys for a table. Refer to the section How
to Define a Primary Key on page 26, which discusses the concepts of keys.

Determining the Relationships

At this point in the design process, you have carefully planned a number of tables to
store individual types of information. In your final application you want to be able to
retrieve the information in a meaningful way. Very often an answer from your database
will consist of information stored in several tables. To allow for such answers, C/SIDE
uses relationships to chain related information together. In database terminology it is
common to distinguish between three types of relationships:

One-to-Many Relationships In this type of relationship, a record in Table 1 can
have more than one matching record in Table 2, while a record in Table 2 can have no
more than one matching record in Table 1. This is the most common type of
relationship in a relational database.

Many-to-Many Relationships In this type of relationship, a record in Table 1 can
have more than one matching record in Table 2, and a record in Table 2 can have
more than one matching record in Table 1. This represents a problem in database
design and may signal an inefficient design. Normally you break down a many-to-
many relationship into two one-to-many relationships.

One-to-One Relationships In this type of relationship, a record in Table 1 can have
no more than one matching record in Table 2, and a record in Table 2 can have no
more than one matching record in Table 1. This kind of relationship is inefficient and
can often simply be avoided by combining the two tables.

ER-Model Concept Corresponding Concept in C/SIDE

Constraints on the entities of an entity type Constraints on the records in a table

The uniqueness constraint on entity properties A key based on fields in a table
15

Chapter 2. Designing a C/SIDE Application
Assuring the Quality of the Design

In the process of defining the tables and setting up relationships, you will often have to
select from among several possible solutions. To make sure that you select the most
appropriate solutions, you need a way to measure design quality.

This is done using what is known as the normalization process. The normalization
process takes your design through a series of tests to verify whether it belongs to a
certain normal form. There are six normal forms. Most texts on relational database
design can teach you how to obtain these normal forms. Some good starting points
are the books mentioned on the last page of this chapter.

Designing the Application
After you have completed your table design, you are ready to begin designing the
application itself. From the analysis phase, you have an overview of which answers
the application is expected to be able to provide. From the table design phase, you
have a clear description of where and how the information will be stored. Based on
this understanding, you are ready to begin assembling the entire application.

This part of the application design involves:

Creating Forms Forms are used to present or collect information. You have access
to a number of design elements, such as text, data, pictures, lines, and color.

Creating Reports Reports are used to present data as printed documents. Reports
allow more flexibility than forms do when you want to present summary information.

Creating C/AL Codeunits Codeunits are containers for storing C/AL code. When
you put the code into a codeunit, you can reuse the same algorithms many places in
your application. This reduces the size of the application and makes it easier to
maintain.

Testing and Refining the Application Before you release your application, you
have to analyze your design for errors. This is normally an iterative process.

At this point you will have a useful application. If you took the time to plan all steps of
the application design carefully, you also have an application that is fully documented.
This will prove to be a great help when you need to make future adjustments and
additions.

Recommended Books on Database Design

Some of the most well-known books about relational database design are:

C. J. Date. An Introduction to Database Systems. Addison-Wesley Publishing Co.

Elmasri, R. A. and Navate, S. B. Fundamentals of Database Systems.
Benjamin/Cummings.

Dutka, A. F. and Hanson, H. H. Fundamentals of Data Normalization. Addison-Wesley
Publishing Co.
16

Part 1
Tables

Chapter 3
Table Fundamentals

Tables are the fundamental objects in any database. This is
true no matter what kind of data you need to store. When
you create a new database, you begin by building the
tables. Later on, you create forms and reports in order to
access and view the data in the tables.

This chapter explains how to design appropriate tables to
store your data.

· What Is a Table?

· What Are Keys?

· Identifiers, Data Types and Data Formats in the SQL
Server Option for Navision

· Saving, Viewing, and Sorting Data

· Dividing the Database into Companies

· Special Table Fields

Chapter 3. Table Fundamentals
3.1 WHAT IS A TABLE?

The records in the C/SIDE database are stored in tables. A C/SIDE table may be
visualized as a two-dimensional matrix, consisting of columns and rows. The figure
below shows a table with nine rows and eight columns. Each row is a record, and
each column is a field.

A table consists of two parts: the table data and a table description. The table data is
the part users often think of as comprising the database, because it contains the
actual records with their data fields. The layout and properties of those fields,
however, are specified by the table description. The table description is not directly
visible to the user. The next figure illustrates how the table data and the table
description together form a table.

When you design a table, you assign it a number of characteristics, such as a name,
an ID number and the fields it contains. You also assign a number of characteristics
(such as name, ID number, data type and initial value) to each field. When you design
a new table, you also specify which keys you want the system to maintain. All these
characteristics are stored in the table description when you save your table design.

The information in the table description is used by the Database Management System
(DBMS) and occasionally by database users who need information about the table
structure. The table description makes the DBMS flexible, as it lets the system access
tables with different structures. The DBMS can extract the definitions of the table
structure from the table description and thereby correctly access any table.

The figure illustrates that a table description contains properties, triggers, fields and
keys and shows how these are related.

Columns: Fields
Rows: Records

Table This is the Table
Description

Table Data

- Triggers
- Keys

- Properties
20

3.1 What Is a Table?
The table description contains some properties that are related to the table, while
others are related to the fields in the table. Still other properties are related to the keys
in the table. You can also see from the figure that triggers are defined both for the
table and for the fields in the table.

Don’t worry if you are not familiar with these terms already. You’ll learn more about
them on the following pages, and the next chapter, Customizing and Maintaining
Tables on page 49, provides a more detailed description of how to customize your
tables by modifying the properties and creating triggers.

Creating a Table
When you first create a table, it will not contain any data. When you create the table
you have to decide which types of information you want to store in it.

To create a table:

1 Click Tools, Object Designer. C/SIDE will display:

Table Description

Table Properties

Triggers

Fields

Keys

Properties
Triggers

Properties

Select the type of
object you want to
work on here

Create a new object
21

Chapter 3. Table Fundamentals
2 Click Table, New and the Table Designer appears:

In the Table Designer, for each field you add to the table, you enter the field number,
name, data type and, optionally, a length and a description. The following subsections
describe how to do this.

Adding Fields to Your Table

Designing a field means assigning it a number of characteristics. These
characteristics depend on what you intend the field to be used for.

After you have added fields to a table in the Table Designer, you must save the table
before you can add any records. Once you have saved a table, it will appear in the list
of tables in the Object Designer.

All the tables and fields you create have two forms of identification:

· A unique identification number (integer). When you access your database using
either the C/SIDE IDE or C/FRONT, this number uniquely identifies all tables and
fields.

· A name (an alphanumeric string) serving as a label (such as CUSTOMER or CITY).
This name appears on the screen when you run the table and should be meaningful
and easily understood. This name is secondary information and can be changed at
any time.
22

3.1 What Is a Table?
Choosing Data Types

When you have selected an identification number and name for a field, you have to
select an appropriate data type. You can use 17 different types of fields in the C/SIDE
database system. Each type is designed to hold a specific kind of information, such as
text, numbers, dates and so on.

Fields in a record can be of the following types:

Data Type Description Size

Option Denotes an integer in the range -2,147,483,647 and
2,147,483,647. An option field is defined with an option string,
which is a comma-separated list of strings representing each
valid value of the field. This string is used when a field of type
Option is formatted and its value is converted into a string. An
example:
The Option field "Color" is defined with the option string
"Red,Green,Blue". Valid values of the field are then 0, 1 and 2,
with 0 representing "Red" and so on. When the "Color" field is
formatted, 0 is converted into the string "Red", 1 into "Green",
and 2 into "Blue".
The size of the corresponding SQL data type, INTEGER, is 4
bytes.(A)(B)

4 bytes

Integer Denotes an integer between -2,147,483,647 and
2,147,483,647.
The size of the corresponding SQL data type, INTEGER, is 4
bytes.(A)(B)

 4 bytes

Decimal A decimal number between -1063 and 1063. The exponent
ranges from -63 to +63. Decimal numbers are held in memory
with 18 significant digits. The representation of a decimal
number is a Binary Coded Decimal (BCD).
The size of the corresponding SQL data type,
DECIMAL(38,20), is 17 bytes.(A)(B)

12 bytes

Text Any alphanumeric string. The field must be defined to be
between 1 and 250 characters. The space used by a text field
equals the maximum length of the text plus one byte. This extra
byte is a used to hold the length of the string. An empty text
string has the length zero.
The size of the corresponding SQL data type, VARCHAR, is 1
byte per character in the field’s value.(A)(B)

Maximum string
length + 1 byte
(see note below).
23

Chapter 3. Table Fundamentals
Code An alphanumeric string, which is right-justified if the contents
are numbers only. If letters or blanks occur among the
numbers, the contents are left-justified. All letters are converted
to uppercase upon entry.
The field must be defined to be between 1 and 250 characters.
The space used by a code field equals the maximum length of
the text plus two bytes. The first of the extra bytes holds
information about the length of the string, and the second byte
stores alignment information.
In the Microsoft SQL Server Option for Navision, code fields
work in a different way. You can use the SQL Data Type
property to indicate whether code fields can contain integers or
text strings. Refer to the online C/SIDE Reference Guide for
information about the SQL Data Type property. Further,
Appendix H contains information about the sorting of numeric
values in code fields.
The size of the corresponding SQL data type, VARCHAR, is 1
byte per character in the field’s value.(A)(B)

Maximum string
length + 2 bytes
(see note below).

Date A date value in the range from January 1, 0 to December 31,
9999. An undefined date is expressed as 0. All dates have a
corresponding closing date. The system regards the closing
date for a given date as a period that follows the given date but
comes before the next normal date; that is, a closing date is
sorted immediately after the corresponding normal date but
before the next normal date.
The size of the corresponding SQL data type, DATETIME, is 8
bytes.(A)(B)

4 bytes

Time Any time in the range 00:00:00 to 23:59:59.999. A time field
contains 1 plus the number of milliseconds since 00:00:00
o'clock, or 0 (zero), an undefined time. A time value is
calculated in the following way:
Time = 1 + (number of milliseconds since 00:00:00).
The size of the corresponding SQL data type, DATETIME, is 8
bytes.(A)(B)

A time field is
stored as an
integer (four
bytes).

Boolean Assumes the values TRUE or FALSE. When formatted, a
boolean field is shown as "Yes" or "No".
The size of the corresponding SQL data type, TINYINT, is 1
byte.(A)(B)

 4 bytes

Binary Contains binary data. The binary data is stored in the record.
The size of the corresponding SQL data type, VARBINARY, is
the number of bytes in the field’s value.(A)(B)

Maximum length
is 250 bytes (see
note below).

BLOB Binary Large Object. Used to store bitmaps and memos.
Notice that the BLOB isn’t stored in the record, but in the BLOB
area of the table.
The size of the corresponding SQL data type, IMAGE, is the
number of bytes in the field’s value.(A)(B)

8 bytes in the
record + size of
BLOB data.
(max. 2 GB)

Data Type Description Size
24

3.1 What Is a Table?
(A) THE CALCULATION OF THE SIZE OF A SPECIFIC SQL SERVER RECORD REQUIRES MORE THAN
SIMPLY SUMMING THE SIZES OF THE FIELD VALUES. REFER TO MICROSOFT’S SQL SERVER
DOCUMENTATION FOR FURTHER INFORMATION.

(B) THIS IS THE SQL SERVER DATA TYPE THAT NAVISION USES WHEN IT CREATES THE NAVISION DATA
TYPE. FOR FURTHER INFORMATION, SEE PAGE 33.

.
Note

In Navision Database Server, data is stored with a four byte alignment because of
performance considerations. The sizes of text, code and binary fields (that can have
variable lengths) are rounded up to the nearest value that is a multiple of four. This

.
means that, for example, a text string of 10 characters will occupy 12 bytes.

Besides the ordinary fields discussed in this section, the C/SIDE database system
also includes two special types of fields

· FlowField®

· FlowFilter®

How these special fields provide powerful data retrieval mechanisms is described on
page 42.

DateFormula Used to verify the date entered by the user. The syntax is for
example:
30D (=30 days)
CM+1M (=current month plus one month)
D15 (=on the 15th of each month)

4 bytes

TableFilter This data type is used to apply a filter to another table.
Currently, this can only be used to apply security filters from the
Permission table.

BigInteger A 64 bit integer. 8 bytes

Duration Represents the difference between two points in time, in
milliseconds. This value can be negative.

8 bytes

DateTime Represents a point in time as a combined date and time. The
datetime is stored in the database as Coordinated Universal
Time (UTC) and is always displayed as local time in Navision.
Local time is determined by the time zone regional settings
used by your computer.
You must always enter datetimes as local time. When you enter
a datetime as local time, it is converted to UTC using the
current settings for the time zone and daylight saving time.
The DateTime datatype does not support closing dates.

Stored as two 4
byte integers

GUID Globally unique identifier 16 bytes

RecordID Unique record identifier

Data Type Description Size
25

Chapter 3. Table Fundamentals
3.2 WHAT ARE KEYS?

The DBMS keeps track of each field by means of the field number, described above,
and the record's primary key.

The primary key is composed of up to 20 fields in a record. The combination of values
in fields in the primary key makes it possible for the DBMS to perform a unique
identification of each record. The primary key determines the logical order in which
records are stored, regardless of their physical placement on disk.

Logically, the records are stored sequentially in ascending order, sorted according to
the primary key. Before adding a new record to a table, the DBMS checks that the
information in primary key fields in the record is unique, and only then inserts the
record into its correct logical position. Because the records are sorted "on the fly," the
database will always be structurally correct. This allows fast data manipulation and
retrieval.

A table description contains a list of keys. A key is a sequence of one or more field IDs
from the table. Up to 40 keys can be associated to a table. The first key in the list is the
primary key.

The primary key is always active; the DBMS keeps the table sorted in primary key
order and rejects records with duplicate values in primary key fields. Therefore, the
values in the primary key must always be unique. Be aware that it is not the value in
each field in the primary key that must be unique, but rather the combination of values
in all the fields comprising the primary key.

Some other database systems support unkeyed tables. An unkeyed table is one for
which no key fields have been designated; in such a table, records are stored in the
order in which they were entered in the table. The C/SIDE database system does not
support unkeyed tables.

How to Define a Primary Key
A maximum of 20 distinct fields can be used in the definition of the primary key. The
number of fields in the primary key puts a limitation on the number of fields in the other
(secondary) keys.

When you create a table in the table designer, C/SIDE automatically uses the field
with the lowest field number as the primary key.
26

3.2 What Are Keys?
To define a primary key:

1 Assume that you have created a table in the Table Designer:

2 Choose Keys from the View menu to define a primary key. C/SIDE will display the
following:

3 On the first line in the Key window, enter the primary key as a comma-separated list
(for example: ID Number,Name).

How to Create Secondary Keys
We have already mentioned that up to 40 keys can be associated to a table and that
the first is the primary key. All other keys are secondary keys and optional. Secondary
keys are used to view records in an order different from the one in which they are
sorted according to the primary key fields.

Define the
primary key here
27

Chapter 3. Table Fundamentals
To create a secondary key:

1 Open your table in the Table Designer:

2 Click View, Keys and C/SIDE will display the Keys window for the table:

3 The first line shows the primary key. Enter the secondary keys on the following lines
as comma-separated lists (for example: Name,Address).

.
Note

The number of fields in the primary key together with all the fields in secondary keys

.
must not exceed 20.

This means that if your primary key includes four distinct fields, then your secondary
keys can include these four fields, and at most 16 others. Correspondingly, if your
primary key consists of 20 distinct fields, then your secondary keys must consist only
of combinations of these fields.

A secondary key uses an additional data structure called an index. The idea behind an
index is similar to the idea behind the indexes used in common textbooks. A textbook
index lists important terms at the end of the book in alphabetical order. Next to each
term is a list of page numbers where the term appears. We can search the index to

Enter the
secondary keys
here as comma-
separated lists
28

3.2 What Are Keys?
find a list of page numbers (addresses) and easily locate the term in the textbook by
searching the specified pages. Hence, the index is an exact indicator of where each
term occurs in the textbook.

When you define a secondary key and mark it as active, the system will automatically
maintain an index reflecting the sorting order defined by the key. Several secondary
keys may be active at the same time.

A secondary key can be changed into an inactive key. This means that the DBMS
does not use time during updates to maintain its index. Furthermore, an inactive key
doesn’t occupy database space. Inactive keys can be reactivated; this process may
consume some time, depending on the size of the table, because the DBMS has to
scan the entire table to rebuild the index.

The fields comprising the secondary keys are not guaranteed to contain unique data;
the DBMS does not reject records with duplicate data in secondary key fields. If two or
more records contain identical information in the secondary key, the DBMS will use
the primary key for the table to solve this conflict. The example below shows how the
primary key influences the sorting order when a secondary key has been activated:

We assume that the Customer table includes four entries (records). The records in
the Customer table have two fields: Customer No. and Customer Name.

The Key List for the Customer table is:

Customer table sorted by the primary key:

If you select the secondary key for sorting, the ordering will be based on the contents
of the Customer Name field. As the contents of these fields are not unique, the
records will have to be subsorted according to the primary key.

Key No. Key Type Definition

1 Primary Customer No.

2 Secondary Customer Name

Customer No. Customer Name

001 Microsoft® Business
Solutions

002 IBM

003 Lotus

004 Microsoft Business
Solutions

Customer Name Customer No.

IBM 002

Lotus 003
29

Chapter 3. Table Fundamentals
In this case the last two records, which have the same Customer Name, have been
ordered by Customer No.

How Keys Affect the Working Speed of C/SIDE
Searching for specific data is normally easier if several keys have been defined and
maintained for the table holding the desired data. The indexes for each of the keys
provide specific views that enable flexible searches to be performed quickly. There
are, however, both advantages and drawbacks to using a large number of keys.
Consider the following situations:

The decision whether to use a few or many keys is not easy to discuss in general. The
choice of appropriate keys and the number of active keys to use should be the best
compromise between maximizing the speed of data retrieval and maximizing the
speed of data updates (operations that insert, delete or modify data). In general, it
may be worthwhile to deactivate complex keys if they are used only rarely.

The overall speed of C/SIDE will depend strongly upon a number of factors:

· The size of your database

· The number of active keys

· The complexity of the keys

· The number of records in your tables

· The speed of your hardware, that is, the speed of your computer and its disk
system.

Microsoft Business
Solutions

001

Microsoft Business
Solutions

004

Customer Name Customer No.

If you... Performance improves... Performance slows...

increase the number
of secondary keys
marked as active.

when you retrieve data in several
different sorting sequences because
the system has already sorted the
data.

when you enter data because
C/SIDE has to maintain the indexes
for each secondary key.

decide to use only a
few keys.

when you enter data because
C/SIDE has a minimal number of
indexes to maintain.

when you retrieve data. You may
have to define or reactivate the
secondary keys to get the
appropriate sortings. Depending on
the size of the database, this can
take some time, as the system
builds the index.
30

3.2 What Are Keys?
How Are the Keys Stored?
As illustrated in the figure on page 20, keys are stored in the Table Description, which
contains a list of keys. The next figure illustrates a part of the key list for a Cust.
Ledger Entry table.

The figure illustrates the first four keys of this table – the primary key and three
secondary keys. The primary key consists of a single field ID. The first secondary key
contains two field IDs, while the second and third secondary keys contain three and
four fields respectively.

Primary key

Secondary Key

Secondary Key

Secondary Key

1 (Entry No.)

4 (Date)

3 (Customer No.)

43 (Positive) 37 (Due Date)

3 (Customer No.)

5 (Document Type)

3 (Customer No.)

6 (Document No.)

36 (Open)

Key Description
31

Chapter 3. Table Fundamentals
3.3 IDENTIFIERS, DATA TYPES AND DATA FORMATS IN THE SQL SERVER
OPTION FOR NAVISION

Naming Identifiers
Identifiers for SQL Server tables and columns are based upon the table names and
field names for the corresponding tables and fields of a Navision table definition. If you
set a table’s DataPerCompany property to Yes, the SQL Server table name is prefixed
by the company name. The two names are separated by the ($) symbol. For example,
the SQL Server table name for the Customer table of the CRONUS International Ltd.
company is CRONUS International Ltd_$Customer. If the DataPerCompany property
of a table is set to No, there is no prefix.

The primary key of a Navision table is created in a SQL Server table as a primary key
constraint. The name of the primary key will be based on the table name with a suffix
of $0, for example, CRONUS International Lt_$Customer$0. Any secondary keys in a
Navision table that must be created and maintained in SQL Server – the
MaintainSQLIndex key property is set to Yes – will have SQL Server indexes created
that are named after an internal key ID with a $ prefix. Examples of this are $1 and $4.

If the database maintains SQL views for language IDs, the system creates a SQL view
by prefixing the SQL Server table name with the Windows language ID. For example,
if you want to refer to the Customer table in the CRONUS International Ltd. company
in German (Standard), the SQL view is DEU$CRONUS International Ltd_$Customer.
For more information about multilanguage functionality, see Chapter 18.

If the database maintains relationships, the system creates foreign key constraints
using the SQL Server table name and TableRelation property information. The names
of the constraints have the following format: <table name>FKT<referencing table
ID>_F<referencing field ID>$T<referenced table ID>. Here is an example using the
Customer table: CRONUS International Ltd_$Customer$FK$T18_F107$T308.

When you create a Navision table with keys that contain SumIndexFields®, this
causes additional tables to be created in SQL Server to support the SIFT™
functionality. These tables are named after the company, the table ID and an internal
key ID. For example, the SIFT table name for SumIndexFields of the key (G/L
AccountNo.,Posting Date) in the G/L Entry table in CRONUS International Ltd. is
CRONUS International Ltd_$17$0.

.
Important

If you create a Navision table with keys that contain SumIndexFields, you must not
give the table the same name as its ID. SIFT tables whose names are the same as

.
their ID cannot be saved. If you try to do so, you will receive an error message.
32

3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision
Representation of Navision Data Types
Every available Navision data type is mapped to an appropriate SQL Server data type
in the tables of the SQL Server Option for Navision. The following table shows which
SQL Server data type is used for the corresponding Navision data type:

Each of the SQL Server data types is created as NOT NULL except the IMAGE type,
which allows NULL.

Compatibility of Data Types
Some of the SQL Server data types listed previously are compatible with other
Navision data types. The following table shows the extended compatibility of SQL
Server data types with Navision data types:

Navision
Data Type

SQL Server
Data Type

Integer INTEGER

Option INTEGER

Code(n) VARCHAR(n)

INTEGER

SQL_VARIANT

Text(n) VARCHAR(n)

Decimal DECIMAL(38,20)

Date DATETIME

Time DATETIME

DateTime DATETIME

Boolean TINYINT

Binary(n) VARBINARY(n)

BLOB IMAGE

DateFormula VARCHAR(32)

TableFilter VARBINARY(252)

BigInteger BIGINT

Duration BIGINT

GUID UNIQUEIDENTIFIER

RecordID VARBINARY(n)

SQL Server
Data Type

Navision
Data Type

CHAR(n) Code(n)
Text(n)
DateFormula
33

Chapter 3. Table Fundamentals
Data Format Considerations
When you are using the SQL Server Option for Navision, you must be aware of the
effect the data formats will have on the way your data is compared and sorted.

Code Fields

In the SQL Server Option for Navision, code fields can be represented by several SQL
Server data types.

Code fields have a property, SQL Data Type, that determines whether they contain
integers, text strings or a mixture of both. You set this property in the following way:

1 Click Tools, Object Designer.

2 Click Table and select the appropriate table.

3 Click Design.

4 Select the field whose data type is defined as code and then click View, Properties.
The Properties window for that field appears:

NCHAR(n) Text(n)

NVARCHAR(n) Text(n)

INTEGER Code

TINYINT Integer
Option

SMALLINT Integer
Option

NUMERIC(p,s), MONEY,

SMALLMONEY, REAL,

FLOAT(n), DECIMAL

Decimal
Integer
Option
Boolean

SMALLDATETIME Date

BIT Integer
Option
Boolean

BINARY(n) Binary(n)

TEXT BLOB

NTEXT BLOB

UNIQUEIDENTIFIER Binary(16)
Text(36)

SQL Server
Data Type

Navision
Data Type
34

3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision
You can set the SQL Data Type property to Varchar, Integer or Variant. Leaving the
value as Undefined is the same as selecting Varchar, which is the default value.

When you create a table in the SQL Server Option for Navision, the code field data is
stored in VARCHAR, INTEGER or SQL_VARIANT columns in the SQL Server table that
correspond to the SQL Data Type property’s values Varchar, Integer or Variant.

When you set the value of the SQL Data Type property of a code field to Varchar:

· All the values in the field are compared and sorted as character data, including
numeric values.

When you set the value of the SQL Data Type property of a code field to Integer:

· All the values in the field are compared and sorted as integers. No alphanumeric
values can be stored in the field.

· If you enter negative values in the column outside Navision using external tools,
they cannot be read into Navision.

· The value "0"(zero) is used to represent an empty string in Navision.

· Non-numeric code values or any numeric values beginning with "0"(zero) cannot be
entered in the code field.

When you set the value of the SQL Data Type property of a code field to Variant:

· The values in the field are compared and sorted according to their base data type.
Numeric values are sorted after alphanumeric values.

· Data that is entered into the code field in Navision is stored as either the VARCHAR
or INTEGER base data type, depending on the value that has been entered.

· Any value beginning with "0"(zero) can be entered in the code field and is stored as
an INTEGER base data type.

.
Note

Be aware that not all the third-party tools that can be used to access data in SQL

.
Server databases support the Variant data type.
35

Chapter 3. Table Fundamentals
Date and Time Fields

SQL Server stores information about both date and time in columns of the DATETIME
and SMALLDATETIME types. For date fields, Navision uses only the date part and
places a constant value for the time. For a normal date, this contains 00:00:00:000.
For a closing date, it contains 23:59:59:000 for a DATETIME and 23:59:00:000 for a
SMALLDATETIME.

The Navision undefined date is represented by the earliest valid date in SQL Server:
01-01-1753 00:00:00:000 for a DATETIME, and 01-01-1900 00:00:00:000 for a
SMALLDATETIME.

For time fields, only a SQL Server DATETIME type can be used. Navision uses only
the time part and places a constant value for the date: 01-01-1754. The Navision
undefined time is represented by the same value as an undefined date.

In order for Navision to interpret date and time values correctly, the formats mentioned
above must be used when linking Navision table definitions to external tables or
views. For more information about this, see page 66.

To reformat a DATETIME or SMALLDATETIME column that is to be used as a date field in
Navision, an UPDATE statement can be applied to the table data. Here is an example of
such an update statement:

UPDATE [My Table] SET [My Date] = CONVERT(CHAR(10), [My Date], 102)

For a closing date, a CONVERT style of 120 can be used to set the appropriate time
part. To reformat a time field, a similar statement can be used:

UPDATE [My Table] SET [My Time] = CAST('1754-01-01 '+CONVERT(CHAR(8),

[My Time], 108) AS DATETIME)

As an alternative to modifying the table data, you can create a view that applies the
necessary conversion to the column and gives the column an alias. However, you
cannot update views that are created in this way and it is more efficient to change the
data than to apply conversions for every row.

.
Note

The information in this section only applies to fields of the Date and Time data type

.
and does not apply to fields of the DateTime data type.

Accessing Navision Tables with External Tools

You can access data in Navision tables with external tools, such as Microsoft
Enterprise Manager. When you do this, the values in fields that contain the code, date
and time data types and which have a specific format must be manipulated correctly
for data modification or comparison. When you use external tools, no special
processing of code field data is required to join fields in different tables provided that
you use the same SQL data type value for each code field in a join or CAST the value
to the appropriate data type.
36

3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision
Multilanguage Views In the New Database and Alter Database windows, you can select to maintain SQL
views. If you enable this option, SQL Server will create and maintain a view for each
language ID that is added to a table in Navision. The system creates a SQL view by
prefixing the SQL Server table name with the Windows language ID for each
CaptionML value.

This means that external tools can use a view of the object in the user’s language, for
example Spanish, rather than the object name. The object name could be in an other
language, for example English (United States).

The view is updated by every change in the CaptionML values of a table. For more
information about multilanguage, see Multilanguage Functionality on page 369.
37

Chapter 3. Table Fundamentals
3.4 SAVING, VIEWING, AND SORTING DATA

When you have designed the fields and keys for a new table, you have to save the
table in your database before you can use it. Once you have saved a table, it will
appear in the list of tables shown in the Object Designer.

To save a table in the database:

1 Make sure that focus is on the Table Designer. Click File, Save. C/SIDE displays
the following window:

2 Enter a number to serve as a unique identification of the table in the ID field. Notice
that there are restrictions about which numbers you can use. Please contact your
NTR for information.

Normally you use a form to view the data in a table, but you can also view the data in
a table directly by running the table from the Object Designer.

To view the data in a table without using a form:

1 Open the Object Designer, select the table you want to view and click the Run
button. C/SIDE displays the data in a tabular format:

The order in which the information appears in the window above reflects the sorting
order defined by the current key. If more than one key is defined for the table, you can
switch between the sorting orders these keys define.
38

3.4 Saving, Viewing, and Sorting Data
To view the table data in different sorting orders:

1 Run the table from the Object Designer. C/SIDE will display the following:

2 Click View, Sort and C/SIDE displays:

3 Select the key that defines the sorting order you want, and choose whether you
want the records displayed in ascending or descending order. Click the OK or the
Apply button to apply the new key. If you choose OK, the Sort dialog closes; if you
choose Apply, the Sort dialog stays open. Using Apply is convenient if you
frequently change the sorting order.

Data is normally entered in a table by using a form, but it is also possible to enter it
directly in the table.

To add records to a table without using a form:

1 Open the Object Designer and select the table you want to add records to.

Select the key here

Select ascending
or descending
order here
39

Chapter 3. Table Fundamentals
2 Click Run. C/SIDE will display the table in a tabular format:

3 Place the cursor in a blank line. Enter data in the fields and press Enter. You can
use TAB, SHIFT-TAB and the arrow keys on the keyboard to navigate between the
fields.

4 When you have finished entering data, close the table. (You do not have to save it,
as the records are saved and updated whenever you leave a field after entering a
value in it.)
40

3.5 Dividing the Database into Companies
3.5 DIVIDING THE DATABASE INTO COMPANIES

The DBMS can access only one logical database at a time, but this database can be
divided into one or more companies. A company is a "sub-database," and its primary
use is to separate and group data in the same database. As mentioned on page 22,
fields and tables are identified by a number. Companies are identified not by a number
but by a name. A company "bundles" one or more data tables together into a logical
superstructure that is identified by a company name. Other than the shared company
name, the different tables within a company have nothing in common. Opening a
company is your first step after opening the database or connecting to a server. How
to do this is described in the manual Installation and System Management: Microsoft
Business Solutions–Navision Database Server.

Consider a database with four tables as shown in this figure:

The four table descriptions on the left apply to each of the data tables, which are
logically sorted into three companies. The records in the tables G/L Account,
Customer and Vendor, all have the same structure and the same field definitions,
even though they belong logically in three different companies. Only the data stored in
the fields differ. As the information in a Table Description can be used by tables from
more than one company, no redundant information will be stored. This minimizes the
size of the database.

The idea of a company can be explained by an analogy with records in C/AL: When
you work with records in C/AL, you can use a WITH statement in order to tell the
system that whenever you refer to a field, you mean that field within a specific record.
That is, within the scope of the WITH statement, you do not explicitly need to refer to
<record>.<field> but just to <field>, as <record> is assumed as the default. Likewise,
by opening a company you specify a default group of tables to which all your database
accesses will be directed.

Even though you have selected a specific company, you can still access data in any
table in any other company. To do so, you must use the C/AL function
<Record>.CHANGECOMPANY to explicitly define which other company you want to
access.

More than one application can access the same company and the same table(s) at the
same time. How the DBMS controls these multiple accesses is described on page
432.

Data

Data

Common Data

Data

Data

Data

Data

Data

Data

DataG/L Account

Customer

Vendor

Report Menu Option

Company B Company CTable Description Company A
41

Chapter 3. Table Fundamentals
3.6 SPECIAL TABLE FIELDS

In addition to the conventional data fields, which simply hold values, two kinds of
specialized fields are available for data retrieval:

· FlowFields

· FlowFilter fields

What Are FlowFields?
FlowFields are a powerful feature of the C/SIDE database system. The FlowField is a
fundamental concept that strongly influences the way a C/SIDE application is
designed.

FlowFields and the underlying concept of SumIndexFields have been designed in
order to increase the performance in such activities as calculating the balance of your
customers, which in traditional database systems involves a series of accesses and
calculations before a result is available. Why such a result will be immediately
available when you use FlowFields will be clear as you read through the rest of this
section and the chapter SumIndexFields on page 401, which deals with the underlying
concept of SumIndexFields.

FlowFields are not a permanent part of the table data. A FlowField can be thought of
as a virtual field, which is an extension to the table data. Actually the information in the
FlowFields exists only at run time. The values in FlowFields are automatically
initialized to 0 (zero). To update a FlowField, you must use the C/AL function
<Record>.CALCFIELDS. Notice that if a FlowField is the direct source expression of a
control on a form, the FlowField will automatically be calculated when the form is
displayed.

There are seven types of FlowFields:

EXAMPLE

Consider the Customer table in the figure below. This table contains two FlowFields. The field
named Any Entries is a FlowField of the Exist type, and the Balance field is a FlowField of the
Sum type.

FlowField
Type

Field Type Description

Sum decimal The sum of a specified set within a column in a table

Average decimal The average value of a specified set within a column in a table

Exist boolean Indicates whether any records exist within a specified set in a table

Count integer The number of records within a specified set in a table

Min any The minimum value in a column within a specified set in a table

Max any The maximum value in a column within a specified set in a table

Lookup any Looks up a value in a column in another table
42

3.6 Special Table Fields
The figure shows that the value in the Balance FlowField for customer number 10000 (Windy City
Solutions), is retrieved from the Amount column in the Customer Entry table. The value is the
sum of the amount fields for the entries that have the customer number 10000, that is

Sum = 10 + 20 + 30 = 60.

The values shown in the Balance column in the Customer table for customers number 10010,
10020, 10040 are found in the same way. For customer number 10030 the value is 0 (zero), as
there are no entries in the Customer Entry table that have a Customer No. that equals 10030.

In this example the Balance FlowField in the Customer table reflects the sum of a specific subset
of the Amount fields in the Customer Entry table. How the calculation of a FlowField is to be
made, is defined in a calculation formula. The calculation formula for the Balance field is

Sum("Customer Entries".Amount WHERE(CustNo=FIELD(CustNo)))

Correspondingly, the Any Entries field, which indicates whether any entries exist, has the
following definition:

Exist("Customer Entries" WHERE(CustNo=FIELD(CustNo)))

Customer

Customer

10040

10030

10010

10000

10020

Name Country Code Balance

Customer (Table data)

10010

10010

10000

10000

10000

Date Comment Amount

10020

10020

10020

10040

10040

10040

Customer Entry (Table data)

10

20

30

40

50

60

70

80

90

100

110

Modern Cars Inc.

Jean Saint Laurent

Russel Publishing

La Cuisine Française

Windy City Solutions US

US

FR

UK

FR

Virtual part of
the table data

(FlowField)

60

210

300

90

0

Yes

Yes

No

Yes

Yes

(FlowField)
Any Entries
43

Chapter 3. Table Fundamentals
To create a FlowField:

1 Design the table in the Table Designer. C/SIDE will typically display:

2 Click on the line defining the field that you want to turn into a FlowField.

3 Click View, Properties. C/SIDE displays the property sheet:

4 Change the value of the FieldClass property from Normal to FlowField

5 Now you have to enter a calculation formula for the FlowField. This is done with the
CalcFormula property. The next section tells you how.

Calculation Formulas and the CalcFormula Property

A FlowField is always associated with a calculation formula that determines how the
value in the FlowField is calculated. Below is a description of the valid syntax for the
CalcFormula property:

<CalculationFormula> ::=

[-]Exist(<TableNo> [WHERE (<TableFilters>)]) |

Count(<TableNo> [WHERE (<TableFilters>)]) |

[-]Sum(<TableNo>.<FieldNo> [WHERE(<TableFilters>)])|

[-]Average(<TableNo>.<FieldNo> [WHERE (<TableFilters>)]) |

Min(<TableNo>.<FieldNo> [WHERE (<TableFilters>)]) |

Max(<TableNo>.<FieldNo> [WHERE (<TableFilters>)]) |

Lookup(<TableNo>.<FieldNo> [WHERE (<TableFilters>)])

<TableFilters> ::=

[<TableFilter> {,<TableFilter>}]
44

3.6 Special Table Fields
<TableFilter> ::=

<DstFieldNo>=CONST(<FieldConst>) |

<DstFieldNo>=FILTER(<Filter>) |

<DstFieldNo>=FIELD(<SrcFieldNo>) |

<DstFieldNo>=FIELD(UPPERLIMIT(<SrcFieldNo>)) |

<DstFieldNo>=FIELD(FILTER(<SrcFieldNo>)) |

<DstFieldNo>=FIELD(UPPERLIMIT(FILTER(<SrcFieldNo>)))

where...

To create, view, or edit a calculation formula:

1 Click the field for which you want to create, view, or edit the calculation formula.

2 Click View, Properties. Find the CalcFormula property in the property sheet:

Symbol Explanation

<TableNo> Specifies the table holding the information to be used in the FlowField.

<FieldNo> Specifies the column from which you want to compute values.

<TableFilters> A list of filters to be used in the computation of the FlowField.

<TableFilter> A table filter can be one of the following: a constant expression, a filter
expression, a value from ordinary fields or a FlowFilter field (FlowFilter
fields are discussed in the next section). Notice that a key for the other
table must exist and include the fields used in the filters.

<DstFieldNo> Specifies the destination field number.

<SrcFieldNo> Specifies the source field number.

<Filter> A filter expression such as 10|20..30.

Enter the
calculation formula
here
45

Chapter 3. Table Fundamentals
3 You can either enter the calculation formula directly or click the assist-edit button.
When you click the assist-edit button, C/SIDE displays:

4 Click the drop-down button to select the appropriate calculation method. Click the
Reverse Sign option if you want to reverse the sign of the result (only for Sum and
Average). Use the lookup buttons to select the table and column (field) from which
you want to get the information. If necessary, you can add a table filter to specify a
limited set of records. Click the assist-edit button to the right of the Filter field.
C/SIDE displays the Table Filter window:

5 At each line in this window, you can define a field filter. For each field filter you must
specify a field, a type, and a value and you can set the OnlyMaxLimit and the
ValueIsFilter options. The following example illustrates where the information in this
window comes from.

EXAMPLE

The Balance at Date field in the G/L Account table is a decimal type FlowField. This field is
calculated from values in the Amount column in the G/L Entry table.

Each line defines a
field filter. Notice
that there are
implicit logical
ANDs between the
lines.
46

3.6 Special Table Fields
Some of the fields in the G/L Account table are FlowFilter fields. By entering filter expressions into
these fields, the user can affect the calculation of FlowFields (such as Balance at Date) at run
time. The user will be able to enter filter values in a FlowFilter form:

The Field column in
the Table Filter
window contains
references to fields
(columns) in the G/L
Entry table.

The Value column
in the Table Filter
window contains
references to fields
(columns) in the
G/L Account
table.

The Balance at
Date FlowField

The Amount field that
contains the
information to be
summed. This field is
defined as a
SumIndexField in the
key for the G/L Entry
Table.
47

Chapter 3. Table Fundamentals
This means that if the user enters a date filter expression in the Date Filter field, it will be
transferred via the table filter and used in the Date column in the G/L Entry table.

You can use the OnlyMaxLimit option to remove the lower bound from a range defined by a filter
expression. For example, if the filter expression is defined as a range x..y, setting the
OnlyMaxLimit option will transform the expression into ..y.

The ValueIsFilter option determines how the system interprets the contents of the field referred to
in the Value column in the table filter window. For example, if the field contains the value
1000..2000, setting the ValueIsFilter option will cause this value to be interpreted as a filter rather
than a specific value.

Using FlowFilter Fields in the Calculation Formula
End users may want to limit calculations so that they include only those values in a
column that have some specific properties. For example the user may want to sum up
only the amounts of customer entries that are entered in April. This is possible if the
application has been designed using FlowFilter fields in connection with the
FlowFields.

.

The above figure illustrates the relations between various types of database fields and
the calculation formula. The filters defined in the calculation formula can consist of
constants, of values from ordinary fields and of filters given as parameters in
FlowFilter fields. FlowFilter fields are fields in which the end user can enter a filter
value (via the user interface in a C/SIDE application) that will affect the calculation of a
FlowField.

Table A

FlowFields

FlowFilter fields

Ordinary fields

Calculation

Formula

Table B

Table C

Table D

Path for information used in the calculation formula

Path for data used in computation of FlowFields

Constants
48

Chapter 4
Customizing and Maintaining Tables

As you create tables, you’ll want to take advantage of
properties and triggers. By setting properties for your
tables, you can set up defaults to use throughout your
database, and by defining C/AL code in triggers, you can
modify the system’s default behavior.

This chapter shows you how to use properties and triggers
when you design tables. Furthermore, it shows how to
create relationships between tables. Finally, the chapter
explains how to deal with the problems you may encounter
when you change tables that contain data.

· Viewing and Modifying Properties

· Using Table and Field Triggers

· Setting Relationships Between Tables

· Changing Tables That Contain Data

· Linked Objects

Chapter 4. Customizing and Maintaining Tables
4.1 VIEWING AND MODIFYING PROPERTIES

This section describes how you can use properties in your table design. As you have
learned in the previous section the properties in a C/SIDE table can be divided into
these categories

· Table Properties

· Field Properties

· Key Properties

Viewing and Modifying Table Properties
A table in C/SIDE has a number of properties that describe the behavior of the table in
your environment. When you create a table, C/SIDE automatically defines a number
of default values for these properties. Depending on the purpose of the table and how
it is related to other application objects, you may want to change these default values.

C/SIDE contains the following table properties:

Property Name Use this property to...

ID define the ID of the table.

Name define a name (used as caption) for the table.

Caption display the caption in the currently selected language. The value is
taken from the CaptionML property if this property is set. A caption is
the text the system uses to show the identity of a control (for example,
in the caption bar of a form or as the basis for a label for another
control).

CaptionML provide the text that will be used to identify a control or other object in
the user interface. CaptionML is multilanguage enabled. This means
that it can contain a list of texts in different languages. The text that is
actually used will be selected according to the current language setting
of the user.

Description include an optional description of the table. This description is for
internal purposes only and is not visible to the end user. A short
description of the table’s purpose makes it easier to maintain the
application.

DataPerCompany determine whether the system will create a version of the data for each
company in the database.

Permissions define extended permissions for the table.

LookupFormID define the ID of the form you want to use as a lookup.

DrillDownFormID define the ID of the form you want to use as a drill down.

DataCaptionFields define a list of fields to be used as captions when a record from this
table is displayed in, for example, a form.

PasteIsValid tell the system whether it should be allowed to insert records in this
table by pasting.
50

4.1 Viewing and Modifying Properties
Refer to the online Reference Guide for additional information about any of these
properties.

To view or modify table properties:

1 From the Tools menu, choose Object Designer.

2 Click the Table button in the Object Designer window to get a list of the tables.

3 Select a table and click the Design button. C/SIDE will display the table in the Table
Designer:

4 Place the cursor on an empty line in the Table Designer or click Edit, Select Object.
(If you place the cursor on a line defining one of the fields in the table, you will get
the properties for the field instead of those for the table.)

LinkedObject determine whether this Navision table description is to be linked to an
existing SQL Server object.

LinkedInTransaction determine whether the linked object supports transactions and can be
accessed within Navision transactions or does not support transactions
and is not under transaction control.
This property is only available when the value of the LinkedObject
property is set to Yes.
For more information, see the section See Linked Objects on page 66.

Property Name Use this property to...

The Table
Designer
51

Chapter 4. Customizing and Maintaining Tables
5 Choose Properties from the View menu. C/SIDE will display the Property Sheet:

6 If you want to modify the setting of a property, simply enter the new value on the
Property Sheet. When you have entered the new value, update the property by
either pressing Enter or simply moving the cursor away from the field.

7 To get Help for a property, point at it on the Property Sheet and press F1.

EXAMPLE

LookUpFormID is a typical example of a property you will want to modify. The default value for the
LookUpFormID property is <Undefined>. By changing this value, you can determine which form
the system will display when F6 (Lookup) is pressed.

Viewing and Modifying Field Properties
Just like tables, all fields in C/SIDE have a number of properties that describe their
behavior. When you create a field, C/SIDE automatically suggests a number of default
values for these properties. Depending on the purpose of the field, you will sometimes
want to change these default values.

C/SIDE contains the following field properties:

The Property
Sheet displays
the properties for
the current table.

Property Name Use this property to...

Field No. assign a unique numeric ID to this field.

Name specify the name of the field.

Caption specify the text the system displays next to a control that is based on
the field.

CaptionML provide the text that will be used to identify a control or other object in
the user interface.

CaptionClass enable a field in a database table or a control to use caption classes.

Description include an optional description of the field. This description is for
internal purposes only and is not visible to the end user.

Data Type specify the data type of a table field.

Enabled determine whether the field is enabled.
52

4.1 Viewing and Modifying Properties
Data Length specify the maximum length of the data stored in this field.

InitValue define an initial value for a field.

FieldClass define the class for a field (that is, specify whether it is a normal field, a
FlowField or a FlowFilter field).

CalcFormula define a formula used by a FlowField.

AltSearchField define an alternative search field.

DecimalPlaces set the number of decimal places shown to the user. This property also
performs validation of whether user input conforms to this setting.

Editable determine whether a field can be edited.

NotBlank force the user to make a non-blank entry in this field.

BlankNumbers tell the system to blank a range of numbers as it formats them.

Numeric force the user to enter numbers in this field.

CharAllowed set the characters you will allow the user to enter in this field.

DateFormula validate the syntax of a date expression entered by the user.

Standard day/time unit specify the unit of measure that is used when you enter data into
Duration fields.

MinValue set the minimum value for the contents of a field.

MaxValue set the maximum value for the contents of a field.

Title add a title to a field. The first letter in each word is capitalized.

ValuesAllowed specify the values you want to allow in the field. Can be specified either
as a range or as distinct values, or as a combination of these.

AutoIncrement specify whether or not each field value is automatically given a new
number that is greater than the number given to the previous value.

TableRelation define relationships to other tables. Refer to the section Setting
Relationships Between Tables on page 60 for a detailed discussion
about how to create table relations.

ValidateTableRelation tell the system whether or not it should validate a table relationship.

TestTableRelation tell the system whether or not you want it to include this field when it
tests the table relationships

TableIDExpr specify the ID of the table to which you want to apply a table filter.

BlankZero define that the field will appear blank if the value is 0 (zero) or FALSE.

DataLength define the length of a data field.

SubType define the subtype of a BLOB field (for example a Bitmap or Memo).

OptionString define an option string (a comma-separated string of options). The
maximum size is 1000 characters.

ClosingDates determine whether closing dates are allowed.

AutoFormatType determine how data is formatted.

AutoFormatExpr determine how data is formatted.

Property Name Use this property to...
53

Chapter 4. Customizing and Maintaining Tables
Refer to the online C/SIDE Reference Guide for additional information about any of
these properties.

To view or modify field properties:

1 From the Tools menu, choose Object Designer.

2 Click the Table button in the Object Designer window to get a list of the tables.

3 Select a table and click the Design button. C/SIDE will display the table in the Table
Designer:

4 Place the cursor on the line in the Table Designer that defines the field for which
you want to access the properties.

SignDisplacement shift negative values to the right for display purposes.

SQLDataType specify the data type you want to allow in a code field.
This property applies to code fields in the SQL Server Option for
Navision.

ClearOnLookup tell the system to delete the current contents of the field before it adds
the value the user selects via the lookup.

SubType provide additional information about what will be contained in this field.
This property only applies to BLOB fields.

Compressed specify whether or not a BLOB is compressed. This property only
applies to BLOB fields and only on the SQL Server Option.

OptionCaption define the text string options that will be displayed to the user.

OptionCaptionML set the strings that will be displayed to the user for selecting an option.
OptionCaptionML is only used if the field has an OptionString property.
The OptionString property contains the set of values that are
acceptable choices, and it is one of these values that will be saved in
the database or used in C/AL code.

Property Name Use this property to...

The Table Designer Place the cursor at the line defining the
field for which you want to change or
view the properties.
54

4.1 Viewing and Modifying Properties
5 From the View menu, choose Properties. C/SIDE will display the Property Sheet:

6 If you want to modify the setting of a property, simply enter the new value on the
Property Sheet. When you have entered the new value, update the property by
either pressing Enter or simply moving the cursor away from the field.

7 To get Help for a property, point at it on the Property Sheet and press F1.

EXAMPLE

The DecimalPlaces property is a typical example of a field property you may want to change.
When you create a new field of type Decimal, C/SIDE will assume that you want the value to be
formatted as a currency. If your decimal field will not contain a currency, you can use this property
to determine the number of decimal places that will appear on the screen.

Viewing and Modifying Key Properties
The keys associated with a table have properties that describe their behavior, just as
tables and fields do. When you create a key, C/SIDE automatically suggests a number
of default values for these properties. Depending on the purpose of the key, you will
sometimes want to change these default values.

C/SIDE contains the following properties for keys:

The Property Sheet
displays the
properties for the
current field.

Property Name Use this property to...

Enabled determine whether the system will maintain an index for the key. You
cannot use a key unless it is enabled.

Key define the key.

SumIndexFields determine the fields for which the system will maintain a SumIndex®.

KeyGroups determine which keygroups the key is a member of.

BackupKey see whether any errors occurred the last time you restored a backup.

MaintainSQLIndex determine whether or not a SQL Server index corresponding to the
Navision key should be created.
55

Chapter 4. Customizing and Maintaining Tables
Refer to the online C/SIDE Reference Guide for additional information about these
properties.

To view or modify properties for the keys of a particular table:

1 From the Tools menu, choose Object Designer.

2 Click the Table button in the Object Designer to get a list of the tables.

3 Select a table and click the Design button. C/SIDE will display the table in the Table
Designer:

4 From the View menu, choose Keys. C/SIDE will display:

5 Place the cursor on the line defining the key for which you want to view or modify
the properties.

MaintainSIFTIndex determine whether or not SIFT structures should be created in SQL
Server to support the corresponding SumIndexFields for the Navision
key.

SIFTLevelsToMaintain specify which SIFT levels are maintained for a key.

Property Name Use this property to...
56

4.1 Viewing and Modifying Properties
6 From the View menu, choose Properties. C/SIDE will display the Property Sheet:

7 If you want to modify the setting of a property, simply enter the new value in the
Property Sheet. When you have entered the new value, update the property by
either pressing ENTER or simply moving the cursor away from the field.

8 To get Help for a property, point at it on the Property Sheet and press F1.

The Property
Sheet for a
key
57

Chapter 4. Customizing and Maintaining Tables
4.2 USING TABLE AND FIELD TRIGGERS

C/SIDE recognizes certain things that happen to a table when you use it, for example
that you insert or modify data. In response, you can get the system to execute C/AL
code defined in a trigger. Triggers can be thought of as predefined functions that are
executed when certain things happen. The bodies of these functions are initially empty
and must be defined by the developer. By defining C/AL code in triggers, you can
change the default behavior of the system. The triggers in a C/SIDE table can be
divided into two categories:

· Table triggers

· Field triggers

Tables in C/SIDE have the following triggers:

Fields in tables have these triggers:

If you are not familiar with C/AL programming, please refer to chapter 13, Introducing
the C/AL Language, on page 233.

To define or modify a trigger for a table or a field:

1 Open the Object Designer and click Table to see a list of the tables.

2 Select the table and click Design. The system will open the Table Designer,
containing a list of the fields in the table.

3 Click View, C/AL Code (F9). C/SIDE will display the code for the table in the Table
Designer. The system uses the position of the cursor in the Table Designer to
determine what code to display. That is, if you place the cursor on a specific field in
the Table Designer, the code in the C/AL Editor is automatically scrolled so that the
first trigger related to that field appears at the top of the window. If the cursor is
placed on an empty line in the Table Designer, the system shows the first trigger
related to the table itself. Notice, however, that the position of the cursor in the
Table Designer does not restrict your access to other triggers. You can always scroll
up and down through the triggers in the C/AL editor.

Table Trigger Name Executed when...

OnInsert a new record is inserted into the table.

OnModify a record in the table is modified.

OnDelete a record in the table is deleted.

OnRename a record is modified in a field that is part of the primary key.

Field Trigger Name Executed when...

OnValidate data is entered in a field or when <Record>.VALIDATE is executed
in C/AL code.

OnLookup Lookup (F6) is activated.
58

4.2 Using Table and Field Triggers
4 Enter or modify the C/AL code in the relevant trigger(s).
59

Chapter 4. Customizing and Maintaining Tables
4.3 SETTING RELATIONSHIPS BETWEEN TABLES

As mentioned in the section Introduction to C/SIDE Application Design on page 12, it
is common to distinguish among three types of relationships between tables in
relational database design:

· One-to-Many Relationships

· Many-to-Many Relationships

· One-to-One Relationships

Because the one-to-many relationship is the most commonly used, this section will
focus on this type of relationship. If your database design model indicates that you
need to set up a many-to-many relationship, you probably have a problem in your
design – it may be inefficient. You normally break down a many-to-many relationship
into two one-to-many relationships. A one-to-one relationship is usually undesirable
and can often be avoided by simply combining the two tables. To learn more about
database design, refer to one of the text books mentioned in the subsection
Recommended Books on Database Design on page 16.

Why Use Relationships?
If your database contains tables with related data you can define a relationship
between them. You relate tables by specifying one or more fields that contain the
same value in related records. These matching fields often have the same name in
each table. You can use relationships to:

· validate data entries.

· perform Lookup in other tables.

· automatically propagate changes from one table to other tables.

Table Relations and the TableRelation Property
Table relations are defined using the TableRelation property. This property is very
flexible and allows you to define both simple and advanced table relations. A typical
simple table relation consists of just a table ID and an optional field ID, while advanced
table relations are typically prefixed with a conditional statement and include filters.
The syntax for table relations is:

<TableRelation> ::=

<TableNo>[.<FieldNo>] [WHERE (<TableFilters>)] |

IF (<Conditions>) <TableNo>[.<FieldNo>]

[WHERE(<TableFilters>)] ELSE <TableRelation>

<Conditions> ::=

<TableFilters>

<TableFilters>::=

[<TableFilter> {,<TableFilter>}]
60

4.3 Setting Relationships Between Tables
<TableFilter>::=

<DstFieldNo>=CONST(<FieldConst>) |

<DstFieldNo>=FILTER(<Filter>)

where...

Creating Basic Table Relations
When you create table relations you can either enter them manually or use the assist-
edit tool. You will usually enter basic table relations such as:

<TableNo>[.<FieldNo>]

directly on the Property Sheet, whereas you will use assist-edit to enter the more
advanced table relations that use conditions and filters. Below you will see how to
create (basic) table relations by entering them directly on the Property Sheet. In the
following section, you will see how to use the assist edit tool to do the same.

To create a basic table relation:

1 Open the Object Designer and click Table to see a list of the tables.

2 Select a table for which you want to create a relationship, and click Design. C/SIDE
will display the table in the Table Designer.

3 Make sure that the cursor is placed in the field for which you want to set up a
relation. Click View, Properties and C/SIDE will display the Property Sheet for the
field:

Symbol Explanation

<TableNo> Specifies the related table.

<FieldNo> Specifies a field in the related table.

<Conditions> Table relations can be conditional.

<TableFilters> A list of table filters.

<TableFilter> A table filter can be either a constant expression or a filter
expression.

<DstFieldNo> Specifies the destination field number.

<Filter> A filter expression such as 10|20..30.

Define the table
relation here
61

Chapter 4. Customizing and Maintaining Tables
4 Enter the table relation directly in the Value field for the TableRelation property.
Simple table relations use the syntax: <TableNo>.[<FieldNo>]. Refer to the next
section to learn how to use the assist-edit tool to create advanced table relations.

EXAMPLE

Assume that you have an Orders table that stores orders and a Salesperson table that stores the
names of all salespeople in your company. In the Orders table, you can include a field called
Salesperson that identifies the salesperson. By setting up a relationship between these two tables
you can get the system to check whether the Salesperson field in the Orders table contains a
valid code.

EXAMPLE

Assume that you have a Vendors table with all your vendors and a Currency Code table. Then
you can create a relationship between a Currency Code field in the Vendors table and the
Currency Code table. This will allow users to lookup (F6) information about valid currency codes.

EXAMPLE

Assume that you have a Vendors table and a Currency Code table as in the example above. If
you change one of the currency codes in the Currency Code table, the system will automatically
propagate this change to all the tables that refer to this code.

Creating Table Relations with Assist-Edit
C/SIDE has an assist-edit tool to help you enter advanced table relations. By an
advanced table relation, we mean a table relation that is prefixed with a conditional
statement and uses filters.

To create a table relation using assist-edit:

1 Start exactly as if you are creating a basic table relation. Repeat steps 1 to 3 as
described on page 61.

The Orders
table

Sales-
person

The Salesperson
table

Code

When data is entered in a field in
the Salesperson column in the
Orders table, the system uses the
relation to the Salesperson table
to check whether the code is valid.

The TableRelation property for the
Salesperson column is set to
Salesperson.Code.
62

4.3 Setting Relationships Between Tables
2 Click the assist-edit button in the Value field for the TableRelation property. C/SIDE
will display:

3 Fill in Condition fields by using the assist-edit to set the relevant table filters. For
example, you can look up in different tables, based on the value in an option field.

4 In the Table field, enter the name of the table to which you want to make a relation,
or use the lookup button to select a table from a list. In the Field field, you can enter
the name of the field or use the lookup button to select from a list of fields (those in
the table you have entered in the Table field).

5 If necessary, define a table filter (for the table in the Table field) in the Table Filter
field.

Maintaining Table Relationships on SQL Server
The TableRelation property in Navision can be represented in SQL Server by table
relationships that are known as foreign key constraints. These table relationships are
meta-data about the tables and are only intended for modelling and diagramming and
are not used to enforce data integrity. The foreign key constraints are disabled.

The table relationships in SQL Server can be accessed with external tools that can
use this information to generate diagrams illustrating the structure of the database.

You can use the Maintain Relationships option on the Integration tab of the New
Database and the Alter Database windows to enable and disable the table
relationships on SQL Server. For more information about setting this option, see the
manual Installation & System Management: Microsoft Business Solutions–Navision
SQL Server Option.

Requirements

There are certain requirements that must be met before a TableRelation property can
be represented on SQL Server.

To maintain a table relationship:

· The fields forming the relationship must be of the same data type in both of the
related tables. This also applies to any fields that are specified in the Table Filter
field. Text and code fields are compatible as long as they have the same length.
63

Chapter 4. Customizing and Maintaining Tables
· The SQL Data Type property of code fields must be the same in both tables.

· The table filter that is part of the table relationship must contain only the FIELD filter
type. Table filters of the CONST and FILTER filter type cannot be created on SQL
Server.

· Conditional relationships have one SQL Server relationship for each condition, as
long as all of the criteria listed here are met by each condition.

Synchronization

The TableRelation properties and SQL Server relationships are automatically
synchronized when you create a table and when you redesign a table. However, there
are some situations in which you might need to manually synchronize the
relationships:

· Deleting a table in the Object Designer.

· Restoring a database backup.

· Importing a .fob file.

To manually initiate the synchronization process:

1 Click File, Database, Alter, and the Alter Database window appears.

2 Click the Integration tab.

3 Enter a check mark in the Synchronize check box and click OK.

This check box is only enabled when there are table relationships that need to be
synchronized because of inconsistencies in the TableRelation properties.

If an error occurs during the synchronization process, you will receive an error
message informing you that a particular table has an invalid relationship. To correct
this error, you must modify the TableRelation property of the table in question in the
Table Designer and then manually synchronize the relationships again.

.
Note

.
Table relationships are not generated or maintained when you import a .txt file.
64

4.4 Changing Tables That Contain Data
4.4 CHANGING TABLES THAT CONTAIN DATA

When you design the tables in your database, you determine which fields they
contain. Sometime later, you may want to modify the design of some of the tables in
your application. Typically you will want to add or delete fields, or make changes to
field names or data types.

.
Note

C/SIDE is designed to ensure that you never lose data when you modify the design of

.
a table that contains data.

Rules for Changing Tables
Whether it is possible to make changes to a table depends on a number of things. If
you haven’t added data to the table, you can modify it as you like, but when the table
contains data, a number of restrictions apply. The table below gives some general
rules:

Modification Rules

Changing a field name You can always change the name of a field.

Changing a data type You can change the data type for a field only if there is no data in
this field for any of the records in the table. There is one exception
to this rule: you can change the data type of a field from Code to
Text even if the field contains data for some records.

Adding a field to a table You can always add a field to a table.

Deleting a field In order to delete a field, you must delete all data from the field in
all records in the table. Furthermore you must remove all
references to the field from other tables, forms and reports.

Changing the length of a
String field

You can always increase the length of a String field. Whether you
can decrease the length of a String field depends on the contents
of all the values in the column in the table. The minimum length of a
String field is determined by the longest string in the column.
65

Chapter 4. Customizing and Maintaining Tables
4.5 LINKED OBJECTS

With Navision, you can create a table definition for a SQL Server object (user table,
system table or view) that already exists in the current database.

Defining Linked Object Table Properties
You use the table property LinkedObject to link to SQL Server objects by changing the
value to Yes when creating or modifying a table description in the table designer.
When you change this value to Yes, the LinkedInTransaction property becomes
available.

The LinkedInTransaction property must be set to No when the Navision table
description refers to a view that depends on objects that are outside the current
database or on a linked server.

The LinkedInTransaction property allows you to read and modify data from linked
server data sources, such as Excel, Access or another SQL Server. This access is not
under Navision transaction control. This means that if a Navision transaction is
aborted, any changes that were made during this transaction to a linked object that is
outside the current database or on a linked server will remain in effect. For information
about linked sever data sources, see Access to Objects in Other Databases or on
Linked Servers on page 69.

.
Note

You cannot run tables with the LinkedInTransaction property set to No when the

.
database has been set to single user mode.

Creating a Navision Table Description

The following descriptions illustrate the different kinds of Navision table descriptions
that you can create, depending on the LinkedObject and LinkedInTransaction table
property values. You must be a member of the db_owner fixed database role to create
a table description.

To create a non-linked table:

· Set the value of the LinkedObject property to No.

· When you save this table, a SQL Server table that is owned by the db_owner fixed
database role is created with the name you have specified (including the company
name, if necessary).

· If an object with this name already exists, an error message is displayed and the
table is not saved.

To create a linked object that is under transaction control:

· Set the LinkedObject property to Yes.

· Set the LinkedInTransaction property to Yes.
66

4.5 Linked Objects
· The table is saved without checking its validity. Navision will check that the
corresponding SQL object exists and that it is compatible with the Navision table
description when the table is accessed.

To create a linked object that is not under transaction control:

· Set the LinkedObject property to Yes.

· Set the LinkedInTransaction property to No.

· The table is saved without checking its validity. Navision will check that the
corresponding SQL object exists and that it is compatible with the Navision table
description when the table is accessed.

Deleting a Navision Table Description:

When the LinkedObject property is set to No:

· The SQL Server object is deleted if it is a user table.

· The SQL Server object is not deleted if it is a system table or a view. It can only be
a system table or a view if it has been changed to one of these object types with the
aid of an external tool. The LinkedObject property must be set to Yes in order to be
able to link to a system table or a view.

When the LinkedObject property is set to Yes:

· The SQL Server object is not deleted.

This means that if you create a Navision table with the LinkedObject property set to
No and then change it to Yes, its corresponding SQL Server object is not deleted.

When you modify the LinkedInTransaction property of a Navision table:

· All access to the linked SQL Server object will be made under or outside
transaction control, depending on the setting you choose.

When you access data in a linked object:

· If the LinkedInTransaction property is set to Yes, all access to the linked object will
be performed under transaction control – within Navision transactions.

· If the LinkedInTransaction property is set to No, all access to the linked object will
be performed outside transaction control – independent of Navision transactions.

Requirements for Linking Objects
When you are using a linked object, you should take the following into account:

· The name of the SQL Server object that includes any company prefix and ($)
separator must match exactly with the name of the Navision table.

· As is the case when creating regular Navision tables, you must be a member of the
db_owner fixed database role in the current database.
67

Chapter 4. Customizing and Maintaining Tables
· As is the case with regular Navision tables, the object must exist in the current
database and be owned by a user in the database who is a member of the
db_owner fixed database role. A SQL Server view can be used to access objects
outside the current database (including those residing on separate servers) or
owned by other users. For more information about accessing objects outside the
current database, see page 69.

· Navision will automatically grant the required SQL permissions on the object so that
you can access it in the same way that regular Navision tables are accessed. It will
then be subject to permissions assigned in the Navision security system.

· The object being linked must have a SQL Server table definition that is compatible
with the Navision table definition.

· A view that cannot be updated in SQL Server (for example one containing
computed/converted columns or unions) will also be read-only if it is used as a
linked object from Navision. With SQL Server 2000, you can write Instead-Of
triggers to define the logic that allows such a view to be updated. This logic is not
part of Navision.

Rules Determining Compatibility

There are a number of rules that you need to keep in mind when you use linked
objects:

· All columns in the object must be type compatible with those named in the Navision
table definition. It is not necessary to name all the columns in the Navision table
definition. For more information about type compatibility, see page 33.

· SumIndexFields cannot be defined for any object type.

· If the object is a user table, it must have a primary key constraint that contains the
same number of columns as those listed in the Navision primary key, and these
columns must have the same names.

· If the object is a view or system table, a primary key must be defined, and any
secondary keys may also be defined if required. These keys will only be used in
Navision. They will have no effect on a view, its underlying objects in SQL Server or
on a system table. It is important that the data in the columns named in the primary
key is unique. This will not be enforced as a physical constraint by the view or
system table in SQL Server. However, Navision will order the data as though a
primary key was physically defined. Navision relies on this uniqueness in order to
correctly identify and order records.

· If the object is a view, it can have only one column of the SQL Server timestamp
type, but it does not need to have any unless BLOB fields are present in the
Navision table definition. A timestamp column must exist in a user table.

· An IDENTITY column can be used in a user table or a view, and Navision will ignore
this column when inserting records into the table. This allows the IDENTITY column
to be used as intended. Similarly, a computed column in a user table is also
ignored. For a view, a column defined on a computed table column cannot be used
if insert operations are required.

· You cannot link to a SQL Server temporary table.
68

4.5 Linked Objects
· Multilanguage views are not created or maintained for linked objects. For more
information about multilanguage views, see the section "Creating and Maintaining
Databases" in the manual Installation & System Management: Microsoft Business
Solutions–Navision SQL Server Option.

Once an object has been linked, Navision treats it like a regular table. However,
depending on the object type, SQL Server may prevent certain operations from taking
place. For example, a non-updateable view cannot be updated in Navision, and a SQL
Server error message appears if you attempt to do this. The ability to redesign the
object from within Navision is limited, and these restrictions are described in the next
section.

Redesigning the Navision Linked Object Table Definition
A Navision linked object table definition can be redesigned in accordance with the
following rules:

· It cannot be renamed by changing the table definition name or the company name.

· No fields in the table definition can be renamed.

· New fields can be added providing they exist in the view, and existing fields can be
deleted. In either case, the definition of the view in SQL Server is not changed.

· The primary and secondary key definitions can be changed. Also, new keys can be
added, and existing keys can be deleted.

· The Navision field data types can be modified provided that the new type remains
compatible with the column type in the view.

· A linked user table can undergo any design changes that are applicable to a regular
table that is created from within Navision.

· If the DataPerCompany property of the Navision table definition is changed, it will
result in an attempt to link to a new object. This new object will be based on the new
company name. The previously linked SQL Server object will no longer be linked by
the table definition.

· The LinkedObject table property can only be changed from Yes to No for a user
table.

Access to Objects in Other Databases or on Linked Servers
You can access objects outside the current database or server from Navision by
linking to an appropriately defined view in the current database. You can create a view
definition outside of Navision that accesses data on SQL Server linked servers, which
can access heterogeneous data sources. This could, for example, involve performing
a join of an Oracle table, a Microsoft Access table or a Microsoft Excel spreadsheet.

In order to access objects in other databases or on linked servers you must comply
with the following rules:
69

Chapter 4. Customizing and Maintaining Tables
· You must set the LinkedInTransaction table property to No in order to use a view
referring to objects outside of the current database. The ability to modify data in
these objects is dependent on the data providers that the objects refer to.

· All security permissions for linked servers must be granted outside Navision to the
appropriate SQL Server logins.

· If a linked object refers to a view that accesses objects that are stored in another
database on the same server, this view must be treated as though it were
accessing a linked server. It is not sufficient to grant permissions for the objects to
the users that will be using the view. This constraint does not apply if all the users
using the view are members of the db_owner fixed database role in the current
database.
70

Chapter 5
Special C/SIDE Tables

In addition to the normal database tables, C/SIDE has three
other types of tables that serve special purposes in C/SIDE
applications. These are called temporary, system and
virtual tables. Temporary tables are used as a repository for
temporary information at run time, while the two other types
are system generated tables that provide various
information about the current state of the system.

This chapter introduces you to the special C/SIDE tables
and explains how to use them in your design.

· What Is a Temporary Table?

· What Is a System Table?

· What Is a Virtual Table?

· Overview of C/SIDE Virtual Tables

Chapter 5. Special C/SIDE Tables
5.1 WHAT IS A TEMPORARY TABLE?

A temporary table can be regarded as a temporary variable that is used to hold a
table. A temporary table is intended to be used as a buffer for table data in your C/AL
programs. If you are not familiar with C/AL, please refer to chapter 13, Introducing the
C/AL Language, on page 233.

You can do almost anything with a temporary table that you can do with a normal
database table; the only differences between a normal database table and a
temporary table are that:

· Temporary tables aren’t stored in the database but only held in memory on your
workstation until the table is closed.

· The write transaction principle that applies to normal database tables does not
apply to temporary tables. If you are not familiar with the transaction principle,
please refer to the section Write Transactions and Recovery on page 428.

The advantage of using a temporary table is that all interaction with a temporary table
takes place on the client. This reduces the load both on the network and on the server.

When you need to perform many operations on data in a specific table in the
database, you can load the information into a temporary table while you modify it.
Because all operations are local, this will speed up the process.

Defining and Using a Temporary Table
Before you can use a temporary table in your C/AL code, you have to define it. The
variable holding a temporary table is defined just like any other global or local variable.

To define a temporary table:

1 We assume that you are working in the C/AL editor. From the View menu, choose
C/AL Globals or C/AL Locals, depending on whether your variable is going to be
global or local.

The temporary
tables are stored
only on the client.

C/SIDE
Client

C/SIDE
Server

...

C/SIDE
Client

C/SIDE
Client
72

5.1 What Is a Temporary Table?
If you choose C/AL Globals, C/SIDE displays:

2 Enter a name for the temporary table variable and enter Record as data type. Use
the lookup button in the Subtype field to select the table you want to make a
temporary copy of.

3 With the cursor still on the line that defines the temporary table, choose Properties
from the View menu to display the Property Sheet. C/SIDE displays:

4 Change the Temporary property value to Yes.

After you have created a temporary table as described above, you can use it in your
C/AL code. You can apply filters and perform searches just the way you do when you
work with normal database tables.
73

Chapter 5. Special C/SIDE Tables
5.2 WHAT IS A SYSTEM TABLE?

System tables are stored in the database just like normal database tables. However,
system tables, unlike normal database tables, are created automatically by the
system. The information in system tables is closely related to the DBMS, which uses
the system tables to manage, for example, system security and permissions in
C/SIDE.

It is possible to read, write, modify and delete the information in system tables.

There are eight system tables in C/SIDE:

· User Table

· Member Of Table

· User Role Table

· Permission Table

· Windows Access Control Table

· Windows Login Table

· Company Table

· Database Key Groups Table

The first six tables in the list above all deal with system security.

.
About permissions

In order to insert, modify or delete information in the User, Member Of, User Role,
Permission, Windows Access Control and Windows Login tables, you must have
at least the same permissions as the users you want to modify. This means that you
cannot assign to other users or take away from them permissions that you do not have

.
yourself.

The following subsections provide an overview of these system tables. For further
information, see the manual Installation & System Management: Microsoft Business
Solutions–Navision Database Server.

C/SIDE
Client

C/SIDE
Server

...

 System tables are stored
in the database like
normal database tables.

C/SIDE
Client

C/SIDE
Client
74

5.2 What Is a System Table?
The User System Table
The User system table provides an overview of all the user IDs you have defined in
your database for users with database logins. Each record in the User system table
defines a single user ID. For information about creating database logins, see the
manual Installation & System Management: Microsoft Business Solutions–Navision
Database Server.

For each ID defined in your database, the User system table includes information
about the password (displayed in encrypted form on your screen), the real name of the
user and how long the user’s ID is valid. You can create new user IDs by entering
appropriate data in this table. Correspondingly, you can remove a user ID by deleting
the record from this table. (Of course, this depends on your own permissions.)

.
Deleting a record

If you delete a record in the User system table, the system will automatically remove

.
the corresponding entries in the Member Of system table.

The Member Of System Table
The Member Of system table provides an overview of which user groups (roles) a
user is a member of. Each user (ID) can be a member of any number of user groups.
75

Chapter 5. Special C/SIDE Tables
The User Role System Table
The User Role system table provides an overview of the user roles in your database.
A user role specifies a set of permissions. The exact permissions for each user role
are defined in the Permissions system table.

.
Deleting a Record

If you delete a record in the User Role system table, the system will automatically

.
delete the corresponding entries in the Member Of and Permission system tables.

The Permission System Table
You can use the Permission system table to define what different user roles are
allowed to do. Permissions are specified for objects; you can specify the exact set of
permissions per table, form, and so on. You can specify that a user role has no (blank
field), Full (Yes), or Indirect permissions to perform the following actions:

· Read

· Create/Insert

· Modify

· Delete

· Execute
76

5.2 What Is a System Table?
The Windows Access Control System Table
The Windows Access Control system table enables you to manage the access
rights of a user or group of users to Windows 2000, and thereby to Navision. Each
user’s or group’s Windows login has a unique security identifier (SID). Further, each
user or group has a role ID, which relates to a set of permissions within a certain
company in Navision. The information displayed in the Login ID and Role Name
fields is based on the login SID and role ID, respectively.

The Windows Login System Table
The Windows Login system table enables you to define which Windows users and
groups can log on to the system. Only those Windows users or those who are
members of a Windows group that are listed here can log on. Each Windows user or
group has a unique security identifier (SID). The name of the user or group that is
displayed in the ID field is generated from the name of the user or group that is
identified by the SID. The Name field is currently unused.

The Company System Table
The Company system table provides an overview of the companies in your database.
It contains a record for each company in your database. You can create a new
company by entering a new record in this table. You can also delete a company in
your database by deleting the corresponding record in the Company table. (When
you do that, you delete all the tables in the company. At the same time you also delete
all permissions that include this company.)
77

Chapter 5. Special C/SIDE Tables
The Database Key Groups System Table
The Database Key Groups system table provides an overview of the key groups
defined in your database. Each record in this table shows a key group.

.
Note about Key Groups

By making your keys members of key groups, you can activate or deactivate various
combinations of keys in your tables by enabling or disabling the key groups. To make
use of key groups, select File, Database, Information and then click Tables. The

.
Database Information window appears. You can now click Key Groups.
78

5.3 What Is a Virtual Table?
5.3 WHAT IS A VIRTUAL TABLE?

A virtual table contains information provided by the system. In C/SIDE you have
access to a number of virtual tables. They work in much the same way as normal
database tables, but you cannot change the information in them. That is, you can only
read the information. Another difference is that virtual tables are not stored in the
database (as normal tables are) but are computed by the system at run time.

When to Use Virtual Tables
Virtual tables give you a consistent interface to a variety of different information.
Because a virtual table can be treated just like an ordinary table, you can use the
same methods to access information in virtual tables as you use when working with
ordinary tables. For example, you can use filters to get subsets or ranges of integers
or dates.

The virtual tables provide information such as:

· integers in the range -1.000.000.000 to 1.000.000.000.

· dates within a given period.

· an overview of operating system files.

· an overview of logical disk drives.

· a trace of database requests from your client to the database.

· an overview of connected users.

· an overview of the operating system files that store the database.
79

Chapter 5. Special C/SIDE Tables
5.4 OVERVIEW OF C/SIDE VIRTUAL TABLES

C/SIDE contains numerous virtual tables, including:

Using the Virtual Tables
The first of these virtual tables give you easy access to dates, integers, information
about your operating system files and the logical drives on your computer.

The Date Virtual Table

This virtual table provides easy access to days, weeks, months, quarters and years.
The Date virtual table has the following fields:

The following figure illustrates how you should think of the Date virtual table. For each
period type, there are many records in the Date table.

You can apply filters to the Period Type, Period Start, and Period End fields to
easily get a subset or range of days, weeks, months, quarters or years to use in your
forms or reports.

EXAMPLE

The Date virtual table is most frequently used to provide a range of dates, the G/L Balance form
below is a typical example. You will learn how to design forms in part 2, Forms, on page 97.

Virtual Tables

Date, Integer, File, Drive, Monitor, Session, Database File, Table Information, Field,
Server, Windows Object, Windows Group Member, SID - Account ID, User SID

Field Comments

Period Type Days, weeks, months, quarters or years

Period Start The date of the first day in the period

Period End The date of the last day in the period
80

5.4 Overview of C/SIDE Virtual Tables
The Integer Virtual Table

This virtual table includes integers in the range -1,000,000,000 to 1,000,000,000. The
Integer virtual table has only one field:

By applying a filter to this virtual table, you can easily get a subset or range of
numbers that can be used to control looping in reports.

The File Virtual Table

This virtual table provides an overview of the files in a directory on your disk system.
The File virtual table has the following fields:

This information is
provided by the Date
virtual table

Field Comments

Integer An integer in the range -1.000.000.000 to 1.000.000.000

Field Comments

Path The filter on this field determines which directory will be shown.

Is a File The value Yes indicates that the entry is a file, while the value No
indicates that the entry is a directory.

Name The name of the file or directory.

Size The size of the file in bytes.

Date The date the file was last modified.

Time The time the file was last modified.

Data A BLOB field with the contents of the file.
81

Chapter 5. Special C/SIDE Tables
The Drive Virtual Table

This virtual table provides an overview of the logical drives on your computer. The
Drive virtual table has the following fields:

.
Note

If there is no diskette in your disk drive, the Size (KB) and Free (KB) fields will contain

.
-1.

The other virtual tables are most commonly used by the system administrator, as they
provide a lot of useful information about the users that are connected to the system.
They also provide information about the current state of the system.

The Monitor Virtual Table

This virtual table traces all the database requests made by the client to the tables in
your database. You can get access to the Monitor virtual table directly from C/SIDE
by clicking Tools, Client Monitor.

This virtual table is used by C/AL programmers to get an overview of the time
consumption of specific operations. C/AL programmers can use the information in this
virtual table to optimize the performance of their code. The Monitor virtual table
contains the following fields:

Field Comments

Drive The name of the drive, such as A: or D:

Removable Indicates whether the disk is removable (a floppy disk) or a fixed
disk

Size (KB) The total size of the disk

Free (KB) The amount of free space on the disk

Field Comments Possible Values

Entry No. Successive numbers
that are increased for
each database
request

From 1 to 231-1

Function Name The type of database
request

LOCKTABLE, DELETE, MODIFY, INSERT,
DELETEALL, Create Key, Delete Key, Redesign Table,
FIND/NEXT, CALCSUMS, CALCSUMS (Slow),
COMMIT, Delete Table, Create Database, Close
Database, Open Database, Delete Database, Expand
Database, Get Table Statistics, COUNT, Get Database
Statistics, Optimize Key, Login, Read Database Block,
Read BLOB, Insert BLOB, Delete BLOB, Clear Old
Versions, Get Database Free Percent, Preload
Database Block, and so on.
82

5.4 Overview of C/SIDE Virtual Tables
You can access the Monitor virtual table directly by clicking Tools, Client Monitor and
the Client Monitor window appears:

The Client Monitor window contains two tabs and you use the Options tab to specify
the kind of information that is collected by the Client Monitor.

Parameter No. The number of the
parameter

Depending on the number of parameters

Parameter The name of the
parameter

Table, Key, Order, Filter, Search Method, Search
Result, Records Found, Sum, CPU (ms), Records
Read, Sum Intervals, Records Deleted, Records
Modified, Disk Reads, Disk Writes, Record, Wait,
SumIndexFields, BLOB Field, Commit, User ID, File
Name, Source Object, Source Trigger/Function, Source
Line No., Source Text, Record Count, Timeout Status,
Time Out (ms)

Number If the parameter is a
number, the value is
shown in this column

Any numeric value

Data Any non-number
parameter is shown
in this column

Any string

Field Comments Possible Values
83

Chapter 5. Special C/SIDE Tables
The Options tab contains the following parameters, and the advanced parameters
are only available in the SQL Server Option:

Client Monitor – Additional Parameters for the SQL Server Option

New parameters have been added to the Client Monitor to improve troubleshooting
and performance analysis when you are running the SQL Server Option for Navision.
These new parameters can be configured dynamically and include status information
about caching, SQL statements and execution plans.

Collecting server statistics is time-consuming. Therefore, if you are performing
benchmarking to get the most accurate value for the Elapsed Time (ms) parameter,
you should not collect statistics at the same time.

Parameter Behavior When Selected

Include Object table activity Every function that acts on the Object table is written to
the Client Monitor.

Retain last source information The parameters Source Object, Source Trigger/Function,
Source Line No. and Source Line are written to the Client
Monitor even for functions that are not related to the
execution of C/AL code.

Show SQL statement The SQL statement is displayed.

Use placeholders The SQL statement uses '?' placeholders instead of filter
values.

Show server statistics The following statistics are collected – 'Server Time',
'Logical Reads' and 'Records Read'.

Show execution plan and SQL index The SQL plan is displayed (for most statements), as a
collapsed tree with the format:

Plan Step(Object)[n,p];... Here, node n has parent p.
Example:
Computer Scalar[2,1];Clustered Index Seek(User$0)[4,2]

This defines the tree:
1 -- Root
---------2 -- Computer Scalar
------------------4 -- Clustered Index Seek(User$0)

The SQL index is also displayed as a list of fields in the
same way as the Order parameter.

Show extended status information The SQL status displays additional information:
internal unique statement ID,
reuse status,
prepared status,
cursor type,
optimizer hints,
transaction type.
84

5.4 Overview of C/SIDE Virtual Tables
Similarly, displaying the execution plans is extremely time-consuming and should not
be done when you are benchmarking. This parameter is useful when you are
troubleshooting problematic application areas to determine if a particular SQL
statement is a bottleneck, and can be valuable to users who are unable to run the SQL
Profiler tool.

.
Note

Executing a SQL statement in the Query Analyzer in order to use its graphical
execution plan does not necessarily give the same plan or statistics as it does when
the same statement is executed from within Navision. This is due to cursor type
differences. The SQL Profiler or the Client Monitor SQL Plan parameter give the most

.
accurate plan.

Showing extended status information is useful when you want to see which properties
of a SQL statement are being used in an operation. It is also possible to see how
frequently statements are being reused or re-created. The unique ID can be used to
cross-reference the statements that are being reused and determine the original SQL
statement entry.

To use the Client Monitor to monitor server calls:

1 Open the Client Monitor.

2 Select the parameters that you want to use.

3 Click Start to activate the Client Monitor.

4 You can now close the Client Monitor window while you perform the tasks you
want to investigate.

5 When you have completed these tasks, click Tools, Client Monitor to open the
window again.

6 Click Stop to stop the Client Monitor.

The Session Virtual Table

This virtual table gives you an overview of the users that are connected to Navision
Database Server (NDS) or to SQL Server.
85

Chapter 5. Special C/SIDE Tables
The Session virtual table contains the following fields:

Field Comments SQL
Server

NDS

Connection ID The ID of the connection. X X

User ID The user ID of the connected user. X X

My Session Shows whether or not a session belongs to you. X X

Login Time The time when the user logged in and started this
session.

X X

Login Date The date when the user logged in. X X

Database Name The name of the database that this session has
opened.

X X

Application Name The name of the application connected to the
server.

X X

Login Type Shows whether this session is a Windows login or
a database login.

X X

Cache Reads The number of cache read operations performed
by this session.(A)

X

Disk Reads The number of disk read operations performed by
this session.(A)

X

Disk Writes The number of disk write operations performed by
this session.(A)

X

Records Found The number of records found since this session
logged in.

X

Records Scanned The number of records scanned by this session
since they logged in.

X

Records Inserted The number of records inserted by this session
since they logged in.

X

Records Deleted The number of records deleted by this session
since they logged in.

X

Records Modified The number of records modified by this session
since they logged in.

X

Sum Intervals The number of jumps between value intervals
made by the system when calculating sums since
this session logged in. A high value may indicate
that an inefficient key is being used.

X

Host Name The name of the workstation used by this session. X

CPU Time (ms) The cumulative amount of CPU time by this
session.

X

Memory Usage (KB) The number of kilobytes in the procedure cache
that are currently allocated to this session.

X

Physical I/O The cumulative amount of disk reads and writes for
this session.

X

86

5.4 Overview of C/SIDE Virtual Tables
(A) ONLY IF COMMITCACHE = YES

.
Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Navision, it will have to be modified to run on SQL Server. These fields will not be
created on SQL Server. If the program tries to access them, an error message will

.
appear.

C/SIDE uses the Session virtual table to display database information.

To access this virtual table from C/SIDE, follow this procedure:

1 Click File, Database, Information and the Database Information window appears.

2 Click the Sessions tab.

3 Click the AssistButton o in the Current Sessions field and the Database
Sessions window (SQL Option) appears:

An administrator can cancel one of the sessions by selecting the line in question and
deleting it. The user will then be disconnected from the server and will have to restart

Blocked Shows whether or not this session is blocked
(waiting to acquire a lock) by another session.

X

Wait Time (ms) The amount of time that this session has been
waiting.

X

Blocking Connection ID The ID of the connection that is blocking this
session.

X

Blocking User ID The user ID of the connection that is blocking this
session.

X

Blocking Host Name The name of the workstation used by the
connection that is blocking this session.

X

Blocking Object The name of the SQL object that is blocking this
session.

X

Field Comments SQL
Server

NDS
87

Chapter 5. Special C/SIDE Tables
the program if they want to continue working. The administrator must be a member of
either the sysadmin or processadmin SQL Server server rolls.

.
Note

The Database Sessions window displays different fields from the Session virtual

.
table depending on which server you are running.

The Database File Virtual Table

This virtual table provides an overview of the operating system files that store the
database. The Database File virtual table has the following fields:

(A) ONLY IF COMMITCACHE = YES

(B) NOT AVAILABLE IN THE SQL SERVER OPTION FOR NAVISION.

.
Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Navision, it will have to be modified to run on SQL Server. These fields will not be
created on SQL Server. If the program tries to access them, an error message will

.
appear.

C/SIDE uses this virtual table to show database information.

To access the Database File virtual table from C/SIDE, follow this procedure:

1 Click File, Database, Information.

2 Click the Database tab.

Field Comments

No. The number of the operating system file.

File Name The operating system file name.

Size (KB) The size of the operating system file in KB.

Total Reads The number of read accesses since the database was opened.(B)

Mean Read Time (ms) The average time for a read operation (in milliseconds).(B)

Reads In Queue Number of read operations waiting in queue.(A)(B)

Total Writes Number of write operations since the database was opened.(B)

Mean Write Time (ms) The average time for a write operation (in milliseconds).(B)

Writes In Queue Number of write operations waiting in queue (in milliseconds).(A)(B)

Disk Load (%) A percentage weight describing the load on the disk.(B)
88

5.4 Overview of C/SIDE Virtual Tables
3 Click the AssistButton o in the Database Name field. C/SIDE will display:

.
Note

The Database Files window displays only some of the fields in the Database File
virtual table. Note, this window does not appear in the Microsoft SQL Server Option for

.
Navision.

The Table Information Virtual Table

This virtual table contains various information about database tables. The Table
Information virtual table has the following fields:

(A) NOT AVAILABLE IN THE MICROSOFT SQL SERVER OPTION FOR NAVISION.

.
Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Navision, it will have to be modified to run on SQL Server. These columns will not be
created on SQL Server. If the program tries to access them, an error message will

.
appear.

Field Comments

Company Name The name of the company the table belongs to.

Table No. The ID number for the table.

Table Name The name of the table.

No. of Records The number of records in the table.

Record Size A value expressing the average size of a record. Calculated as
1024*Size(KB)/Records.

Size (KB) How much space the table occupies in the database (in KB).

Optimization A percentage of Size that expresses how much data there is in a
table. Some of the remaining size is used for internal administration
in the table while other is slack-space. Slack-space can be
minimized by optimizing the table.(A)
89

Chapter 5. Special C/SIDE Tables
C/SIDE uses the Table Information virtual table to display information about
database tables.

To access the Table Information virtual table from C/SIDE:

1 Click File, Database, Information.

2 Click Tables. C/SIDE will display:

.
Note

This window does not display all the fields in the Table Information virtual table. Use

.
the horizontal scroll bar to view the information in the hidden fields.

The Field Virtual Table

This virtual table contains various information about fields in database tables. The
Field virtual table has the following fields:

Field Comments

TableNo This field shows the ID number for the table.

No. This field shows the number assigned to the field.

Table Name This field shows the name of the table.

FieldName This field shows the name of the field.

Type The field indicates the data type assigned to the field, for example,
decimal.

Len This field shows the length of the field entry in bytes.

Class This field indicates the class of the field, for example, FlowField.

Enabled This field indicates whether the field is enabled.

Type Name This field shows the data type assigned to the field. The length of
the field entry in bytes is included for Code and Text data types.

Field Caption This field shows the caption of the field in the language that has
been selected.

RelationTableNo This field shows the ID number for the table that the field is related
to.
90

5.4 Overview of C/SIDE Virtual Tables
To access the Field virtual table from C/SIDE, follow this procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

4 Create a tabular-type form based on the Field table. C/SIDE will display:

.
Note

This window does not display all the fields in the Field virtual table. Use the horizontal

.
scroll bar to view the information in the hidden fields.

The Navision Server Virtual Table

This virtual table contains information about the Navision Database Servers and
where they reside on the network. You can see this information when the application
runs on the Microsoft Windows 2000 operating system. Navision retrieves the data
from Active Directory. See Microsoft’s Windows 2000 documentation for information
about Active Directory.

The Navision Server virtual table contains the following fields:

RelationFieldNo This field indicates the number of the field in another table that the
field is related to.

SQLDataType This field shows the data type assigned to code fields in the
Microsoft SQL Server Option for Navision.

Field Comments

Field Comments

SCP GUID Shows the globally unique identifier (GUID) for the Navision
Database Server’s service connection point (SCP).

Description Shows the name that has been given to the Navision Database
Server.

Server Name Shows the name of the computer on which the server is installed.
91

Chapter 5. Special C/SIDE Tables
To access the Navision Server virtual table from C/SIDE, follow this procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

4 Create a tabular-type form based on the Navision Server table. C/SIDE displays:

.
Note

This window does not display all the fields in the Navision Server virtual table. Use

.
the horizontal scroll bar to view the information in the hidden fields.

The Server Virtual Table

The Navision Server virtual table is only available when you are running on Navision
Database Server. If you are running on the SQL Server Option for Navision, you can
access the Server table.

Domain Shows the name of the domain on which the server resides. A
domain can consist of more than one physical location.

Net Type Shows the network type (TCP/IP or NetBIOS) that is used to
connect to the Navision Database Server.

Port Number Shows the port number for the transfer of data to the server.

Distinguished Name Shows the unique name of the Navision Database Server in Active
Directory.

Online This field indicates whether or not the server is running and thereby
available.

Field Comments
92

5.4 Overview of C/SIDE Virtual Tables
The Server table contains the following fields:

The Windows Object Virtual Table

This virtual table provides an overview of Windows users and Windows groups, which
can be integrated in the Navision security system. You can see this information when
the application is running on a client with the Microsoft Windows 2000 operating
system. Navision retrieves the data from Active Directory. See Microsoft’s Windows
2000 documentation for information about Active Directory.

The Windows Object virtual table has the following fields:

To access the Windows Object virtual table from C/SIDE, follow this procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

Field Comments

Server Name Shows the name of the computer on which the server is installed.

My Server Shows whether or not this is the server that you are logged on to.

Field Comments

GUID This field shows the globally unique identifier (GUID) for the
Windows user or group.

ID This field shows the ID of the Windows user or the Windows group.
This information is displayed in the User ID fields of the User and
Member Of system tables.

Name This field shows the name of the Windows object. This object can
be a Windows user or a Windows group. The object name is
displayed in the Name field of the User system table and in the
User Name field of the Member Of system table.

Type This field indicates whether the object is a Windows user or a
Windows group.

SID This field shows the unique security identifier (SID) for the
Windows user or group.

Distinguished Name The distinguished name identifies the domain that holds the
Windows object as well as the complete path by which the object is
reached. Every object in the Active Directory has a unique
distinguished name.
93

Chapter 5. Special C/SIDE Tables
4 Create a tabular-type form based on the Windows Object virtual table. C/SIDE will
display:

The Windows Group Member Table

This virtual table contains information about the members of Windows Groups who
can be integrated in the Navision security system. A Windows group member who has
permissions in the Navision security system does not have to enter a password when
they log on to Navision.

You can access this virtual table if you are running Navision on the Microsoft Windows
2000 operating system. The Windows Group Member virtual table has the following
fields:

To access the Windows Group Member virtual table from C/SIDE, follow this
procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

Field Comments

Group GUID This field shows the globally unique identifier (GUID) for the Windows
group.

Member GUID This field shows the GUID for the Windows group member.

Group ID This field shows the ID for the Windows group to which the Windows group
member belongs.

Member ID This field shows the ID for the Windows group member.
94

5.4 Overview of C/SIDE Virtual Tables
4 Create a tabular-type form based on the Windows Group Member virtual table.
C/SIDE displays:

The SID - Account ID Virtual Table

This virtual table can convert the security identifier (SID) for a Windows object into an
ID. It can also convert an ID for a Windows object into a SID. The Windows object can
be a Windows user or group. The ID is calculated on the basis of the SID.

If you request a record with a specific SID, C/SIDE looks up the information in the SID
- Account ID virtual table and returns the ID.

The SID - Account ID virtual table has the following fields:

.
Note

.
This table will always appear to be empty.

The User SID Virtual Table

This virtual table shows the security identifiers (SIDs) and IDs for the groups that the
user who is logged on to the system is a member of. The User SID virtual table has
the following fields:

Field Comments

SID This field shows the security identifier (SID) for the Windows user or group.

ID This field shows the ID of the Windows user or group. The ID is calculated
on the basis of the SID.

Field Comments

SID This field shows the security identifier (SID) for the groups that the user
who is logged on to the system is a member of.

ID This field shows the ID of the groups that the user who is logged on to the
system is a member of. The ID is calculated on the basis of the SID.
95

Chapter 5. Special C/SIDE Tables
To access the User SID virtual table from C/SIDE, follow this procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

4 Create a tabular-type form based on the User SID virtual table. C/SIDE displays:
96

Part 2
Forms

Chapter 6
Form Fundamentals

Forms are used to enter and display data. For example,
you can use a form to enter information about new
customers or to update and review information about
existing customers.

This chapter introduces the fundamental concepts and
basic tasks involved in designing and using forms.

· What Are Forms?

· Creating Forms

· Selecting, Moving and Adjusting Controls

· Saving, Compiling and Running Forms

Chapter 6. Form Fundamentals
6.1 WHAT ARE FORMS?

After you have created tables, the next step in developing a C/SIDE application should
be to design forms. In contrast to programs written in traditional programming
languages, C/SIDE applications do not execute sequentially: they are event-driven. A
major part of the logic of an application could be said to rest with the forms: forms are
used for entering information into database tables and for retrieving and displaying
information from database tables. It is through forms that users generate the events
that determine the flow of the application.

Forms can be used to access one table at a time, or they can combine information
from a number of different tables. A form can display information that is calculated on
the fly, as the form is displayed, and it can contain information (such as a label) that is
not related to any table, or purely decorative elements (such as bitmap pictures).

The figure below shows the components of a form and how they are related. This and
the following chapters will explore each component in depth.

Forms are created and edited in the Form Designer.

What are Controls?
All information on a form is presented in controls. Controls are objects that can display
data from a database table field, the value of a C/AL expression, bitmap pictures or
static information such as a descriptive text.

Some controls are called container controls. An example is a frame. The frame itself
does not display data or information, but it can contain a number of other controls that
you want to group. A powerful container control is the tab control. A tab control really
is a number of frames or pages that are placed on top of each other. The user can
switch between the pages by clicking the tabs that have captions. Tab controls make it
possible to group information on a form so that each page is not cluttered with
information, and it is very fast and easy to switch between pages.

Another concept is control branches, which consist of a parent control and
subordinate or child controls. The best example is a text box and a label. The child
control inherits some properties from the parent, and the entire branch can be moved
together on the form.

Form Description

Form Properties

Triggers

Controls Properties
Triggers
100

6.1 What Are Forms?
What Are Bound and Unbound Forms and Controls?
Typically, a form is related to a database table and will be used to enter information
into the table and to display information from the table. The form is said to be bound to
the table.

An unbound form is not related to a table. An example of an unbound form is a form
that is used as a menu, from which the user can choose other forms or reports to run.

The controls on a form that is bound to a table are usually bound to fields in the same
table. There need not be a control for every field in the table, nor do all controls on the
form need to be bound to table fields: controls that aren’t bound to fields are called
unbound controls. An example is a command button that causes the information on
the form to be printed; another is a control that contains a descriptive text. An
important category of unbound controls includes controls displaying information –
based on the underlying table or user-entered values – that is calculated as the form
is displayed.

What Are Form and Control Properties?
Properties describe how a control is placed on the form, what field it is related to and
what happens when information is entered into the field, among other things. Different
types of controls have different sets of properties. For example, a text box, the control
type that is typically used to display the contents of a database field, has more
properties than a picture box, a control used to display bitmap pictures.

The form itself also has properties. For example, you can specify whether the form is
to be used only for displaying information or whether it will be possible to insert new
records or update existing ones.

Properties are defined on the Property Sheet that can be edited when the form is
opened in the Form Designer.

What Are Triggers?
Certain predefined events that happen to a form or a control cause the system to
execute a user-definable C/AL function – the event triggers the function. The event
and the function are together called a trigger. Form triggers include OnOpenForm,
containing statements that will be executed when the form is opened, and
OnModifyRecord, containing statements that will be executed before the system
accepts changes the user makes to a record. Triggers are edited in the C/AL editor,
which can be opened from the Form Designer.
101

Chapter 6. Form Fundamentals
6.2 CREATING FORMS

Forms can be created and designed manually. Although this method gives you the
highest degree of control, it may take some time to master. C/SIDE offers an
alternative method that is fast and easy to use and therefore preferable when you are
just beginning to create forms: you can use a form wizard. A form wizard prompts you
for the minimum amount of information needed to create a form and then does the rest
of the work for you. The automatically created form can be changed later on in the
Form Designer.

Forms that display one record at a time are called card forms, while forms that show
several records at a time are called tabular forms. The form wizard will help you create
either type.

A Card Form

A Tabular Form
102

6.2 Creating Forms
Creating Forms with a Form Wizard
To create a form using the form wizard:

1 From the Tools menu, choose the Object Designer.

2 Click the Form button In the Object Designer.

3 Click the New button. C/SIDE will display this form:

4 If you are creating a form that is related to a table, type the name of the table in the
Table field. You can also click the Lookup button and choose the table from a list.
Once you have entered the table name in the field, press ENTER.

5 Select the option called "Create a form using the wizard." Then you must select the
type of form you want the wizard to create: card form or tabular form. After this, click
OK.

Creating a Card Form

To create a card form, follow the steps outlined above. Then proceed as follows:

1 The system asks whether you want the form to have tabs or whether it should be a
plain form. A form with tabs is a multi-page form where the user can switch between
pages by clicking the tabs.

2 If you choose to create tabs, type a caption for each tab you want. In either case,
click the Next button when you are ready to continue.
103

Chapter 6. Form Fundamentals
3 In the next form the wizard displays, you must choose those fields from the
database table you want on your form.

If you are creating a form with tab controls, begin by choosing the page on which
you want certain fields to appear. You can switch between pages by clicking on the
tabs, which have the captions you have defined.

4 The form that the wizard displays contains two lists: the Available Fields list, which
contains all fields in the table, and the Field Order list, which contains the fields
that have been selected. To insert a field in the Field Order list, select it in the
Available Fields list and click >. You can insert all the fields at once by clicking the
>>. You can remove fields from the Field Order list by selecting them there and
clicking <; you can remove them all at once by clicking <<.

.
Note

The contents of the Available Fields list are the Caption properties of the fields
available to you – not the Name properties. For more information about captions, see

.
Chapter 18.

5 The order of the fields in the Field Order list is the order in which the fields will
appear on the form. If you want a different order, move a field by removing it from
the Field Order list and inserting it again in the position you want.

6 By clicking Separator, you can insert a small amount of extra vertical space
between the controls; this allows you to group information together in a logical and
visually pleasing way. Note that tabs provide a more powerful way of grouping
information together on a form. The separator will be inserted after the field that is
currently selected on the Field Order list; you can remove a separator by selecting
it and clicking <.

7 To insert a column break, click Column Break. The rules for insertion and deletion
are the same as for a separator. If you feel you need to create three or more
columns, you should consider using tabs instead.
104

6.2 Creating Forms
8 When you are satisfied, click Finish. The form wizard will create your form, and the
Form Designer window will open containing the new form. You can test-run the
form by clicking File, Run.

9 Close this window and answer Yes to save the form. You will be prompted to enter
an ID number and Name for the new form, and you can choose whether or not the
form will be compiled now.

You can also do it later, by selecting the form in the Object Designer window and
clicking Tools, Compile.

10When the form has been saved and compiled, it can be run. Select the form from
the Object Designer window and click Run.

Creating a Tabular Form

To create a tabular form, follow the initial steps outlined in "Creating Forms with a
Form Wizard" on page 103. Then proceed as follows:

1 You are prompted to choose the fields from the database table that you want on
your form. The form that the wizard displays contains two lists: the Available
Fields list, which contains all fields in the table, and the Field Order list, which
contains the fields that have been selected. To insert a field in the Field Order list,
select it in the Available Fields list and click >. You can insert all the fields at once
by clicking the >>. You can remove fields from the Field Order list by selecting
them there and clicking <; you can remove them all at once by clicking <<.
105

Chapter 6. Form Fundamentals
.
Note

The contents of the Available Fields list are the Caption properties of the fields
available to you - not the Name properties. For more information about captions, see

.
Chapter 18.

2 The order of the fields in the Field Order list is the order in which the fields will
appear on the form. If you want a different order, move a field by removing it from
the Field Order list and inserting it again in the position you want.

3 When you are satisfied, click Finish. The form wizard will create your form, and the
Form Designer window will open containing the new form. You can test-run the
form by clicking File, Run.

4 Close this window and answer Yes to save the form. You will be prompted to enter
an ID number and Name for the new form, and you can choose whether or not the
form will be compiled now. You can also do it later, by selecting the form in the
Object Designer window and clicking Tools, Compile.

5 When the form has been saved and compiled, it can be run. Select the form in the
Object Designer window and click Run.

Creating Forms Without a Wizard
To create a form without using a wizard:

1 Click Tools, Object Designer.

2 In the Object Designer window, click Form.

3 Click New. C/SIDE will display this form:
106

6.2 Creating Forms
4 If you are creating a form that is related to a table, type the name of the table in the
Table field. You can also click the AssistButton p and select the table from a list.

5 Select Create a blank form, and click OK.

6 The Form Designer will open, displaying an empty form. Chapter Chapter 7,
Designing Forms, describes in detail how to design the form by adding controls,
changing properties and so forth.

7 You can test-run the form at any point by clicking File, Run.

8 When you have finished designing the form, close the Form Designer window, and
answer Yes to save the form. You will be prompted to enter an ID number and
Name for the new form, and you can choose whether or not the form will be
compiled now. You can also do it later, by selecting the form in the Object
Designer window and clicking Tools, Compile.
107

Chapter 6. Form Fundamentals
6.3 SELECTING, MOVING AND ADJUSTING CONTROLS

This section describes how to select and move controls, and how to adjust controls by
aligning and sizing them.

Selecting Controls
To move or adjust a control, you must first select it. As some operations can be
applied to only one control at a time and others to a group of controls, controls can be
selected both individually and as groups.

You select a control by pointing at it and clicking the mouse. In order to make it easier
to see what the mouse cursor is pointing at, the appearance of the cursor changes as
it is moved around the design area. The default appearance is a cross, which means
that the cursor is not currently pointing at any control. As soon as the cursor points at
a control, it changes into a selection cursor. Clicking the mouse selects the control,
which will be surrounded by a box with sizing handles.

Multiple Selections
A multiple selection is a group of controls that are all selected. You make a multiple
selection, for example, in order to align all the controls in the selection (how to actually
align the controls will be described below).

Adding to a Selection

When one control has been selected, you can add other controls to the selection by
holding down the CTRL key when clicking to select them. As you add controls, a box
will appear around the complete selection and each control in the selection will be
marked by a circle in the upper left corner of its own bounding box.
108

6.3 Selecting, Moving and Adjusting Controls
Marquee Selection

Another way to make a multiple selection is by marquee selection. When the mouse
cursor is in the design area but not pointing at anything (appears as a cross), press
the left mouse button and hold it down. When you drag the mouse, a rectangle will
appear – a marquee.

As the rectangle expands, any control that it overlaps, completely or partly, will be
selected; there will be a circle in the upper left corner of its bounding box.

Release the mouse button when you have finished selecting controls.

Controls can be added to the selection individually (as described above), and a
marquee selection can be added to an existing selection by holding down the CTRL
key while you carry out the marquee selection.
109

Chapter 6. Form Fundamentals
.
Note

There is an option that determines how marquee selection works. In the Tools menu,
choose Options. The Marquee Full Selection option can be Yes or No. Only if the
option is set to No does the marquee selection work as described above. If it is set to
Yes, a control will be selected only if the marquee overlaps the control completely –

.
not just partly.

Selection and Container Controls

When you select a container control, all the contained controls are selected, even if
they are not marked as such by individual bounding boxes. Beware that a contained
control can be moved so that it is only partly inside the container. However, it is
considered part of the control as long as any part of it overlaps the container. To select
such a control, you must click in the part that is still inside the container.

Selection and Control Branches

A control branch consists of the control itself and one or more child (subordinate)
controls. An example is a text box with a label. Both are controls – the text box holding
information that can change during program execution and the label holding static
information (usually a caption for the text box), changeable only during form design.
The label is said to be a child of the text box.

When a control branch, such as a text box with a label, is selected, the control itself is
displayed in a bounding box with sizing handles, as usual. The child controls that are
part of the control branch are marked by a box with a circle in the upper left corner,
and the whole branch is surrounded by a dotted emphasis frame. If you click on the
emphasis frame (the cursor changes into a selection cursor as it touches the frame),
the child controls will be added to the selection; this turns the selection into a multiple
selection that can be moved as a whole.

Moving Controls
When the selection cursor appears, you can move the control below it by pressing the
left mouse button and holding it down while you drag the control to the desired
position. The control will be dropped when you release the mouse button.
110

6.3 Selecting, Moving and Adjusting Controls
Moving Selected Controls
Controls also can be moved after they have been selected. To move a selected
control, move the mouse cursor towards it. When the cursor touches the border of the
control, it will look like a hand. Press and hold down the left mouse button, drag the
control to the desired position, and then release the mouse button.

Multiple selections are moved as a whole and their relative positions within the
selection are not changed.

Aligning Controls
If you created a form without using a wizard – or if you did use a wizard but rearranged
some controls afterwards – you may want to align the controls more accurately than it
is convenient to do freehand with the mouse. C/SIDE provides two methods for
aligning controls easily and accurately:

1 You can turn on the option Snap to Grid in the Format menu. When you move a
control as described above you will notice that it is not moving smoothly, but rather
in small, fixed increments. The dots in the design area represent some of the actual
grid points that the controls snap to when they are moved.

Hint: the distance between the grid points are properties (HorzGrid and VertGrid) of
the form. The unit is 1/100 millimeters.

2 To align several controls, select the controls as a multiple selection and click
Format, Align. From the submenu that follows, select one of four ways to align the
controls. If, for example, the controls are in a column, you will want to align them
vertically, either to the left or to the right. Select Left or Right to do this.
Correspondingly, a row of controls can be top or bottom aligned. Beware – if you
inadvertently choose to top align a columnar group, for example, the system will
indeed do just this, placing all the controls on top of each other.

Sizing and Resizing Controls
When the wizard adds controls to a form, these controls are sized evenly according to
a default scheme. If you move the controls around, the sizes that the wizard assigned
may no longer be appropriate. Other situations where you will want to change the size
of a control are if you change the font size, or if you don’t want to display all the
information from a very large table field, but only the first part. You can only resize one
control at a time.

To resize a control:

1 Select the control. It will be surrounded by a bounding box with sizing handles.

2 Place the mouse cursor on a sizing handle. The cursor will change into a sizing
cursor.

3 Press the left mouse button and drag the control to the size you want. If Snap to
Grid is on, the sizing takes place in fixed increments, in a way similar to the one
described above for moving a control.
111

Chapter 6. Form Fundamentals
Sizing Container Controls
If you have created a container control, you can size the contained controls
individually in the usual manner. The containing control – for example, the frame – can
be sized like any other control. When a containing control is sized, the contained
controls are not affected, that is, neither their size nor their position changes.

When you enlarge a container, any control that becomes completely overlapped by it
will automatically be ‘adopted’ as a contained child of the container.

Beware that it is quite possible to reduce the size of the containing control so that a
contained control seems to be outside the container. However, it is still considered part
of the container. As no part of it is inside the control, however, it cannot be selected.
The remedy for this is to enlarge the container so all contained controls are inside it.
112

6.4 Saving, Compiling and Running Forms
6.4 SAVING, COMPILING AND RUNNING FORMS

After you have designed a form, you must save and compile it before it can be run.
Normally, you will do this when you are done designing the form. However, you may
want to save a form that is not yet finished and thus cannot be compiled, if the form is
more complex than the forms described so far and contains C/AL code. You can also
test-compile and test-run a form without closing or saving it.

Saving and Closing a Form
A designed form is closed when the Form Designer window is closed. You can close
this window in the same ways that you can close any other window.

To save a form:

1 When you are closing a form, C/SIDE will ask whether you want the form to be
saved. If it is a new form (a form that has not been saved before) you will have to
assign an ID and a name. The ID must be unique and follow the rules for numbering
objects – your local Microsoft Certified Business Solutions Partner will provide you
with this information.

Hint: if you enter ID and Name as form properties, these values will be used, and
you will not be prompted for ID and Name when you close the form.

2 The option field Compiled is by default set to TRUE (displayed as a check mark). If
your form is not yet ready to be compiled, remove the check mark by clicking in the
field.

3 Choose OK to save the form.

You can save a form without closing it by choosing Save or Save As... from the File
menu. You can use Save As... to give a form a new name.

Compiling a Form
Forms, like other objects in C/SIDE, must be compiled before they can be run. As
described above, you can choose to compile a form whenever you are saving it.

While you are designing a form, you may want to test-compile it to find possible errors.
This is useful when the form contains C/AL code in triggers, as described in Chapter
9. You can test-compile a form during design by clicking Tools, Compile.
113

Chapter 6. Form Fundamentals
Running a Form
In a finished application, your forms will be incorporated into menus or they will be
called from other forms. However, while you are designing forms, you will often want
to run them before they have been integrated into an application.

You can run a form from the list of forms in the Object Designer window by selecting
it and clicking Run. Note that forms can also be run from inside the Form Designer by
clicking File, Run.
114

Chapter 7
Designing Forms

This chapter describes how to design forms by adding
controls and by changing the properties of forms and
controls.

· Form and Control Properties

· Types of Controls

· Adding Controls

· Tools for Customizing Controls

· Setting Control Properties

· How to Use Controls in Applications

Chapter 7. Designing Forms
7.1 FORM AND CONTROL PROPERTIES

As described in Chapter 1 "C/SIDE Fundamentals", properties are a system-wide
feature and every application object has some properties. Properties for forms and
controls are edited by opening the Property Sheet in the Form Designer (by clicking
View, Properties). As you select the form or a control in the form, the Property Sheet
will display the properties for the selected object. The title bar of the Property Sheet
window shows what kind of object (form, text box, label, and so forth) is currently
selected. The first line of the sheet shows the ID if the object has one. Note that the
Property Sheet can be scrolled vertically.

Each field on the Property Sheet contains a value that you can set by entering a value
in the Value field on the Property Sheet. As soon as you leave the field (by pressing
Enter or by using the arrow keys) the property is updated. If what you entered contains
an error (for example, if you accidentally changed the ID of one control to be the same
as that of another control), the update will not be accepted.

Default values are displayed in angle brackets (<>). If a property has a default, you
can reset it to the default by deleting the current value and then moving out of the field.
Notice that some properties do not have defaults – mainly those that describe the
position of the control within the form. These properties are constantly updated by
C/SIDE when the control is moved.

How Properties Are Inherited

Controls that have a direct relationship to table fields will inherit the settings of those
properties that are common to the field and the control. You can still change the
settings of these properties for the control, but you cannot overrule the settings of
certain field properties, namely those that concern data validation. For example, if the
field property that determines which characters the user can enter is set to lowercase
only, you cannot use the properties of the control to reset it to also accept uppercase
characters. You can narrow the accepted range of characters but not broaden it. On
the other hand, you can change properties like the caption – as this property has
nothing to do with data validation.

When you design an application, you must consider whether these common
properties should be specified at the field level or at the control level. The advantage
of using the lowest level (the field level) is that whenever the field is used as the data
source of a control, these settings will be used as defaults. This ensures consistency.
116

7.1 Form and Control Properties
Form Properties
The table below briefly describes some of the more important form properties. All
properties are described in detail in the online C/SIDE Reference Guide. You can get
context-sensitive Help for a property by opening the Property Sheet for a form, placing
the cursor on a property and pressing F1.

Property Name Use this property to...

ID set the numeric ID of the object. This property can also be set when you
save a form. The ID must be unique among forms. Your C/SIDE dealer will
inform you about the numbers you can use.

Name give the form a descriptive name. The name does not have to be unique,
but you should give your forms unique names anyway, as they will be a lot
easier to identify and find by name than by ID.

Minimizable specify whether the user can minimize the form window.

Maximizable specify whether the user can maximize the form window.

Sizeable specify whether the user can resize the form window.

SavePosAndSize specify whether information about the user-made changes to the size and
placement of a form window will be saved. If it is set to Yes, this
information will be saved, and the next time the window is opened, these
values will be used. Otherwise, the designed values will be used.

Editable specify whether the user is allowed to edit controls in the form. If it is set to
No, no controls may be edited, even when their individual Editable
properties are set to Yes.

InsertAllowed specify whether the form can be used to insert records in the database.

ModifyAllowed specify whether the form can be used to modify records in the database.

DeleteAllowed specify whether the form can be used to delete records from the database.

CalcFields specify a list of FlowFields that you want the system to calculate when the
form is updated. If the FlowField is a direct source expression, it is
automatically calculated. However, if it is indirect (part of an expression) it
is not.

UpdateOnActivate specify whether you want the system to update the form when it is
activated.

SourceTable specify the source table of the form. Normally, you will have specified the
table when you first created the form. If you have created a form without an
underlying table, however, you can enter a table name here to bind the
form to a table.

SourceTableView create a view (what the user can see) of the source table for this form. You
can specify the key, sorting order and filter that the system will use.

SaveTableView specify whether the system will save information about which record the
user is viewing when the form is closed, the sorting order and the current
filter, and then reapply this information when the form is opened again.
117

Chapter 7. Designing Forms
General Properties for Controls
The table below briefly describes those properties that are common to several types of
controls. All properties are described in detail in the online Reference Guide. You can
get context-sensitive Help for a property by opening the Property Sheet for a form,
selecting a control, placing the cursor on a property and pressing F1.

Property Name Use This Property to...

ID set the numeric ID of the control. The system assigns a sequential number
by default. If, however, you delete a control, and then add another in its
place, you may want to give the newly created control the number of the
one you deleted. The ID must be unique among controls and menu items
on the form.

Name give the control a descriptive name.

Caption specify the text that the system displays for this control.

HorzGlue to anchor a control horizontally on the form. You can choose Left, Right or
Both. If you choose Both, the control will be resized when the form is
resized.

VertGlue to anchor a control vertically on the form. You can choose Top, Bottom or
Both. If you choose Both, the control will be resized when the form is
resized.

Visible specify whether the control will be visible when the form is opened. This
property can be changed from C/AL at runtime.
Notice that if the control is a child control and the parent has Visible = No,
the child will not be visible, even if it has Visible = Yes.

ParentControl specify the ID of a parent control, thereby turning the control into a child.
118

7.2 Types of Controls
7.2 TYPES OF CONTROLS

This section provides a brief overview of all controls that can be added to a form. The
list below is structured according to the broad categories into which controls can be
grouped.

Static controls

Static controls are controls that cannot change contents at run time.

Label A label is used for displaying text, most commonly for displaying the caption of
another control. In this situation the label is normally–and conveniently–a child of the
other control, but labels can also be used as stand-alone controls.

Image An image control is used for displaying a bitmap picture.

Shape A shape is a graphical element (line, circle, rectangle).

Data controls

Data controls are controls that can display the value of a C/AL expression, for
example, the value of a table field or a variable (perhaps the simplest expression is
just the name of a table field or a variable) or of a "real" expression. The valid
combinations of data control and data type are as follows

Data controls must have a relation to data, defined as their SourceExpr property.

Containers

Container controls are used for grouping other controls. Some properties of the
container overrule the same property in the contained controls: if the container is not
editable, no single contained control can be edited (even if it individually has the
Editable property set to TRUE).

Frame A frame is simply a rectangle into which other controls can be "dropped".
While you are designing, the frame and its contained controls can be moved together,
and a frame can have different border styles and colors.

Tab Control A tab control can be thought of as a kind of book with several pages, or
as several frames, where only one is visible at a time. The user can switch between
pages by clicking on tabs with captions.

Control Valid data types

Check Box Booleans and BLOBs

Option Button All, except BLOBs

Text Box All

Picture Box Boolean, option, integer and bitmap BLOBs

Indicator Integer, decimal, date, time
119

Chapter 7. Designing Forms
Data Containers

Table Box A table box is a container, too, but a special kind. It contains repeated
data controls and is used to create columnar tables. Each data control contained by
the table box constitutes one column for which a static control is used as a heading.
The rows arise from vertically repeating each data control. If the table box displays
records from a table, each row displays one record.

Other

Command Button A command button is not related to data – it performs an action
when it is "pushed", that is, when it is clicked, or when ENTER or the spacebar is
pressed while the button has focus.

Menu Button A menu button can be clicked just like a command button, but it does
not perform an action: when you click it, a menu opens containing a number of menu
items that you can choose.

Menu Item The lines in a menu that can be chosen are called menu items. Each
menu item resembles a command button: it can perform an action when you click it.

Subform A subform control is used to display a second form in a control on a form (a
main form), in order to show data from two different tables. For example, the main
form could be a card form and show records from a customer table, while the subform
could be a tabular form and show details about purchases the customer has made.
120

7.3 Adding Controls
7.3 ADDING CONTROLS

This section gives a few examples of how to add controls without using the form
wizards.

The Toolbox
You use the Toolbox to insert controls. The Toolbox is opened by choosing Toolbox
from the View menu. You select a specific tool by clicking the corresponding icon.

Note that some of these tools are not implemented in the present version of C/SIDE,
but that the icons are already present–they will, however, always appear disabled.

When you click the Pointer tool, the state changes from insertion to selection. You can
use this if, for example, you change your mind about inserting a control.

The Lock tool locks the current control selection. Normally, after you have inserted a
control, you have to select the type of control again before inserting the next control.
You can continue inserting controls of the same type without having to select the tool
again and again by turning Lock on (it is a toggle).

If Add Label is on (it is a toggle), all controls will have a label when you insert them.

Adding a Text Box
If text boxes are related to database table fields, the easiest way to add them to a form
is to use the Field Menu. The Field Menu is a list of all fields in the table that is defined
as the SourceTable for the form. You can open the Field Menu in the Form Designer
by clicking View, Field Menu. A text box that has a specific field in the table as its
SourceExpr (that is, has this field as its underlying table field) can be added to the
form as described in the following section.

Text Box

Option Button

Menu Button

Frame

Picture Box

Indicator

Subform

(not in use)

Add Label

Pointer

Check Box

Command Button

(not in use)

Image

Shape

Tab Control

Table Box

Lock

(not in use)

Label
121

Chapter 7. Designing Forms
To add a text box:

1 Open the form in the Form Designer.

2 Click View, Field Menu to open the Field Menu window:

3 In the Field Menu window, select the field or fields. The Field field contains the
Name property, and the Caption field contains the Caption property. For more
information about these properties, see Chapter 18, "Multilanguage Functionality".

When you move the cursor into the design area, it will change into the Control
Insertion cursor.

You need to activate the Form Designer window, for example, by a mouse click,
before the cursor will change into the Control Insertion cursor.

4 Click in the design area for each selected field to insert a text box at the cursor
position.

If you selected more than one field, the text boxes will be inserted and aligned in a
column below the mouse position.

Each text box has these characteristics:

· It has the table field as its SourceExpr.

· The default settings for the Name and Caption properties are the same as the
setting for the Name property of the underlying table field.

· In general, all properties that are both field properties and text box properties have
the value of the field property in the underlying table as a default value.

· The text box has a label with a caption that defaults to the caption of the text box.

The advantage of using the Field Menu to add text boxes with labels is that you are
effortlessly assured that naming and properties are consistent.

Beware that if the data type is anything but boolean, a text box will be created
automatically. If the data type is in fact boolean, a check box will be created.
122

7.3 Adding Controls
Adding a Text Box without Using the Field Menu
Although the easiest way to add a text box is by using the Field Menu, you can add
text boxes without using the menu. This is the way to add a calculated text box, that is,
a text box that is used to display a calculated value. It is also possible to add an
unbound text box and then, later on, bind it to a table field.

To add an unbound text box:

1 Open the form in the Form Designer.

2 Select the Text Box tool.

3 Move the cursor into the design area.

4 Click to add a text box of the default size, or click and drag to create a text box with
a different size.

Now you have an unbound text box control on the form. Notice that no characteristics
were inherited and that the text box has no label.

The subsection Changing the Properties of a Control on page 125 explains how you
can bind the text box to a table field and add a label, and the subsection Displaying a
Calculated Value on page 129 tells how you can use the text box to display a value
that is calculated on the fly.

Creating Labels That Display Descriptive Text
You can add a label that is not the child of another control to a form. You can do this,
for example, if you want to have a descriptive text on the form – it could be instructions
about using the form or other information that is static and not related to any database
table field.

To add a label:

1 Open the form in the Form Designer.

2 Select the Label tool.

3 Move the cursor into the design area.

4 Click to create a label of the default size, or click and drag to create a label of a
different size.

5 As the label is not part of a control branch, it will be given a default name and
caption (like Control4). You can change the name and the caption on the Property
Sheet for the label (see Changing the Properties of a Control on page 125).
123

Chapter 7. Designing Forms
7.4 TOOLS FOR CUSTOMIZING CONTROLS

In addition to the Property Sheet itself, there are two special tools available for setting
various properties of controls. They are: the Color tool, for selecting color properties
and border styles, and the Font tool, for setting font properties.

Using the Color Tool
To start using the Color tool, click View, Color. The tool looks like this:

When a control that has color properties is selected, you can pick colors for
foreground (text), background and border by clicking in the palette. The corresponding
properties are ForeColor, BackColor and BorderColor.

The check boxes Background and Border are used to toggle the display of
background color and display of the border on and off. The corresponding properties
are BackTransparent and Border (if these options are off, a background or border
color will not have any effect).

If the control has a border, the nine buttons at the bottom can be used to select border
style and border width.

Using the Font Tool
To start using the Font tool, click View, Font. The tool looks like this:

When a control that can display text is selected, you can set the font properties by
using the tool. You can enter the font name, the font size, attributes (bold, italic and
underline) and the horizontal alignment of the text (left, center, right and general –
general meaning that text is left aligned and numbers are right aligned).
124

7.5 Setting Control Properties
7.5 SETTING CONTROL PROPERTIES

This section gives some examples of how to change the properties of a control, and
indicates some of the typical situations where this will be necessary.

Changing the Properties of a Control
If you have added controls without using the form wizards, you will often need to
change some properties of these controls. Even if you did use a wizard, you may want
to change some properties to meet specific requirements that the wizards cannot
consider.

Changing the Name and Caption of a Control

Every control has an ID and a Name. Controls that display data also have a
SourceExpr property. The SourceExpr – source expression – is a C/AL expression. It
can just be the name of a table field, or it can be a more complex expression, perhaps
with a field as an operand.

When you use a form wizard or the Field Menu to create a text box that has a direct
relationship to a table field, Name and Caption will be set by default to the name of the
table field (unless the table field has a Caption: in this case, this Caption is used). The
label has a Caption derived from the Caption of the parent control (the text box). You
can supply a Caption in either place if you want to have a different, perhaps more
descriptive, text than the field name as a caption.

Notice the following dependencies:

· If you change the Caption property of the text box, the Caption property of the label
will be set to this value as a default (you will see that it is displayed in angle
brackets). If you change the Caption property of the text box again, the Caption
property of the label will also be changed again.

· On the other hand, if you change the Caption property of the label directly, you will
notice that the value that you enter is displayed without angle brackets, signifying
that it is no longer a default value. This means that if you change the property of the
text box, the value here will no longer be updated.

Changing an Unbound Control into a Bound Control

An unbound text box – or other data control – can be changed into a bound control
quite easily.

All it takes is to change the SourceExpr into what you want. If it is the name of a field
in the database table, the values for Name and Caption automatically default to the
standard values for a bound control, that is, they default to the name of the table field.

This will not automatically add a label to the text box, but you can add one, as
described below.
125

Chapter 7. Designing Forms
Adding a Label to a Text Box

If you have created a bound text box by changing the SourceExpr for an unbound text
box, the bound text box will not automatically get an attached label. You can add a
label by adding a label control to the form and then change the ParentControl property
of the label from the default (undefined) to the ID of the text box (which you can see on
the first line of the Property Sheet for the text box).

The control branch resulting from this operation can be selected and moved as
described in section 6.3, Selecting, Moving and Adjusting Controls.

Display Properties
Controls that you add to a form – either by using a wizard or manually – will have a
default set of properties that define how the control itself and the data it displays are
formatted. While this ensures a consistent visual design throughout your applications,
it cannot provide for all needs. You may therefore have to change some properties
that affect the way your forms and their controls are displayed.

Controlling the Display of Numbers

This is a short description of properties that control the display of numbers. Refer to
the online C/SIDE Reference Guide for full descriptions.

DecimalPlaces This property (whose setting specifies both the minimum and
maximum allowed values) determines how many decimals are displayed and how
many can and must be entered. A typical situation where this property would be used
is when amounts are stored in the database with 5 decimal places for higher precision,
while you want the user to see only the customary number of decimal places for the
currency in question, for example, 2. The table field would then have the
DecimalPlaces property set to 2:5, while the DecimalPlaces property of the text box
should be set to 2:2.

BlankNumbers You can choose from an option list whether a range of numbers will
be displayed or they will be blanked.

BlankZero The default is No. If you change it to Yes, zero values and booleans that
would have been displayed as a No will be blanked out.

Divisor The default is Undefined. If a number is entered, numeric values will be
divided by this number when they are displayed. Any remainder will be discarded. You
could, for example, use the Divisor property to display only the thousands part of a
number by entering 1000 (then 16400 and 16800 would each be displayed as 16).

Formatting Data Display

This is a short description of properties that control formatting of data. Refer to the
online C/SIDE Reference Guide for full descriptions.

Format This property defines how the system formats the SourceExpr of a text box.
For each data type, there is a default. There is also a set of standard formats that you
can select. Finally, you can build your own formats to serve special needs.
126

7.5 Setting Control Properties
HorzAlign and VertAlign These properties define how data in a text box or a
caption on a label will be aligned horizontally and vertically, respectively.

MultiLine If this property is set to Yes, labels and text boxes can have multiple lines
of text. The default is No with one exception: the label of a column in a table box will
have this property set to Yes. See the subsection Displaying More Than One Line of
Text on page 129 for details.

PadChar This property specifies the character to be used to pad a string. The
character will be added to the left or right, or both, depending upon the text alignment
defined by the HorzAlign property.

LeaderDots This property specifies whether there will be leading dots before the
data. The dots are placed according to the horizontal alignment of the data: if left
aligned, the dots are placed to the right, if right aligned, the dots are placed to the left
– and if centered, there will be dots both before and after the data.

If this property is set to Yes, the setting of PadChar will be overruled.

Properties That Control Input
This group of properties can be used to control user input, that is, restrict user input to
certain values or a certain length.

Numeric This property restricts input to numeric values only if it is set to Yes.

MinValue, MaxValue Sets a minimum or maximum value that the user can enter.

ValuesAllowed Here you can specify the values that the user is allowed to enter.
Enter the values separated by semicolons, like 1;7;4711 or a;b;c.

CharAllowed Here you can enter characters that the user can enter. You can enter a
range, for example, AZ, to limit entry to uppercase characters only, or several ranges,
for example, amot, specifying two ranges: a to m and o to t.

NotBlank If this is set to Yes, then an entry consisting of nothing, one blank or
several blanks (spaces) will not be accepted – though a blank can be part of string that
contains other characters.

MaxLength The maximum number of characters that can be entered in a text box.

AutoEnter If this is set to Yes, the system will accept a user entry when the
maximum number of characters allowed has been entered into a table box, and it will
then move the focus to the next control – that is, the user does not have to press
ENTER.

PasswordText If this is set to Yes, user input will not be displayed, but shown as
asterisks (******).
127

Chapter 7. Designing Forms
Assisting the User
The ToolTip property allows you to assist the user by displaying text that describes a
control. You can also control the captions used in the title bar of a form window.

ToolTip If you enter a text here, it will be displayed in a small pop-up window
whenever the mouse cursor rests on the control for a short while. The text is supposed
to be a short, perhaps just one word, description of what the control is used for.

DataCaptionField, DataCaptionExpr As mentioned in the table of form properties
above, you can control the label that is displayed on the caption bar of the form
window by using the Caption property. This is a static caption, usually the name of the
underlying table. By using DataCaptionField (either at table level or at form level), you
can select fields from the record whose contents are displayed (and updated) in the
caption bar as the user pages through the table. With DataCaptionExpr (form only)
you can create a C/AL expression to be displayed in the caption bar. The expression
is reevaluated when the user selects a new record or the present record is changed.
The online C/SIDE Reference Guide contains further explanations.

.
Note

If the user-selectable option Status Bar (click View, Options) is set to Yes, the caption
of text boxes and check boxes will be displayed in the status bar together with the

.
current data contents of the control (if any) when the control gets the focus.
128

7.6 How to Use Controls in Applications
7.6 HOW TO USE CONTROLS IN APPLICATIONS

Displaying More Than One Line of Text
If a database table contains very large fields, lengthy descriptive texts for example,
using the standard one-line text box is not a very good way to present this information.
Instead, you can customize a text box to wrap text into multiple lines.

To create a multiline text box:

1 Open the form in the Form Designer.

2 Select the text box and enlarge it vertically by resizing.

3 Open the Property Sheet for the text box and set the MultiLine option to Yes.

4 Run the form. Entering or editing text will still take place on one line that scrolls
horizontally. When the focus is not on the text box, the contents of the field will be
formatted in multiple lines. Automatic line breaks occur only after a space character,
and the user can insert line breaks ("hard newlines") by embedding a backslash
character ("\") in a text string. (To display a backslash, enter "\\".)

5 You may have to experiment with the vertical resizing of the text box to find the size
that suits your purpose best.

Displaying a Calculated Value
A control can be used to display a value that is not stored in the database but
calculated as the form is displayed. One situation where this could be useful is when
all the information needed for the calculation is actually stored in the database, and –
conforming to the rules for a relational database system – the calculated value is not
stored separately. However, the users of the application do sometimes need this
value. Adding a calculated control can give this information, without violating the rules
for good database design.

To display a calculated value:

1 Open the form in the Form Designer.

2 Select a tool that inserts an appropriate data control (check box, text box, indicator)
in the Tool Box.
129

Chapter 7. Designing Forms
3 Move the cursor into the design area.

4 Click to add the control.

5 Open the Property Sheet for the control. Type the expression you want as the
SourceExpr property.

EXAMPLE

You have designed a table with a field that contains the Unit Price of an item, and another field that
contains the Employee Discount Rate. On the form, you want to see the price that an employee
actually has to pay. Add an unbound text box and enter as the SourceExpr:

"Unit Price" - ("Unit Price" * "Employee Discount Rate" / 100)

Presenting a Set of Options
A recurring task in application programming is to present the user of the application
with a fixed set of options to choose from. For example, in a program where the user
frequently has to enter the title of a contact, it could be a list of titles. The field or
variable that is the SourceExpr of the control must have type Option, and the options
must have been entered as the OptionString property of the field or variable.

In C/SIDE, you can present these options in several ways. The following sections
show two different approaches.

Creating a Drop-Down List of Options

The list of options can be presented as a drop-down text box, as in the picture below:

To create a drop-down option list:

1 Open the form in the Form Designer.

2 If the option text box is based on a table field, open the Field Menu and highlight the
field. Otherwise, proceed to create an unbound text box.

3 Select the text box tool; then click in the design area to create the text box (if the
text box is based on a field that you have selected on the Field Menu, just click in
the design area).

4 If the text box is unbound, bind it to the variable now by entering the name of the
variable as the SourceExpr of the text box.
130

7.6 How to Use Controls in Applications
When you run the form, the text box will have the AssistButton h attached, and you will
be able to open the list by clicking this AssistButton.

.
Note

You can enter only options that have been defined on the Property Sheet of the field or
variable. The first option will be displayed in the text box. If the OptionString property
has a blank as the first option, the text box will accordingly be blank. This does not
mean that options that are not in the OptionString can be entered.
In the OptionString property of the control, you can select a subset of the options

.
already defined for the field – you cannot add options.

Creating an Option Button Group

Another way of presenting a set of options is as an option button group. The
functionality will not be any different from that provided by a drop-down list, but the
visual presentation is, of course, quite different. An option button group looks like this:

The advantage of using an option button group is that the user of the application can
see all the available options and the currently chosen option at a glance. The
disadvantage is that an option button group takes up more space on the form than a
drop-down text box does.

To add an option button group:

1 The OptionString property of the field or variable must be defined, as described
above.

2 Open the form in the Form Designer.

3 Add an option button for each option in the OptionString of the field or variable (the
option buttons must be added as unbound controls).

4 Enter the field or variable as SourceExpr in the Property Sheet for each button.

5 Enter one of the options from the OptionString as the OptionValue property for each
button.

Each button has the OptionValue as its caption. Because the option buttons have the
same source expression, only one of them can be chosen at a time. When you choose
131

Chapter 7. Designing Forms
an option by clicking on the button, any previously-chosen button will be marked as
not chosen.

EXAMPLE

In the previous illustration, the option button group has been embellished by adding two frames:
the group is contained by a frame with a raised border and no caption. The other frame is actually
the "Title" caption – with the TopLineOnly property set to Yes, and Caption property set to Title.

Using a Check Box to Display Booleans
A check box control is a handy way of displaying data of type Boolean. In a text box,
boolean values will be shown as Yes and No. In a check box, Yes will be displayed as
a check mark, while No will be displayed as a blank.

To add a check box:

1 Open the form in the Form Designer.

2 If the check box will have a direct relationship to a table field, select the field in the
Field Menu. Otherwise proceed to create an unbound check box.

3 If you want a label attached to the check box, click the Add Label tool (check boxes
do not by default have labels).

4 Choose the Check Box tool; then click in the design area to create the check box (if
you have selected a field of type Boolean from the Field Menu, you only have to
click in the design area).

5 If the check box is unbound, bind it to the variable now by entering the name of the
variable as the SourceExpr of the text box.

Creating and Using Command Buttons
Command buttons are useful for a number of purposes. If you have used a wizard to
create forms, you will have noticed that a Help button has been added to all forms.
Other common uses are Yes and No buttons in contexts where the user must decide
whether a certain task will be performed or not. Still another use is to launch another
form, or even another program.
132

7.6 How to Use Controls in Applications
To add a command button:

1 Open the form in the Form Designer.

2 Select the Command Button tool and click in the design area to add the command
button.

This will create the command button. The next step is to define the action
associated with the button.

3 Open the Property Sheet for the command button. The PushAction property
specifies what happens when the command button is pushed.

4 Open the drop-down list in the PushAction property value field. You will see this list
of possible actions:

5 A common action would be to run another form. Choose RunObject.

6 In the RunObject property, open the look-up table of system objects, and choose
the object you want to run when the command button is pushed.

.
Note

Not all settings of the PushAction property require additional information. Some do,

.
such as RunSystem, while others, such as Yes or No, do not.

While this method of adding an action to a command button is easy to use, it does
have some limitations. For example, you cannot pass parameters. A more powerful
method is to use the OnPush trigger for the button. Triggers are explored in Chapter 8,
"Extending the Functionality of Your Forms".

Containing Controls Within a Frame
A frame is used for containing other controls. When controls are contained in a frame,
you can perform some operations on these controls as a whole: during design, they
are moved when the frame is moved, with their relative positions intact; if the frame is
invisible, all contained controls will be invisible too.
133

Chapter 7. Designing Forms
A frame can have a border that can be raised or sunken. This feature can be used to
distinguish a group of controls (such as a group of option buttons) visually.

To create a frame with contained controls:

1 Open the form in the Form Designer.

2 Choose the Frame tool; then click and drag in the design area to create a frame.

3 Create the controls you want to be contained by the frame in the usual way, placing
them inside the frame as you add them to the form.

4 Set the properties of the frame to suit your purpose.

A common change will be inhibiting display of the caption by setting the ShowCaption
property to No. By default, the border style is Raised. If the purpose of the frame is not
to distinguish the contained controls, you can set the Border property to No, meaning
that no border will be displayed.

When an existing control is dragged inside a frame and dropped, it will be contained in
the frame. When a control is dragged outside a frame, it will no longer be considered
to be contained by the frame.

If a container is resized and thereby overlaps existing controls completely, these
controls will be contained.

If a frame is deleted, all controls contained by it are deleted. See Sizing and Resizing
Controls on page 111 for details on resizing container controls.

Adding Shapes and Pictures
You can add shapes (graphical elements) and bitmap pictures to forms in order to
provide information (pictures of products, for example), in order to emphasize
information (by adding a shape that makes some controls stand out) – or for purely
decorative purposes.

Using Shapes

The ShapeStyle property lets you choose from a number of shapes: rectangle,
rounded rectangle, oval, among others. You can adjust the width and the color of the
134

7.6 How to Use Controls in Applications
lines that the shapes are composed of by changing the BorderWidth and BorderColor
properties.

To create a shape:

1 Open the form in the Form Designer.

2 Choose the Shape tool from the Toolbox

3 Click and drag in the design area to add a shape of the desired size.

4 Choose a ShapeStyle and appropriate width and color in the Property Sheet for the
shape.

Adding a Static Picture as an Image

The simple way of adding a bitmap picture is to add it as a control of type image.

To add an image:

1 Open the form in the Form Designer.

2 Select the Image tool from the Toolbox.

3 Click and drag in the design area to create an image control.

4 Open the Property Sheet for the image control, and enter the file name of the
bitmap in the Bitmap property.
135

Chapter 7. Designing Forms
Beware that the bitmap is not referenced but actually imported. This has the
advantage that you don’t need any external files for your application. On the other
hand, if you make any changes to the bitmap during application development, you
must update the imported copy by opening the Property Sheet, selecting the Value
field of the Bitmap property and pressing F2. This will cause a reevaluation of the field,
thus forcing the bitmap to be imported again. The bitmap can be up to 32 Kb.

Adding a Data Dependent Picture as a Picture Box

Adding a bitmap in a picture box control instead of in an image control provides some
advanced possibilities. While the image control is static, the picture box control is
dynamic: provided you create a list of bitmaps, a bitmap from this list can be chosen at
run time (the total size of all the bitmaps in the list can be 32 Kb).

A picture box provides another advantage: it can display pictures that are stored in
BLOB fields. A BLOB field can have a size of up to 2 Gb.

To add a picture box:

1 Open the form in the Form Designer.

2 Select the Picture Box tool from the Toolbox.

3 Click and drag in the design area to create a picture box control.

4 Open the Property Sheet for the picture box control.

To create a list of bitmaps from which one can be selected at run time for display,
follow these steps:

1 Enter a comma-separated list of the file names of the bitmaps you want to use. The
system provides a series of standard bitmaps that can be chosen by entering a
number – see the online C/SIDE Reference Guide entry on Bitmap for details.

2 The value of SourceExpr determines which bitmap will be chosen by the system:
the first in the list has number 0, the second number 1, and so forth. If SourceExpr
evaluates to a value outside the range of bitmaps, no bitmap will be displayed.

To display a picture stored in a BLOB field, do this:

Enter the field name of the BLOB field as the SourceExpr property. Do not enter a
BitmapList property.

Pictures on Command, Menu and Option Buttons and in Check Boxes

Command buttons, menu buttons, option buttons and check boxes all have the
capability of displaying a bitmap picture instead of – or in combination with – a
caption.

They all have a property called Bitmap. Here you can enter the filename of a bitmap.
The maximum size of the bitmap is 32 Kb, and it is actually imported, not referenced
(thus if you change the original bitmap, you will have to reimport it).
136

7.6 How to Use Controls in Applications
They also have a property called BitmapPos, where you can select the alignment of
the bitmap within the control. This is especially useful when you are combining a
caption and a bitmap: then you could right align the caption and left align the bitmap,
like the command button in the picture below.

Using a bitmap on a button or a check box can in some situations make the user
interface more intuitive: a well-chosen picture may be easier to remember and use
than a label.

Using an Indicator to Display Values
The indicator control provides a way of displaying values graphically, as an analog
gauge. A minimum and a maximum value must be defined, to make it possible for the
system to calculate the scale of the indicator. If you do not provide these values, the
system uses default values (see the online C/SIDE Reference Guide for details).

To create an indicator:

1 Open the form in the Form Designer.

2 Select the indicator tool, and click and drag in the design area to create the
Indicator.

3 As the SourceExpr of the Indicator, enter the value you want to control the indicator.

4 Set the MinValue and MaxValue properties of the Indicator.

5 Set the Percentage property to choose whether or not the indicator will display
percentages. If this property is Yes, the “23%” shown in the picture above will be
displayed – otherwise, it will not. The gauge itself is the same when Percentage is
No and when it is Yes. (The percentage is calculated as ((value of SourceExpr) –
MinValue) / (MaxValue – MinValue))*100).
137

Chapter 7. Designing Forms
Creating a Tab Control
A tab control is useful when you are designing a form that is based on a table with
many fields. Instead of creating a large form, cluttered with controls, you can group
controls together on pages that the user can bring to the front by clicking the tabs.

You can use a form wizard to create a form with a tab control.

To create a tab control manually:

1 Open the form in the Form Designer.

2 Select the Tab Control tool and click and drag in the design area to create a tab
control.

3 Open the Property Sheet for the tab control, and create the pages you need by
entering a name for each page as a comma-separated list in the PageNames
property. The names will be used as captions on the tabs.

4 The tabs are created while you are in the Form Designer. You can select pages by
clicking the tabs.

5 Add controls on the pages. You can think of each page in a tab control as a frame
and add controls as you would in a frame.

Creating a Table Box
A table box is useful when you need to display many records from a database table at
the same time. A table box contains columns and rows, and the user can move
through the records, either by clicking navigation buttons (as) or by using arrow keys
and PageUp and PageDown. If the form is too narrow to display all columns, a
horizontal scroll bar will automatically be added to the control.

You can use a form wizard to create a form with a table box.

To create a table box manually:

1 Open the form in the Form Designer.

2 Select the table box tool, and click and drag in the design area to create a table
box.

3 If the form is not related to a table, you can establish a relation now, by setting the
SourceTable property of the form to the name of the table.

4 Open the Field Menu.

5 Select the fields you want in the table box from the Field Menu and click inside the
table box. A column will be added for each field, and each row will display a record
from the table. A label, derived in the same way as a label for any text box, is added
as a column heading.
138

Chapter 8
Extending the Functionality of Your
Forms

This chapter explores form design further, including
sections on forms related to multiple tables, on creating
menus and on writing C/AL code in triggers.

· Main Forms and Subforms

· Looking Up Values and Validating Entries

· Drilling Down to the Underlying Transactions

· Launching Another Form

· Designing Menu Buttons

· Form and Control Triggers

Chapter 8. Extending the Functionality of Your Forms
8.1 MAIN FORMS AND SUBFORMS

As described in Chapter 2, Designing a C/SIDE Application, a well-designed database
does not store redundant information but has a number of relationships between
tables. The typical relationship is a one-to-many relationship.

For example, suppose you are designing an application that handles sales orders.
There can be many items on one single sales order, but one specific item can only be
part of one sales order. Some of the information on a sales order, for example the
address of the customer, is per order, while other information, for example the item
number, is per item. In a well-designed database, with no redundant information, this
means that the information on a sales order is stored in two tables: one, a header
table, with the general order information, another, a lines table, with the information
about each item. There is a one-to-many relationship between the tables.

However, the users of the application need to view information from both tables at the
same time: the header information together with the lines, like this

Although this looks like a normal form it is, in fact, two forms.

The main form is the one side of the one-to-many relationship; in the example, it is
based on the Sales Order Header table. The subform is the many side of the
relationship; in the example, it is based on the Sales Order Line table. When the user
selects a sales order header in the main form, the subform is updated to display only
sales order lines pertaining to this sales order header. There is therefore a link
between the main form and the subform that keeps the information synchronized.

Designing the Main Form
There are no special procedures involved in designing a form that will be used as the
main form in a main form/subform relationship: it is designed as any other form.
140

8.1 Main Forms and Subforms
In order to add a subform, you will add a subform control. The subform control
establishes the link between the main form and the subform, but it is not a form in
itself. You can, however, display any form in the subform control.

If you are going to use an existing form as the subform, follow the procedure
described below. If you are going to create a new form to use as a subform, it may be
more convenient to create the subform first. How to do this is described in the next
subsection.

To create the main form in a main form/subform relationship:

1 Open the existing form in the Form Designer.

2 Select the Subform tool, and click and drag in the design area to create the subform
control.

3 Open the Property Sheet for the subform control.

4 Enter the name of the form that you want to use as a subform as the SubFormID
property (or use the lookup button to choose from a list of all forms).

5 Enter the expression that links the two tables (for example the field that is common
for the tables) as the SubFormLink property. There is an assist-edit function
available to assist you (click the AssistButton k to open the assist-edit window).
Choose the field name from the many side of the relationship (the subform table) as
the Field. Then choose FIELD as the Type of the relationship. Finally, choose the
field from the one side of the relation (the main form table) as the Value.

6 In the SubFormView property, you can specify the key, sort order and table filter you
want the system to apply to the table when it is displayed in the subform (it is not
mandatory to enter anything).

EXAMPLE

In the SubFormLink property, you can choose other types of link than FIELD. If you choose
CONST, Value must be a constant expression that selects records where the Field matches this
expression. If you choose FILTER, Value must be a filter expression (as, for example, 10|30..40).

Designing the Subform
There are no special requirements for a subform, that is, it is exactly like any other
form in the system. However, the form is going to be used to display the many side of
a one-to-many relationship, and not all forms are equally useful for this purpose.

The typical choice is a tabular form, that is, a form with a table box. See Creating a
Table Box on page 138. The table box should fill out the form completely, and the
HorzGlue and VertGlue properties of both the table box on the subform and the
subform control on the main form should be set to Both. In this way, the subform and
the table box will be resized when the main form is resized.
141

Chapter 8. Extending the Functionality of Your Forms
Hints and Advice
Even if creating a form with a subform is not different from creating controls on forms
in general, you may have to perform some experiments before you find the best way
to do it.

Here are some hints and advice to help you along:

· It can be difficult to get the sizing of the subform control on the main form and the
size of the subform itself right. You should finish the design of the subform first. Get
the values for width and height of the form from the Property Sheet. Then, in the
main form, click and drag a subform control of any size. In the Property Sheet,
insert the width and height of the subfom as the width and height of the subform
control.

· Generally, if the subform is a tabular form, it will look better if you let the table box
completely fill out the form vertically – this way there won’t be extra space around
the table inside the subform control – and set the HorzGlue and VertGlue properties
to Both.

· If the subform is a tabular form, you should size the form to show only a few records
at a time. Then, in the main form, set the VertGlue and HorzGlue properties of the
subform control to Both. The user can resize the main form vertically and
horizontally, and the subform will be resized along with it: more records and fields
will be displayed.
142

8.2 Looking Up Values and Validating Entries
8.2 LOOKING UP VALUES AND VALIDATING ENTRIES

The previous section described how to create a main form and a subform in order to
display data from a one-to-many relationship. The main form was bound to the table
on the one side of the relationship; the subform was bound to the many side.

Suppose, instead, that you are designing a form that is bound to a table containing
information about customers. Some of this information is unique for each customer,
while other information is not. The names and addresses of the customers are unique,
but suppose you want to store information about the shipper that is normally used for
deliveries to each customer? There are only a few shippers, and it would be redundant
and in violation of relational database design rules to store information such as
addresses of these shippers in the customer records.

Instead, you would create a Shipper table, and use a Shipper Code field to create a
link between this table and the Customer table, storing only the shipper code in each
customer record, and storing all other information about the shippers in the Shipper
table.

This is, in fact, the many side of a one-to-many relationship: while each customer can
be associated with only one shipper, a shipper can be associated with many different
customers. A main form/subform is not applicable here (it would be, though, if you
were to design a form to display information about the shippers. The subform could
then display a list of customers that use each shipper).

There are two things you must consider when creating the Customer form and table:

· Do you want to provide the user with an easy way of entering the shipper code?

· Do you want to validate the Shipper Code field in the Customer table against the
Shipper table? That is, do you want the system to verify that the contents of the
Customer table field are present in the Shipper table?

Customer Record

Number

Name

Address

...

Shipper Code

Shipper Record

Shipper Code

Name

Address

Phone

....

Customer Record

Number

Name

Address

...

Shipper Code

Customer Record

Number

Name

Address

...

Shipper Code
143

Chapter 8. Extending the Functionality of Your Forms
If you do not establish a relationship to the Shipper table, the users will have to
memorize the shipper codes, and they may easily enter a code that does not exist in
the Shipper table. If the tables are related, the system provides a lookup function into
the Shipper table, so that the user can press F6 or click a lookup button (p) and
select the code from a list that displays the codes as well as other information such as
name and address. A control can be related to a field in another table by defining the
relationship, either at the table level, as a property of the Shipper Code field in the
Customer table, or at the form level, as a property of the text box displaying the
shipper code on the Customer (main) form.

If you want to make certain that the user does not enter non-existent shipper codes
into the Customer table, the system can validate the entries against the Shipper
table. The ValidateTableRelation property, either of the field (at table level) or of the
text box (at form level), governs whether entries are required to exist in the Shipper
table.

Apart from simply asserting that the entered codes exist in the Shipper table, you can
create more advanced validation rules that check the entered codes against
combinations of values of fields in both tables (for example, you can have the system
check whether the shipper allotted to a customer operates at all in the customer’s
country). To do this, you will have to create the validation rule by writing C/AL code in
the OnValidate trigger of the control on the main form.

A form with a lookup on the Shipping Agent field looks like this when the lookup
function has been activated:

Defining the Table Relation
As mentioned above, the relationship to a table can be defined in two different places.
In both places, as part of a table description or as part of a form description, the
relationship is defined in the TableRelation property of the field or control. For the
application user, there will be no functional difference between a table relationship
defined at the table level and a table relationship defined at the form level. There is a
difference, though, when you are designing an application. If the relationship is
defined at the table level, all text boxes in forms that have a direct relationship to the
field will have the lookup functionality – with no effort required from the person
designing the forms. You can suppress the function by setting the Lookup property of
the text box explicitly to No.
144

8.2 Looking Up Values and Validating Entries
To define a table relationship:

1 Open the Property Sheet for the field or the control.

2 In the Value field of the TableRelation property, click the assist-edit button.

3 In the assist-edit window, enter the name of the table to lookup into in the Table
field (or choose from the list that appears when you click the lookup button).

4 In the Field field, enter the name of the field in the table (or choose from the lookup
list).

You can use the Condition and the Table Filter fields to create a more advanced
relationship than this basic one.

By using the Condition field, you can, for example, lookup to different tables,
depending upon the value of a field in the current table. Each condition line
corresponds to a statement in an if then...else if sequence.

In the Table Filter field, you can set a filter on the lookup table.

Validating Entries

Entries can be validated against the contents of a field in a related table quite easily. If
you set the ValidateTableRelation property to Yes – either at field level or at control
level – only entries that exist in the related table will be accepted.

If you need a more advanced validation, you can write C/AL code in the OnValidate
trigger of either the control or the field.

Using the Default Lookup or Writing Your Own?

If you want more control over the way a lookup functions than you can achieve by
using conditions and filters, you can write C/AL code in the OnLookup trigger. In this
way you can bypass the default lookup function completely and write your own.

The rules for determining which lookup function is performed are these: a trigger at the
form level takes precedence over one at the table level. Both of these take
precedence over the system default action.

Defining a Lookup Form

When you are using the system lookup function, you will have to define which form to
use to display the results of the lookup. You can define the form in two ways: each
table can have a form defined that will be used for looking up into the table, by setting
the LookUpFormID table property – or a form can be defined by setting the
LookUpFormID of the control for which the lookup is provided. If both properties are
set, the form defined as a control property will be used.

Pay attention to the fact that if no lookup form is defined (either at table level or at form
level), then although the text box will have the lookup button (p) attached, a lookup will
not be performed when the button is clicked.
145

Chapter 8. Extending the Functionality of Your Forms
If you are writing your own lookup function in the OnLookup trigger, you will have to
explicitly run a form by using the RUNMODAL C/AL function.

.
Hint

If you always design a basic tabular form (fast and easy, using the wizard) for a table,
and enter this form as the LookupForm (and DrillDownForm) of the table, you will
never forget to provide a lookup form. If you later on decide that this form is not

.
adequate for some lookups, you can add customized forms as control properties.

Permanent Assist

This is a control property. If it is set to Yes, the lookup button will be permanently
displayed; otherwise, it will be displayed only when the control has the focus.

Looking Up in the Current Table

By setting the Lookup property of a text box to Yes, you can provide a lookup to the
same table (the source table of the form, that is). This is intended to provide the user
with an easy way of selecting a record to work with. In effect, the lookup provides a list
of all records in the table; the user can select a record from the list, which will then
become the current record.

A lookup form must be defined, either at table or at form level, just as when the lookup
is to another table. You cannot set conditions and filters, however (as you can when
the lookup is to another table). The default behavior is to display all records in the
table. If you need to change this, you will have to write your own lookup function in the
OnLookup trigger.

If a lookup into a related table is defined–regardless of how the relation is
defined–setting Lookup to Yes will be overruled. On the other hand, if Lookup is
(explicitly) set to No (as opposed to its default value <No>), no lookups, including to
related tables, will be performed.

You can provide the same functionality by using the LookupTable action (applicable to
command buttons and menu items). In this way you can provide both types of lookup
on the same form: lookups to related tables from text boxes, and lookups to the source
table from command button actions.
146

8.3 Drilling Down to the Underlying Transactions
8.3 DRILLING DOWN TO THE UNDERLYING TRANSACTIONS

FlowFields were introduced in Chapter 3, Table Fundamentals. When a text box is
based on a FlowField, you will see that a drill-down button (o) automatically is
attached to the text box. When the user clicks this button (or presses SHIFT F6), the
transactions that the system used to calculate the value of the FlowField will be
displayed.

In the first picture below, the Chart of Accounts, you can execute a drill-down function
in the Net Change field – a FlowField that summarizes transactions in this account.
The next picture shows the form that is displayed when that particular drill-down is
performed – a detailed list of the transactions:

The drill-down facility is provided whenever a text box is directly related to a
FlowField–you do not have to do anything special when designing the form except to
make certain that a DrillDownFormID is defined (as for lookups – see Defining a
Lookup Form on page 145), either at the table level or at the form level.

Drill-downs resemble lookups in many ways, and with them you can do most of the
things that you can do with lookups – one exception being that drill-downs pertain only
to FlowFields, which have to be defined when the table is designed.

You can customize a drill-down in these ways:

· You can disable the drill-down altogether by setting the DrillDown property of the
text box explicitly to No.
147

Chapter 8. Extending the Functionality of Your Forms
· Text boxes based on the same FlowField will have different drill-down forms if you
define separate DrillDownFormIDs at the form level.

· You can decide whether the drill-down button should be displayed permanently or
only when the text box has the focus, by setting the PermanentAssist property of
the text box. Yes means that the button will always be displayed, and No means
that the button will be displayed only when the text box has the focus.

· You can change the drill-down behavior altogether by writing C/AL code in the
OnDrillDown trigger of the table field or the control. In this case you have to run a
form explicitly from your trigger code, as the system does not perform any part of
the default drill-down and does not display a form automatically.
148

8.4 Launching Another Form
8.4 LAUNCHING ANOTHER FORM

When you provide a lookup function for selecting values in a related table, you will
typically display only a subset of the fields in the lookup table.

In some situations, however, it would be convenient to be able to update other fields
than those displayed on the lookup form in the related table without closing the current
form. Suppose a user is taking orders by phone. It is convenient to use a lookup
function on the sales order forms to find the customer numbers as customers call in.
But what if a customer calls in to order something – and mentions that he has moved
to a new address? It would be time consuming – and annoying – to have to close the
sales order form, select the customer form, find the customer, change the address,
and then return to the sales order form to start entering the order again.

A better solution is to provide a way to launch the customer form directly from the
sales order form, automatically select the appropriate customer record, update and
close the customer form, and continue filling out the sales order form.

In order to launch another form, you can add a control that has a PushAction property
and run the customer form with parameters to select the correct record from the
Customer table whenever the user "pushes" the control. You can use command
buttons, menu items, check boxes or option buttons.

To add a command button that launches a form, follow these steps:

1 Add a command button (the procedure is described in Chapter 7).

2 Set the PushAction property of the command button to RunObject.

3 Set the RunObject property of the command button to the name of the form you
want to launch. As you can use RunObject to run any object, you have to specify
the type of object (Form, Codeunit, and so forth). You can choose the object from
the lookup list that is provided (in this case, the type of the object is inserted
automatically).

4 Set the RunFormLink property to establish the link to the form you want to launch.
Use assist-edit (click k) to create the expression. First, select a field from the table
underlying the form you are going to launch. Choose FIELD as the type of the
relationship. Finally, as the Value parameter, select the field in the table underlying
the current form that must match the value in the other table.
149

Chapter 8. Extending the Functionality of Your Forms
8.5 DESIGNING MENU BUTTONS

While command buttons are a convenient way of adding functionality to forms, an
excess of buttons will clutter the forms and impair their visual design. If you need to
use many command buttons, you should consider creating menu buttons instead.

When a menu button is pushed, a menu is opened:

Each line in a menu is called a menu item. A menu item can:

· Perform an action when clicked. This can be an action from the same set of actions
as command buttons (see the online C/SIDE Reference Guide for a list), or it can
be an action written in C/AL, as menu items have OnPush triggers just like
command buttons.

· Contain a submenu that is opened when the line is clicked.

· Be a separator – a line used for grouping items in a menu together.

A menu is created in two steps. First you add a menu button to your form. This part is
exactly the same procedure as adding a command button. Then you open the Menu
Designer for the menu button and create the menu items.

Adding a Menu Button to a Form
To add a menu button:

1 Open the form in the Form Designer.

2 Choose the Menu Button tool, then click in the design area to add the menu button.
150

8.5 Designing Menu Buttons
3 Select the menu button and open the Property Sheet for the menu button. As a
menu button does not have a relation to data – field or variable – Name and
Caption are set to default values (like Control7). Change the Caption to an
appropriate text. If the text contains an ampersand (&), the system interprets the
following letter as an access key.

Adding a Menu Line to a Menu
When you have created and modified a menu button as described above, you can add
lines to the menu that is displayed when the button is pushed.

To add a menu line:

1 Select the button and open the Menu Designer while the button is selected.
(Choose View, Menu Items.)

2 The first field, Visible, is by default set to Yes. Leave it like this.

3 Add lines by filling out the Caption field. If you do not create an access key yourself
(by embedding an ampersand in the Caption text), the system will automatically use
the first letter of each Caption as an access key. If you add menu lines where some
captions start with the same letter, you must set the access keys yourself to avoid
overloading certain ones.
151

Chapter 8. Extending the Functionality of Your Forms
4 If you want, you can define a shortcut key (accelerator key) by entering the name of
the key in the ShortCutKey field. Keys are entered as follows:

An accelerator key is active as long as the focus is on the form that the menu button
is a child of. Beware of accidentally overloading some key combinations so that
they perform different actions when different forms have the focus – this could
confuse the user. Also beware of using accelerator keys that the system already
uses.

5 Enter the action for the menu item in the Action field. You can use the drop-down
list that is available to choose from among the same actions as for a command
button. You can also write C/AL code in the OnPush trigger of the menu item.

6 If you have chosen RunObject, you can define the object (form, report, codeunit) in
the Object field. There is a lookup function available to help you select the object.
For other parametrized actions (for example, RunSystem) you have to set the
parameters in the Property Sheet of the menu item (see below for details).

Adding Other Menu Items
In addition to lines that perform actions, menus can contain separators and lines that
are submenus, that is, lines that open up another menu when you click them.

Separators A separator is a horizontal line in a menu that cannot be selected or
perform any action. It helps you group items on a menu.

To add a separator to a menu, click the Separator button in the Menu Designer. The
separator will be inserted after the currently selected line.

Submenus and Menu Levels Menu items can be nested, that is, when you click a
line on a menu, another menu can open.

Submenus are defined in the Menu Designer. When an item is selected, you can
indent it by clicking the right-arrow button. An indented item becomes a menu item on
a submenu. If you open the Property Sheet for a menu item, you will see that when
first created, menu items have the MenuLevel property set to a default value of zero.
As items are indented, the MenuLevel is set to 1, 2, 3 and so forth – one level for each
click on the indentation button (you can cancel indentation by clicking the left-arrow
button – each click cancels one level of indentation).

Key Entered as

Function keys F1, F2, F3, ...

Control, Alt, Shift CTRL, ALT, SHIFT

Other keys A, B, C, ... (these keys must be part of a key combination with CTRL
or ALT).

Key combinations For example: CTRL+A, SHIFT+F2
152

8.5 Designing Menu Buttons
There are a few logical rules you must follow when creating submenus:

· If there are any items at all in a menu, there must be at least one item with
MenuLevel 0 (zero).

· Each MenuLevel can be at most one higher than the preceding level in the list.

· If a higher MenuLevel follows a lower one (for example, 1 follows 0), the menu item
with the MenuLevel 0 becomes a submenu, and the item with MenuLevel 1
becomes an item on this submenu. A menu line that is a submenu cannot have any
action associated with it.

· There can be up to 10 menu levels (numbered from 0 to 9).

· If the MenuLevel reverts to lower numbers (less indentation), menu items will from
then on become items in the previous menu at the level indicated by the
MenuLevel.

· Separators cannot be submenus and separators have to separate items at the
same level, that is, you cannot put a separator as the first or last (or only) item in a
menu or submenu.

Check Marks on Menu Items
Menus in Windows programs habitually employ a special feature: for menu items that
act as toggles, the on/off state is indicated by the presence or the absence of a check
mark next to the item in the menu.

The SourceExpr property of a menu item is used for controlling whether a check mark
is displayed or not. Initially, the SourceExpr property is undefined. You can define it to
a valid C/AL expression that evaluates to a boolean. The check mark appears when
the value is TRUE.

You can see how this feature can be used in C/SIDE itself. In the Format menu, the
Snap to Grid menu item is a typical example: it can either be on or off. When it is On,
the check mark is displayed.
153

Chapter 8. Extending the Functionality of Your Forms
8.6 FORM AND CONTROL TRIGGERS

While the system interprets and acts upon many events in a predefined way, certain
actions – such as opening a form or pushing a command button – cause the system to
execute a user-definable C/AL function (the event triggers the function). You will
typically use triggers to do advanced validation, to initialize variables in a non-trivial
way or perhaps to format text boxes according to the value of a field or control. In
short, you use triggers whenever the system default behavior does not suit your
purpose.

Overview of Form Triggers
These triggers pertain to forms in C/SIDE

The table only sketches out the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for extensive descriptions and details.

Form trigger name Executed when...

OnInit the form is loaded, but before controls are available.

OnOpenForm the form has been initialized (controls are available).

OnQueryCloseForm the form is about to close, but before OnCloseForm. If this trigger
returns FALSE, the form is not closed. The intended use is for
asking the user if he or she really wants to close the form.

OnCloseForm the form is about to close, and after OnQueryCloseForm.

OnActivateForm the form is activated, that is, when the form becomes the active
window.

OnDeactivateForm the form ceases being the active window.

OnFindRecord the form is opened and a record is retrieved–and also when the
user chooses to go to the first or the last record.

OnNextRecord the system determines how to select the next record, for example
after a user pressed PAGEDOWN (in a card form).

OnAfterGetRecord a record has been retrieved but not yet displayed.

OnAfterGetCurrRecord the current record is retrieved. In a table box. OnAfterGetRecord is
called for all the records displayed, while this trigger is called for
the current record.

OnBeforePutRecord a record is about to be saved.

OnNewRecord a new record has been initialized but not yet displayed.

OnInsertRecord a new record is about to be inserted in the table.

OnModifyRecord a record is about to be modified in the table.

OnDeleteRecord a record is about to be deleted from the table.
154

8.6 Form and Control Triggers
.
Note

The last three triggers in the table – OnInsertRecord, OnModifyRecord,
OnDeleteRecord – correspond to triggers at table level. If you use triggers at both
form and table level, the triggers at form level will be executed first, then the triggers at

.
table level.

Overview of Control Triggers
Depending on the type of a control (see Chapter 7), controls have a varying number of
triggers. Static controls and container controls do not have any triggers at all, while
text boxes have a full range. Other data controls and data container controls have a
subset of the possible triggers. Controls that can be pushed – such as a command
button or menu item, and also a check box – have a special trigger to handle this.

The following table outlines the full range of triggers. The column at the right indicates
the controls for which the trigger is relevant.

CONTROLS ARE
1 - COMMAND BUTTON, 2 - MENU BUTTON, 3 - CHECK BOX, 4 - OPTION BUTTON, 5 - TEXT BOX, 6 -
PICTURE BOX, 7 - INDICATOR, 8 - SUBFORM, 9 - MENU ITEM

The table provides a sketch of the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for concise descriptions and details.

Control trigger
name

Executed when... Controls

OnActivate the control is activated. 1,2,3,4,5,6,7,8

OnDeactivate the control is deactivated. 1,2,3,4,5,6,7,8

OnFormat the control is about to be updated. 5

OnBeforeInput the control is selected for input and before any input
is actually entered.

5

OnInputChange the user is entering data. This trigger is repeatedly
executed, after each keystroke.

5

OnAfterInput the user finishes input. 5

OnPush the control is pushed. 1,3,4,9

OnValidate the control loses focus. 3,4,56,7

OnAfterValidate the value entered has been validated. 3,4,5,6,7

OnLookup the user requests a lookup (by clicking a lookup
button or pressing F6).

5

OnDrillDown the user requests a drill-down (by clicking a drill-
down button or pressing SHIFT F6).

5

OnAssistEdit the user requests assist-edit (by clicking an assist-
edit button or pressing SHIFT F2).

5

155

Chapter 8. Extending the Functionality of Your Forms
.
Note

OnValidate is also a field trigger at the table level. If both triggers (field and control) are
defined, the field trigger is executed before the control trigger (and the system default
validation before anything else).

OnLookup is also a field trigger at the table level. The flow is different here: when a
lookup is requested, the system executes the control lookup trigger, if defined, in place
of the field lookup or system default. If no control lookup trigger is defined, a field

.
lookup trigger (if defined) replaces the system default lookup function.

How to Define and Modify Form and Control Triggers
When you want to define a function to be triggered by a form or control event – or
modify an existing function – follow these steps:

1 Open the form in the Form Designer.

2 Select the form itself or the control (or menu item) in question.

3 Open the C/AL Editor (choose C/AL Code from the View menu).

4 In the editor, you will only have access to those triggers that are relevant for the
object that you selected. Enter C/AL code in those triggers you want to use, or
modify those existing triggers you want to.

5 You can test-compile the form, thus including the code, by choosing Compile from
the Tools menu.

If you are not familiar with the C/AL programming language, you should read Part 4,
Codeunits, in this guide.
156

Part 3
Reports

Chapter 9
Report Fundamentals

Reports are used to print information from a database. A
report can be used to structure and summarize information,
and reports can be used to print documents such as
invoices. Reports can also be used to process data without
printing anything.

This chapter introduces the fundamental concepts and
basic tasks involved in designing reports.

· What Are Reports?

· What Happens When a Report Runs?

· The Report Designer

· Saving, Compiling and Running Reports

Chapter 9. Report Fundamentals
9.1 WHAT ARE REPORTS?

Reports in C/SIDE have several purposes:

· Reports are used to print information from a database in a structured way. For
example, in a sales order application, you can create a report that contains a list of
all customers and for each customer lists all orders placed by that customer.

· All documents pertaining to an application must be created as reports. For
example, in order to print an invoice, you will create a report that is automatically
filled out with the relevant information.

· Reports can be non-printing. While this may sound like a contradiction in terms, it is
not. A report can be used to automate many recurring tasks such as updating all
prices in an item list. This could be performed entirely from C/AL code in a codeunit,
but using a report makes it a lot easier because you can use the powerful data
modeling available for report design.

The following diagram shows the components of a report and their relationship. This
and the following chapters will explore all components in depth.

The Report Components
The diagram above outlines how a report is composed from a number of different
components. Below you will find a short description of each component.

Report Description This is the total description of the report: how data is collected,
and how data is presented on paper when the report is run. The report description is
stored in the database.

Data Item A data item corresponds to a table. In order to retrieve information from
the tables in the database, you define data items. When a report uses more than one
table, you set relations between the data items in order to retrieve and organize data
in the way that you want.

Report Description
Properties
Triggers
Data Items

Properties
Triggers
Sections

Properties
Triggers
Controls

Properties

Request Form
Properties
Triggers
Controls

Properties
Triggers
160

9.1 What Are Reports?
Section In a printing report, each data item has one or more sections. A section can
be thought of as a block of information to print on the paper. The complete report is
composed of a number of sections, some that are printed only once, for example a
header, and some that are printed for each record that is retrieved from the database.

Control The information that is printed in the sections is composed of controls. The
available controls are text boxes, for printing the result of the evaluation of any valid
C/AL expression such as the contents of a table field (but also complex calculations),
labels for printing static text such as a caption for a column of data, and shapes,
images and picture boxes, for printing graphical elements (lines, circles) and bitmap
pictures in a report.

Request Form A request form is a form that is run before the actual report begins
execution. It is used to gather requests and options from the user of the report–for
example, sort order or level of detail.

Property A property is an attribute of an object – report, data item, section, and so
forth–that characterizes the object in some way: color, size, whether it is displayed,
and much else. Properties are set on the Property Sheet of an object.

Trigger Certain predefined events that happen to a report cause the system to
execute a user-definable C/AL function – the event triggers the function. As you can
see in the diagram, the report itself, the data items, the sections, the request form and
the controls on the request form all have triggers. Triggers are edited in the C/AL
editor.

Logical and Visual Design
There are two sides to designing a report: defining the logical structure, the data
model, and designing the visual layout.

Defining the data model means defining how the data for the report is collected. This
includes

· defining the tables the report will use by creating data items.

· defining relationships between data items if the report uses more than one table.

· defining the key, sort order and filters to use with the involved data items.

· defining how data is to be grouped.

· defining how subtotals and totals are to be calculated.

· possibly writing C/AL code in data item triggers to obtain advanced functionality.

Data Items The data model of a report is built from data items. A data item corresponds to a table.
When the report is run (see the diagram on page 164) each data item is iterated for all
records in the underlying table. When a report is based on more than one table, you
establish a hierarchy of data items to control how the information is gathered by
indenting data items.
161

Chapter 9. Report Fundamentals
EXAMPLE

In order to make a report that prints out a list of customers and for each customer lists sales orders
placed by that customer, you will define two data items: one that corresponds to the Customer
table and one that corresponds to the Sales Order table. The second data item is indented: as the
report works its way through the records in the Customer table, for each customer all sales orders
that are related to this customer must be found by going through the records in the Sales Order
table.

Sections The visual layout of a report includes the sections. In a printing report (remember that
reports do not have to print anything), one or more sections are attached to each data
item. There are several types of sections, each having a specific function. Normally,
the bulk of the data is printed out in the body section of a data item, while the header
section of the data item is used to print information before any record of the data item
is printed (for example, column captions), but there are reports – like some of the
examples in this guide – where the body section is not used at all, and all information
is printed in other sections.

The following picture shows a finished report.

Sales Statistics
CRONUS International Inc.

Customer: No.: 10000..30000

No. Name ...before

09/28/95 10/28/95 11/28/95

after...10/27/95 11/27/95 12/27/95

10000 Kontorforsyningen A/S

Sales (LCY) 57,509.00 0.00 0.00 0.00 0.00

Profit (LCY) 12,655.00 0.00 0.00 0.00 0.00

Profit % 22.0 0.0 0.0 0.0 0.0

Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

20000 Ravel Møbler

Sales (LCY) 1,525.00 0.00 0.00 0.00 0.00

Profit (LCY) 335.00 0.00 0.00 0.00 0.00

Profit % 22.0 0.0 0.0 0.0 0.0

Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

30000 Lauritzen Kontormøbler A/S

Sales (LCY) 13,676.20 0.00 0.00 0.00 0.00

Profit (LCY) 2,444.20 0.00 0.00 0.00 0.00

Profit % 17.9 0.0 0.0 0.0 0.0

Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

Total

Sales (LCY) 72,710.20 0.00 0.00 0.00 0.00

Profit (LCY) 15,434.20 0.00 0.00 0.00 0.00

Profit % 21.2 0.0 0.0 0.0 0.0

Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
162

9.1 What Are Reports?
The report above prints sales statistics information and retrieves all its data from one
table. It demonstrates a range of the features that are available for designing reports.

· Before any record from the table is printed, there is a header – containing a title and
information about the filter that was used on the customer numbers.

· Each body section prints information about a customer on several lines. The "Profit
%" lines are calculated as the report is run.

· After all records (all records that were selected by the filter, that is) have been
printed, a footer section is printed that contains totals for the selected customers.

· In the body section and in the footer section, a filter has been applied to create
columns where data are collected and totalled for different periods.
163

Chapter 9. Report Fundamentals
9.2 WHAT HAPPENS WHEN A REPORT RUNS?

The two flow charts in this chapter are simplified versions of the flow charts in
Appendix B, Report Flow Charts, on page 480. If you want to acquaint yourself with all
details–including why and when triggers are executed–you should consult that
appendix. The focus here will be on describing in general terms the way a report is
run.

The Report Run
The flow chart below illustrates the events that take place when a report runs.

1 When the user initiates the report run, the OnInitReport trigger is called. This trigger
can perform processing that would be necessary before any part of the report is
run–or stop the report.

2 If the OnInitReport does not end the processing of the report, the request form for
the report is run, if it is defined. Here, the user can choose to cancel the report run.

3 If the user chooses to continue, the OnPreReport trigger is called. At this point, no
data has yet been processed.

4 When the OnPreReport trigger has been executed, the first data item is processed
(provided that the processing of the report was not ended in the OnPreReport
trigger).

Call Init Trigger

ReqForm.Run

Call PreReport
Trigger

DataItem.Run

Get Next DataItem

Call PostReport
Trigger

OK / Print / Preview

No more

OK

Cancel

Report.Run

Entry point

Exit
164

9.2 What Happens When a Report Runs?
5 When the first data item has been processed, the next (if any) data item will be
processed in the same way.

6 When there are no more data items, the OnPostReport trigger is called. You can
use this trigger to do any post processing that is necessary, for example cleaning
up by removing temporary files.

The flow chart below further explores step 4 – how a data item is processed:

1 Before the first record is retrieved, the OnPreDataItem trigger is called, and after
the last record has been processed, the OnPostDataItem trigger is called.

2 Between these two triggers, the records of the data item are processed. Processing
a record means executing the record triggers and outputting sections. C/SIDE also
determines whether the current record should cause outputting of a special section:
header, footer, group header or group footer.

Call PreDataItem
Trigger

GetRecord

Call PostDataItem
Trigger

Header.Run

GroupHeader.Run

Body.Run

Get next lower
DataItem

GroupFooter.Run

Footer.Run

DataItem.Run

No more

No more

OK

OK

DataItem.Run
165

Chapter 9. Report Fundamentals
3 If there is an indented data item, a data item run will be initiated for this data item
(data items can be nested 10 levels deep).

4 When there are no more records to be processed in a data item, control returns to
the point from which the processing was initiated. For an indented data item this will
be to the next record of the data item on the next higher level. If the data item is
already on the highest level (indentation is zero) control will return to the report – as
shown in the first flow chart (Report.Run).
166

9.3 The Report Designer
9.3 THE REPORT DESIGNER

The Report Designer contains two additional designers: the Section Designer, used
for designing the layout of reports, and the Request Options Form Designer, used for
designing request options forms.

The Report Designer

In the Report Designer window, you define the data model by adding data items and
indenting them appropriately:

Properties and triggers for each of the data items can be edited by opening the
Property Sheet or the C/AL editor, respectively, while the data item is selected.
Properties and triggers for the report can be edited by selecting an empty line in the
Report Designer window and then opening the Property Sheet or the C/AL editor, or
by choosing Select Object from the Edit menu.

The Section Designer

When one or more data items have been defined, you can design the visual layout of
the report in the Section Designer.

You can use the Field Menu to select fields and place them in the sections as controls
as described for forms on page 121. In the picture below, a number of text boxes and
labels have been placed in four sections.
167

Chapter 9. Report Fundamentals
You can think of each section as one or more lines on the paper that the report will
eventually be printed on. A header section is printed only once, while a body section
typically will be printed several times as the report loop is iterated. You can control
whether the header will be printed when a page break occurs while body sections of
the same data item are being printed.

You can edit properties and triggers for each section by opening the Property Sheet or
the C/AL editor, respectively, while the section is selected.

The controls you place in the sections have a subset of the properties that controls
have on forms (as not all properties are relevant on a report), and you can use the
same tools to modify the properties (the Font Tool, the Color Tool). You can see a list
of the properties on the Property Sheet, and you can read about them in chapter 7,
Designing Forms, or in the online C/SIDE Reference Guide.

The Request Options Form Designer

The Request Options Form Designer is used to create a form with fields that prompt
the user for options before the report is run. This designer works exactly like the Form
Designer.
168

9.3 The Report Designer
You only have to use this designer if you want to prompt the user to select options.
When a report is run, the request form looks like this:

As you can see, a form with a tab control has been created. The first two tabs
correspond to data items. They are created automatically (though you can control the
contents by setting properties of the data items), and they are used for setting filters
and defining the sort order.

The third tab, Options, only appears when the Request Options Form Designer has
been used to create a request options form.

The form has the same properties and triggers as any other form, and the same
controls can be placed on it.
169

Chapter 9. Report Fundamentals
9.4 SAVING, COMPILING AND RUNNING REPORTS

After you have designed a report, you must save and compile it before it can be run.
Normally, you will do this when you are done designing the report. However, you may
want to save a report that is not yet finished and thus cannot be compiled, for
example, if the report is more complex than the reports described so far and contains
C/AL code. You can also test-compile a report without closing or saving it.

Saving and Closing a Report
A report is closed when the Report Designer window is closed. You can close this
window in the same ways that you can close any other window.

To save a report:

1 When you close a report, C/SIDE will ask whether the report should be saved. If it is
a new report (a report that has not been saved before) you will have to assign an ID
and a name. The ID must be unique and follow the rules for numbering objects –
your C/SIDE dealer will provide you with this information.

Hint: if you enter ID and Name as report properties, these values will be used, and
you will not be prompted for ID and Name when you close the report.

2 The option field Compiled is by default set to TRUE (displayed as a check mark). If
your report is not yet ready to be compiled, remove the check mark by clicking in
the field.

3 Choose OK to save the report.

You can save a report without closing it by choosing Save or Save As from the File
menu. By using Save As, you can rename an existing report (thereby in effect copying
it).

Compiling a Report
Reports, like other objects in C/SIDE, must be compiled before they can be run. As
described above, you can choose to compile a report whenever you are saving it.

While you are designing a report, you may want to test-compile a report, to find
possible errors (this possibility will be more important if the report contains C/AL code
in triggers, as described in chapter 11). You can test-compile a report during design by
choosing the Compile option from the Tools menu.
170

9.4 Saving, Compiling and Running Reports
Running a Report
In a finished application your reports will be incorporated into menus, or they will be
called from, for example, a command button on a form. However, while you are
designing reports, you will often want to run them before they have been integrated
into an application.

Test-running reports While designing a report, you can test-run the report by choosing Run from the File
menu. In this way, the report will be compiled and run in its current stage of
development. It will not be saved, which means that you can use this function to verify
that the changes you are making work as intended before you save them.

Running reports from
the Object Designer

You can run a report from the list of reports in the Object Designer main window by
selecting it and clicking the RUN button.
171

Chapter 9. Report Fundamentals
172

Chapter 10
Designing Reports

This chapter describes the properties of reports, and then,
by creating two examples, shows the basic steps involved
in designing reports.

· Report Properties

· Designing a Simple Report

· Designing a More Advanced Report

Chapter 10. Designing Reports
10.1 REPORT PROPERTIES

As described in Chapter 1, C/SIDE Fundamentals, properties are a system-wide
feature and every application object has some properties. All objects in a report have
properties:

· The report itself

· The data items

· The sections

· The controls in the section

· The request form

· The controls on the request form

Properties for reports can be set by opening the Property Sheet (choose Properties
from the View menu) while an object is selected.

You select objects as follows:

· Select a data item in the Report Designer window by clicking it.

· Select the report itself by clicking an empty line or by clicking Edit, Select Object.

· Select a section in the Section Designer by clicking either the section bar or
somewhere in the section (not on a control, though).

· Select a control by clicking it.

Use the Value field to set the value of each property. As soon as you leave this field
(by hitting ENTER or by moving with the arrow keys), the property will be updated. If
what you entered contains an error, the update will not be accepted.

Default values are displayed in angle brackets (<>). You can reset any property (for
which there is a default) to the default by deleting the current value and then moving
out of the field.

How Properties Are Inherited

Controls that have a direct relationship to table fields will inherit the settings of those
properties that are common to the field and the control. For example, in an accounting
application you will want to store some calculated amounts with five decimal places, to
obtain a high degree of precision. However, on a printed report, you will only want to
display currency amounts with the customary number of decimal places. You can then
174

10.1 Report Properties
change the DecimalPlaces property of the text box control to display fewer decimals
than the default (but not more, obviously).

Report Properties
The table below briefly describes the report properties. All properties are described in
detail in the online C/SIDE Reference Guide. You can get context-sensitive Help for a
property by opening the Property Sheet for a report, placing the cursor on a property
and pressing F1.

The Property Sheet for a report is opened by choosing View, Properties while an
empty line is selected in the Report Designer window, or by choosing Edit, Select
Object.

Property Meaning

ID ID of the report–must be unique among reports.

Name Name of the report.

Caption Caption (shown on request form window, for example–default is the
same as Name).

ShowPrintStatus Should the printing status window be displayed during printing (with
the opportunity to cancel printing)?

UseReqForm Should the request form be run before the report is run?

UseSystemPrinter If Yes, then the system default printer is suggested as printer for
the report. If No, then the printer defined for the combination
User/Report in the setup of the system is suggested.

ProcessingOnly No printing–only processing. If Yes, the report cannot have
sections.

Description Description–for internal purposes, as it is not user-visible.

TopMargin Topmargin in 1/100 mm.

BottomMargin Bottom margin in 1/100 mm.

LeftMargin Left margin in 1/100 mm.

RightMargin Right margin in 1/100 mm.

HorzGrid Distance between horizontal gridlines (1/100 mm).

VertGrid Distance between vertical gridlines (1/100 mm)

Permissions The permissions of the report to access database objects. (The
report can have wider permissions than the individual user, thereby
enabling the user to print reports that retrieve information from
tables that he or she cannot normally access.)

Orientation Use this property to set the page orientation for this report. Values
are Portrait and Landscape.

PaperSize Use this property to set the paper size for this report.

PaperSource Use this property to specify which paper source to use when
printing this report.
175

Chapter 10. Designing Reports
Data Item Properties
The table below briefly describes the data item properties. All properties are described
in detail in the online C/SIDE Reference Guide. You can get context-sensitive Help for
a property by opening the Property Sheet for a Data Item, placing the cursor on a
property and pressing F1.

Section Properties
The table below briefly describes the section properties. All properties are described in
detail in the online C/SIDE Reference Guide. You can get context-sensitive Help for a
property by opening the Property Sheet for a Section, placing the cursor on a property
and pressing F1.

DeviceFontName Use this property for reports that are designed specifically for dot
matrix printers to prevent the printer from switching into graphics
mode when printing text. Specify the name of a device font (a font
that is built into a printer).

Property Meaning

Property Meaning

DataItemIndent Indentation level (can be set in the designer when creating data
items).

DataItemTable Table of item (can be set in the designer when creating data items).

DataItemTableView The key, sort order and filters to apply.

DataItemLinkReference The DataItemVarName of a less-indented Data Item that this
DataItem will be linked to.

DataItemLink Link between the current Data Item and the Data Item specified by
DataItemLinkReference.

NewPagePerGroup Should each group be printed on a separate page?

NewPagePerRecord Should each record be printed on a separate page?

ReqFilterHeading Tab caption for this item on request form (default is name of
DataItemTable).

ReqFilterFields Names of the fields that will be included in the ReqFilter form.

TotalFields Names of the fields for which totals will be calculated.

GroupTotalFields Names of the fields that will be used for grouping data.

CalcFields Names of the fields that will be calculated after a record has been
retrieved.

MaxIteration Maximum number of data item loop iterations.

DataItemVarName Name of record as variable (default is name of DataItemTable).

PrintOnlyIfDetail Print item only if sublevels generate output.

Property Meaning

PrintOnEveryPage Should header and footers be printed on all pages?
176

10.1 Report Properties
Control Properties
Controls in reports have exactly the same properties as controls on forms – that is,
those properties that it makes sense to set in a report. The Property Sheet of a control
shows the properties, and chapter 7, "Designing Forms", describes each property, as
does the online C/SIDE Reference Guide.

PlaceInBottom Should footer be placed below last line or at bottom of page?

SectionWidth Width in 1/100 mm.

SectionHeight Height in 1/100 mm.

Property Meaning
177

Chapter 10. Designing Reports
10.2 DESIGNING A SIMPLE REPORT

This section goes through the steps required to create a very simple report, in which a
list of customers is created, based on one table that contains customer information.

Defining the Data Model
The first step is to define the data model by creating the data items that you want to
use.

To create a data item:

1 Click Tools, Object Designer.

2 In the Object Designer, click Report.

3 Click New. C/SIDE opens the Report Designer.

4 In the New Report window, in the Table field, click the AssistButton p to select a
table from the Table List window.

5 In the Report field, click Create a blank report and then click OK.

6 In the Report Designer window, in the first Data Item field, click the AssistButton p
and select a table from the Table List window. The Name is by default set to the
name of the table. You do not have to change it in this report. In this example, the
Customer table has been chosen, and the default for Name is "Customer".

7 Click View, Properties to open the Properties window for the data item.
178

10.2 Designing a Simple Report
8 Select the DataItemTableView property and click the AssistButton k to open the
Table View window:

9 Select the key, sort order and filters that you want to use and then click OK. In the
example, a key (previously defined during table design) consisting only of the No.
field has been chosen, and the sort order is set to Ascending. The Table Filter field
has been left empty, meaning that a permanent filter is not defined on the table.

10Select the ReqFilterFields property, and click the AssistButton k to open the
following window:

11Select the fields on which the user will often need to set filters. You can use the
lookup function to select them. In the example, the fields No. and Country Code
have been selected. When you have selected the fields, press OK.

The picture below shows the request form the user will see when the report is run
(with the various choices made as in the steps above).

As the key and sort order were established during report design, the only choice left
for the user involves setting filters. The fields that were defined as ReqFilterFields are
shown, but the user can also choose to put a filter on other fields by adding lines
below those that are already used.

Concerning ReqFilterFields, you should be aware that the user can choose to set
filters on other fields than those you specify. However, it will still be a good idea to add
the fields that those who use the report will often want to set filters on. If the table has
179

Chapter 10. Designing Reports
a lot of fields, the casual user may find it difficult to find the relevant fields to filter from
a lookup list of all the fields in the table.

You can remove the filter-selection tab altogether by not defining any ReqFilterFields
for the data item and by setting the DataItemTableView to define a sort order. If you
create a request options form, it will still be shown.

If there is no request options form, an empty form will be displayed. On this, the user
can choose Print, Cancel, and so forth. Finally, if you set UseReqForm to No, the
report will start printing as soon as it is run. In this case, the user will not be able to
change his or her mind and cancel the report run altogether. (It will still be possible to
cancel printing, but some pages will probably be printed).

If a DataItemTableView is not defined, the user will be able to select key and sort order
at runtime. Then, the request form will look like this:

When the user clicks Sort, they can choose the key and sort order from this form:

.
Be careful...

about what you allow the user to change. In a more complex report, where you work
with data from several tables, the functionality may well depend on a specific key and
sort order. On the other hand, letting the user choose filters freely will not interfere with
the logic of the report. In a very simple report like this one, you can select a key and

.
define a sort order if you want, or leave it up to the user.
180

10.2 Designing a Simple Report
Using the Wizards

In the New Report window, in the Report field, you could have chosen to use one of
the wizards, for example Form-Type Report Wizard, rather than creating the report
from scratch.

The wizard will guide you through the steps of selecting the fields that the report will
be based on and the sorting order.

Note that on the first page of the wizard, the contents of the Available Fields field are
the Caption properties of the fields – not the Name property. For more information
about captions, see Chapter 18.

Designing the Sections
So far, only the data model of the report has been defined. So far, nothing will be
printed. The next step, therefore, is to design the sections.

To design report sections:

1 Open the Section Designer by clicking View, Sections, while the Report Designer
window has the focus. Having created a data item as described above, the Section
Designer will look like this:

As you can see, a section named "Customer - Body" ("1" means that this is presently
the first section of this data item) has been inserted. By default, a Body section will be
inserted for each data item that has been created; these sections will be in the same
order as the data items in the Report Designer.
181

Chapter 10. Designing Reports
2 Now, insert a header section for the Customer data item. Choose Insert New from
the Edit menu. The following form appears:

3 Choose Header as the Section Type and Before Current Section. Then press OK.
The Section Designer now looks like this:

4 Open the field menu by choosing Field Menu from the View menu. Select the fields
that you want in the report. (You can select multiple fields by holding down CTRL
while clicking in the selection bar.) In the following example, four fields have been
selected.

5 Move the mouse cursor into the Body section of the data item. Click once to
activate the window–the cursor changes into the Control Insertion cursor. Place the
182

10.2 Designing a Simple Report
cursor at the left side of the section and click again. A text box with an attached
label will be inserted for each selected field.

6 Open the Property Sheet by choosing Properties from the View menu. Click in the
Header section. Look at the setting of SectionWidth (the unit of measure is 1/100
mm).

All sections’ widths have been modified to make room for the inserted controls (the
default width, when no controls have been inserted, is 12000). In this case, the
resulting width is 15450, or 15.45 cm. If the report is going to be printed on A4 paper
this is perfectly acceptable – that paper is 21 cm wide.

7 Select all the labels as a multiple selection (hold down CTRL while clicking), and
move them all into the Header section in one move (in this way, the alignment of
labels and text boxes will be preserved).
183

Chapter 10. Designing Reports
Now, the report is ready to be printed, but it still needs some work before it will look
good on paper.

8 If the report, when it is run, ends up consisting of more than one page, you will want
the Header section – containing the labels – to appear on every page. Open the
Property Sheet for the Header section and set the PrintOnEveryPage property to
Yes (see the picture in step 6 above).

9 Moving the labels out of the Body section has left this section too high – there will
be an empty line for each customer record that is printed. To resize the Body
section, move the mouse cursor into the Section Designer until it touches the lower
bound of the Body section and turns into the vertical resizing cursor. Then click and
drag the section upwards until it has the same height as the text boxes.

10Save and close the report, and run it from the Object Designer. The example
described so far gives this result with sample data:

As you can see, the label and the data in No. do not line up very nicely. This is
because both controls have their alignment set to General (the default). The label is
left aligned because it contains text, while the text boxes are right aligned because
they contain numbers.

A simple solution is to right align the label.

11Select the No. label and open the Property Sheet. Set the HorzAlign property to
Right.

No. Name Address Phone No.

10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344

20000 Ravel Møbler Parkvej 44 22334455

30000 Lauritzen Kontormøbler A/S Jomfru Ane Gade 56 33445566

01121212 Spotsmeyer's Furnishings 612 South Sunset Drive 9998887771

01445544 Progressive Home Furnishings 3000 Roosevelt Blvd. 8887776661

01454545 New Concepts Furniture 705 West Peachtree Street 7776665551
184

10.2 Designing a Simple Report
Now the report looks like this:

No. Name Address Phone No.

10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344

20000 Ravel Møbler Parkvej 44 22334455

30000 Lauritzen Kontormøbler A/S Jomfru Ane Gade 56 33445566

01121212 Spotsmeyer's Furnishings 612 South Sunset Drive 9998887771

01445544 Progressive Home Furnishings 3000 Roosevelt Blvd. 8887776661

01454545 New Concepts Furniture 705 West Peachtree Street 7776665551
185

Chapter 10. Designing Reports
10.3 DESIGNING A MORE ADVANCED REPORT

The report designed in section 10.2 was very simple: it ran through one table and
printed out the records. In this section, you will learn to design reports that use more
than one table.

The sample report that will be created uses two tables: one is the customer table, as in
the preceding example. The other table contains sales lines, lines from not-yet-posted
sales orders that contain information about the actual items that have been ordered.
There is a one-to-many relationship between the two tables: while one customer can
have many items on order, a sales line can pertain to only one customer.

Defining the Data Model
The description of the steps involved in creating this report presumes that you are
familiar with the techniques explained in section 10.2 above.

To define the data model:

1 In the Report Designer window, choose the Customer table as the first data item,
and the Sales Line table as the second.

2 Indent the Sales Line data item by clicking the right-arrow button once while the
data item is selected:

.

The data model defined thus far will work like this:

· The report will run through the Customer data item.

· For each record in the Customer data item, the report will run through the entire
Sales Line data item.

This is clearly not the purpose of the report – you need a way to select only those
Sales Line records that are related to the current customer. This is accomplished by
the DataItemLink and DataItemLinkReference properties. The
DataItemLinkReference property points to a data item on a higher level (with less
indentation) and the DataItemLink property specifies a field in each data item: here,
records will be selected from the Sales Line table only when the Sell-to Customer No.
is the same as the No. in the Customer table.
186

10.3 Designing a More Advanced Report
3 Open the Property Sheet for the Sales Line data item.

4 Set the DataItemLinkReference property to the name of the less-indented data item
(Customer) that the more-indented data item (Sales Line) must be related to. In
most cases, including this one, this is the default.

.

5 In the value field of the DataItemLink property, open the form shown below by
clicking the AssistButton k :

6 In the Field field, enter the name of the field from Sales LIne (the more-indented
data item) that must correspond to a field from Customer (the less-indented data
item). You can use the lookup function to select the field.

7 In the Reference Field field, enter the name of the field from Customer that must
correspond to the field from Sales Line. Again, you can use the lookup function to
select the field. In the example below, the Sell-to Customer No. field from the
Sales Line data item and the No. field from the Customer data item have been
chosen.
187

Chapter 10. Designing Reports
8 Finally, open the Property Sheet for the Customer data item, and set the
PrintOnlyIfDetail property to Yes. This will cause the Customer body sections to be
printed only if there is data to print from Sales Line.

The data model now works like this:

· The Customer data item will be run through.

· For each record in the Customer data item, records in the Sales Line data item will
be selected if the Sell-to Customer No. field has the same value as the No. field in
the Customer data item.

· If there are no Sales Line records for a Customer, nothing will be printed – not even
the information from the Customer data item.

Designing The Sections
Presuming that you already know how to design the sections for a report with just one
data item, the description here concentrates on showing how to handle a situation with
two data items.

To design the sections:

1 When you first open the Section Designer, there will already be a Body section for
each data item. Add a Header section for the Customer data item.

2 Add fields to the Customer body section. Move the labels up into the Header
section.

So far, the procedure has been exactly the same as for creating the first, simple
report. Now, continue like this:

3 Add fields to the Sales Line body section.

4 At this point, you need to make a decision about the labels for the controls of Sales
Line: if they stay where they are right now, they will be printed for each record of the
data item. If a header section is added for Sales Line, this header section will be
printed each time the data item loop is entered, which is for each record of the
Customer data item. As neither of these solutions seems very good, you can take a
188

10.3 Designing a More Advanced Report
third approach: you can move the labels into the header section of the Customer
data item, like this:

5 Now, labels for both the Customer records and the Sales Line records will be
printed as column captions in the Customer Header section (remember to set the
PrintOnEveryPage property of this section to Yes). In order to make the connection
between labels and data clear, the labels for the Sales Line columns can be
changed to the normal font weight instead of the default bold. Also, the text boxes
of the Customer data item can be changed to bold, to make these records stand out
among the lines that are printed. (There are bound to be a lot more records from
Sales Line than from Customer.) Furthermore, the Sales Line labels have been
resized to occupy only one line, and an empty line has been added to the header
section.
189

Chapter 10. Designing Reports
6 Save and close the report, and run it from the Object Designer. The example
described gives this result with sample data:

No. Name Address Phone No.

Document No. Date Description Quantity Unit Price Amount

10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344

941016 05/11/95 ANTWERP Conference Table 1 3,599.00 3,599.00

20000 Ravel Møbler Parkvej 44 22334455

941017 05/11/95 ST.MORITZ Storage Unit/Drawers 2 2,929.00 5,272.20

941017 05/11/95 INNSBRUCK Storage Unit/G.Door 1 2,500.00 2,250.00

941017 05/11/95 INNSBRUCK Storage Unit/W.Door 1 2,193.00 1,973.70

30000 Lauritzen Kontormøbler A/S Jomfru Ane Gade 56 33445566

941023 02/01/95 ANTWERP Conference Table 4 3,599.00 13,676.20

941023 02/01/95 BERLIN Guest Chair, yellow 23 1,265.00 20,366.50
190

Chapter 11
Extending the Functionality of Your
Reports

This chapter describes how to group and total data when
creating reports in C/SIDE. It also gives an overview of the
report triggers and, finally, uses some of the advanced
facilities of the Report Designer.

· Grouping and Totaling

· Triggers in Reports

· Advanced Sample Reports

Chapter 11. Extending the Functionality of Your Reports
11.1 GROUPING AND TOTALING

Grouping and totaling data are crucial to creating useful reports. By grouping and
totaling data your reports can provide information that is not otherwise readily
available.

The second report created in chapter 10 listed customers and those entries from the
Sales Line table that pertained to each customer. You can use grouping and totaling
to enhance this information in several ways.

First of all, if the report is to provide statistical information, it will be more useful to
have the sales lines grouped according to the items (grouping on the item number,
which identifies each item) instead of printing all lines from all sales documents. Each
line should then provide figures for the total quantity and the total amount for each
item per customer.

Second, it would be useful to have a total amount per customer, showing how much
this customer has on order all in all.

This is the report that will be created below.

Defining the Data Model
The first steps in creating this report involve designing a report similar to the report
created in Designing a More Advanced Report on page 186.

To add the grouping and totaling, follow these steps:

1 In the Property Sheet of Sales Line (the indented data item), enter as the value of
the GroupTotalField property, the name of the field you want to be used for grouping
the records. You can use the AssistButton k to help you select the field. Here, the
No. field is used:

2 Use the AssistButton k for the DataItemTableView property, and then select a key.
You have to select a key that contains the field you want to group by.

3 If the key you select is a composite key, the grouping can fail if there are other fields
in the key before the grouping field, and the contents of one of these fields change.
In other words: you may have to create a distinct key for reports that access data in
ways other those used by than your application in general.
192

11.1 Grouping and Totaling
For this report, a secondary key, consisting of the No. field only, was created for the
Sales Line table:

4 Enter the names of those fields for which totals should be calculated as the value of
the TotalFields property. You can use the AssistButton k to help you select the
fields. Here, the fields named Quantity and Amount are selected:

This data model is now defined. This is what has been accomplished:

· For each record in the Customer data item, those records in the Sales Line data
item that are related to this customer are selected.

· The records from the Sales Line data item are grouped according to the item
number.

· Totals are maintained for the Quantity and Amount fields of the Sales Line data
item.

The Relationship between Totals and Sections
In the report being designed, a hierarchy of data items have been established, where
Customer is the highest level data item and Sales Line is an indented data item.
Further, the records of Sales Line will be grouped on the No. field, and totals will be
calculated for the Amount and Quantity fields.

What, then, is the relationship between these totals and the sections – that is, how
can these totals be printed?
193

Chapter 11. Extending the Functionality of Your Reports
Until now, only Header and Body sections have been used. To print totals, you will
need to use some new sections. The table below gives an overview of all types of
sections:

In order to print out the totals, you will need to use both a GroupFooter and a Footer
section for the Sales Line (indented) data item.

In the GroupFooter section, the totals for Quantity and Amount will be for the defined
group – remember that the No. field was used for grouping.

When the entire data item has been iterated, the grand total can be printed in the
Footer section of the Sales Line data item.

The flow in this example can be summarized as follows:

1 For each record of the Customer data item, a loop for the Sales Line data item is
begun.

2 Whenever the contents of the No. field change, the GroupFooter is outputted.

3 When the Sales Line loop ends, the Footer will be outputted. As the Body section of
the Customer data item was printed before any section of the indented data item,
the Footer is also the last section that will be printed. Therefore, this section can be
used to print summary information about the customers.

That is, the Quantity and Amount totals for each item that a specific customer has on
order will be placed in a GroupFooter section of the Sales Line data item, while the
grand total for the Amount that the customer has on order will be placed in a Footer
section of the Sales Line data item (a Quantity total is also maintained, of course, but

Section Name Output

Header Before a data item loop begins and (if the PrintOnEveryPage property
of the section is Yes) also on each new page.

Body For each iteration of the data item loop. When there is an indented data
item, the complete loop for this data item begins after the Body section
of the higher level data item has been printed.

Footer After the loop has finished, and (if the PrintOnEveryPage property of
the section is Yes), also on each new page. Moreover, if the
PlaceInBottom property of the section is Yes, the Footer section is
printed at the bottom of the page, even if the data item loop ends in the
middle of a page.

GroupHeader A new group starts.

GroupFooter A group ends.

TransportHeader A page break occurs during a data item loop. Printed at top of the new
page. This section is printed after a possible Header section of the data
item.

TransportFooter A page break occurs during a data item loop. Printed before the page
break, This section is printed before a possible Footer section of the
data item.
194

11.1 Grouping and Totaling
this information is not too useful, since it will be a total of quantities for all kinds of
different items.)

.
Note

Properties of sections, such as PrintInBottom and PrintOnEveryPage, apply to an
entire data item. This means that you cannot, for example, have two Footers for a data

.
item, one for the "normal" pages and one for the last page.

Designing the Sections
As usual, when you open the Section Designer, a Body section for each defined data
item has been inserted.

To design the sections:

1 Add a Header section for the Customer data item. This section will be used to print
headings for the columns in the report.

2 Add a GroupFooter section for the Sales Line data item. This section will be used to
print the summary information about each item.

3 Add a Footer section for the Sales Line data item. This section will be used to print
the summary information about each customer.

In this report, nothing will be printed in the Body section of the Sales Line data item.
Therefore, this section should be deleted. (You delete a section by clicking on the
section bar, then choosing Delete from the Edit menu. You will be prompted to confirm
the deletion.) The Section Designer will now look like this:

4 Select the Body section of the Customer data item (by clicking the section bar).
Then open the field menu by choosing Field Menu from the View menu.
195

Chapter 11. Extending the Functionality of Your Reports
5 Select fields from the field menu. Here, four fields have been selected:

6 Click once in the Section Designer window to activate the window, then move the
cursor into the Body section of the Customer data item. Click to insert text boxes
and labels for the four selected fields.

7 Move the labels up into the Header section of the Customer data item and adjust
the vertical size of the Body section. Resize the labels vertically and move them up
to the top of the Header section. The Section Designer now looks like this:

8 Select the GroupFooter section of the Sales Line data item (by clicking the section
bar) and open the field menu by clicking View, Field.

9 Select fields from the field menu. Here, the No., Description, Quantity and
Amount fields have been selected. Insert the fields in the GroupFooter section of
the Sales Line data item. Delete the labels, and resize the section vertically.

10Select the Footer section of the Sales Line data item. Insert the Amount field here
and remove the label. Let the section have its default size – this way, there will be
some empty space before each new customer.
196

11.1 Grouping and Totaling
11Save, close and run the report.

So far, the report will look like this when printed:

Obviously, this report needs some work before it looks good and is truly functional. For
example, we need to devise a way to place captions for the columns from the indented
data item. But the logic works: for each customer, there is a list of items where
quantities and amounts have been summarized, and the total amount for each
customer is also calculated.

One desirable improvement is to add a line at the end of the report where the grand
total for all customers is printed. To do this, however, it is necessary to use C/AL code
in a report trigger. The Advanced Sample Reports section on page 200 gives
examples of how to do it.

No. Name Address Phone No.

10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344

1920-S ANTWERP Conference Table 9 32,391.00

32,391.00

20000 Ravel Møbler Parkvej 44 22334455

1928-W ST.MORITZ Storage Unit/Drawers 2 5,272.20

1964-W INNSBRUCK Storage Unit/G.Door 1 2,250.00

1976-W INNSBRUCK Storage Unit/W.Door 1 1,973.70

9,495.90

30000 Lauritzen Kontormøbler A/S Jomfru Ane Gade 56 33445566

1920-S ANTWERP Conference Table 4 13,676.20

1936-S BERLIN Guest Chair, yellow 23 20,366.50

34,042.70
197

Chapter 11. Extending the Functionality of Your Reports
11.2 TRIGGERS IN REPORTS

While the system interprets and acts upon many events in a predefined way, certain
actions cause the system to execute a user-definable C/AL function (the event
triggers the function). In reports, triggers are typically used to perform calculations and
to control whether or not to output sections (depending, for example, on the value in a
field, or a choice the user made in the request form). Perhaps the most important point
about triggers, however, is that using them allows you to control how data is selected
and retrieved in a more complex ways than using properties would.

Report Triggers
These triggers pertain to the report itself:

The table only describes the main purpose of each trigger. Refer to the online C/SIDE
Reference Guide for concise descriptions and details.

Data Item Triggers
The following triggers pertain to each data item of the report:

The table only sketches out the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for concise descriptions and details.

Section Triggers
These triggers pertain to each of the sections of a data item:

Trigger Executed

OnInitReport When the report is loaded.

OnPreReport Before the report is run – but after the RequestForm has been run.

OnPostReport After the report has run – but not if the report was stopped manually or by
the Break function.

Trigger Executed

OnPreDataItem Before the data item is processed, but after the associated variable has
been initialized.

OnAfterGetRecord When a record has been retrieved from the table.

OnPostDataItem When the data item has been iterated for the last time.

Trigger Executed

OnPreSection Before processing a section.

OnPostSection After processing a section but before printing it.
198

11.2 Triggers in Reports
The table only sketches out the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for concise descriptions and details.
199

Chapter 11. Extending the Functionality of Your Reports
11.3 ADVANCED SAMPLE REPORTS

This final section will give examples of reports that are slightly more advanced than
those previously described. The examples are not intended to be complete or ready to
run, but are meant to give some ideas that you can use when designing reports.

Using Virtual Tables
C/SIDE includes a number of virtual tables, such as the Integer table and the Date
table. They are described in chapter 5, Special C/SIDE Tables. This section will show
you how to use one of these tables, the Date table, in a report.

Using the Date Table

The Date table consists of three fields, Period Type, Period Start and Period End.
Period Type can be Date, Week, Month, and so forth, while Period Start is the
starting date of each period and Period End is the last date in the period. (Period
End dates are closing dates.)

The Date table will be used to create a report that prints information from the Cust.
Ledger Entry table (the Customer Ledger Entry table, but the word Customer has
been abbreviated). For each day in a range of dates (that can be chosen by the user),
the report summarizes entries made on that date. For each type of document (Invoice,
Payment, and so forth), a line will be printed containing the number of documents of
this type and the sum of the amounts on these lines. After each date, the total number
of entries made on that day, along with the total amount of all these entries, will be
printed. Finally, the total number of entries and the total amount for the selected date
range will be printed at the end of the report.

You could create the report by grouping according to the Cust. Ledger Entry table
alone, but the field that contains the posting date in that table is not part of any key.
Creating a special key just for this report is not desirable, because it would slow down
all other transactions involving this table – in fact, all entries concerning sales would
be affected.

Defining the Data Model

There are two data items in this data model: one that is related to the Date table and
one that is related to the Cust. Ledger Entry table.

To define the data model:

1 Open the Report Designer and create two data items with the Date and the Cust.
Ledger Entry tables as the underlying tables. Indent the Customer Ledger Entry
data item.
200

11.3 Advanced Sample Reports
2 Open the Property Sheet for the Date data item. Then use the assist-edit button to
help you set the value of the DataItemTableView property so that it selects records
whose Period Type is Date. This is an important step, as the iteration of the Date
data item would otherwise run through all records, including those for Weeks,
Quarters, Months and Years.

r

3 Enter the Period Start field as the ReqFilterFields property of the Date data item in
order to let the user select a range of dates at run time.

4 Open the Property Sheet for the Cust. Ledger Entry data item. Then use the assist-
edit button to help you set the value of the DataItemTableView property to an
appropriate key. An appropriate key in this case is a key containing the Document
Type field, as the definition of a group will be based on this field. Here, a key is
selected that has this field as its first component. As the report is going to show only
summarized information, rather than all the entries, the other fields that are
included in the key are not significant. (No individual entries will be printed, so they
do not need to be sorted in any specific order.)
201

Chapter 11. Extending the Functionality of Your Reports
5 In the Property Sheet for the Cust. Ledger Entry data item, set the
DataItemLinkReference property to point to the Date data item (this is the default).
Then use the assist-edit button of the DataItemLink property to specify the field that
establishes the link between the two data items. Choose the Posting Date field
from the Cust. Ledger Entry data item, and the Period Start field from the Date
data item.

6 Enter the Document Type field as the value of the GroupTotalFields property of the
Cust. Ledger Entry data item, and enter the Amount field as the value of the
TotalFields property.

Thus far, the report will work like this:

· The user can select a range of dates from the request form of the report.

· The report will run through the Date table, with a constant filter on the Period Type
field that selects only records whose type is Date. If the user selected a range, only
dates in the range will be selected; otherwise all dates will be used.
202

11.3 Advanced Sample Reports
· For each selected date, records in the Cust. Ledger Entry data item that were
posted on that date will be selected.

· The records of the Cust. Ledger Entry data item will be grouped according to the
value of the Document Type field, and totals will be maintained for the Amount
field.

Designing the Sections

The design of the sections is fairly straightforward. The final screen looks like this:

The sections contain some controls that do not have fields from the data items as
source expressions (Qty, TotalQty, TotalAmount and DateFilter). The purpose of these
controls will be explained below.

Otherwise, the design of the sections is as follows:

· There is a Header section for the Date data item, containing captions for the
columns of data in the report.

· There is a Footer section for the Date data item, used for printing totals for all
printed records.

· There are two GroupFooter sections for the Cust. Ledger Entry data item, one with
a text box for the Date field, one without. The reason for this construction–and how
to use it–will be explained below. Both sections will print summarized information
about the groups of this data item (remember that the Document Type field was
used for grouping here).

· There is a Footer section for the Cust. Ledger Entry data item, used for printing
totals.

Neither data item has a Body section.

Refining the Design by Using Triggers

To make this report work as desired, we will need to write a small amount of C/AL
code in triggers and to define a few variables. The report still needs four things to
make it work the way we want:

1 The number of entries must be counted for each document type, for each date and
for the complete range of dates in the report.
203

Chapter 11. Extending the Functionality of Your Reports
2 The total amount for all entries in the report must be calculated.

3 The date for a group of entries (with different document types) should be printed
only once, when the first record in the group is printed.

4 At the end of the report, when the total number of entries and the total amount are
printed, the date range that was selected by the user should be printed.

Counting the Number of Entries

The records in the Cust. Ledger Entry data item contain an amount – which is totaled
by using properties, as described in step 6 on page 202. The number of entries cannot
be calculated in the same way, as no field in the data item record contains this
information.

However, each record corresponds to exactly one entry. This means that the number
of entries can be counted by simply counting the records. It can be done in this way

1 Create a global variable (here it is called Qty) of type Decimal.

2 Add the following C/AL code to the triggers of the Cust. Ledger Entry data item:

The statement in the OnPreDataItem trigger causes totals to be maintained for the Qty
variable in the same way as when you use the TotalFields property to specify that
totals will be maintained for a field in a record. The statement in the OnAfterGetRecord
trigger simply assigns a value of one to the Qty variable each time a record is
retrieved.
204

11.3 Advanced Sample Reports
The CREATETOTALS function will maintain totals for each group and a grand total for
the iteration of the data item loop. As data items are grouped according to the
Document Type field, Qty will contain the sum of all entries with the same document
type each time the Cust. Ledger Entry GroupFooter section is printed. When the
Footer section is printed, Qty will contain the sum of all entries (that were selected,
that is, all entries that pertain to the same date).

The argument of the CREATETOTALS function must be of the Decimal type (because
the function will usually be used to sum amounts). Therefore, the Qty variable was
declared to be of Decimal type rather than Integer (which perhaps would have been
the intuitive choice). This means that the Qty text boxes in the sections have to be
formatted not to show any decimal places, as they by default will have the format
<2:2> when the SourceExpr is of the Decimal data type.

Calculating the Total Amount and the Total Quantity

You want to print the total amount for all selected records from the Cust. Ledger Entry
data item at the end of the report, in the Footer section of the Date data item. The
value you want to print is, of course, the sum of all the amounts that are printed in the
report. However, these amounts come from the Cust. Ledger Entry data item, not the
Date data item. This means that you cannot use the TotalFields property to do the
totaling.

Correspondingly, the total number of posted entries should be printed in the Footer
section of the Date data item.

The solution is simple:

1 Declare two global variables: TotalAmount and TotalQty (refer to the picture on
page 204).

2 Add these lines to the OnAfterGetRecord trigger of the Cust. Ledger Entry data
item:

TotalQty := TotalQty + 1;

TotalAmount := TotalAmount + Amount;

The first line simply adds one to the TotalQty variable whenever a record is retrieved,
while the second line adds the retrieved Amount to the TotalAmount. When the Date
data item loop ends and the Footer section is printed, TotalQty and TotalAmount will
contain the wanted values.

Printing the Date in the First Iteration Only

For each iteration of the Date data item loop, you want to print the Date to which the
information selected from the Cust. Ledger Entry data item pertains. You could, of
course, just create a Body section for the Date data item and print the date there (the
Period Start field of the data item), but this date would be printed on a line by itself.
Instead, the date should be printed along with other information on the first line that
comes from the Cust. Ledger Entry data item.
205

Chapter 11. Extending the Functionality of Your Reports
One solution is not to print a Body section for the Date data item at all, but to print the
Date field from the Cust. Ledger Entry data item. This creates another problem,
though: if it is added to the GroupFooter section, the date will be printed on every line.
While this could be an easy way to solve the problem, the finished report will not be
very attractive. Besides, it will be difficult to read the report if it is cluttered with
redundant information.

A better solution is to define two GroupFooter sections for the Cust. Ledger Entry data
item–one that includes the Date field and one that does not – and then control when
they are output.

To do so, follow these steps:

1 Design two GroupFooter sections as shown in the picture on page 203.

2 Declare a global variable of type Boolean and call it IsDatePrinted.

3 Add the following line to the OnPreDataItem trigger of the Cust. Ledger Entry data
item in order to initialize the IsDatePrinted variable before each iteration of the data
item loop:

IsDatePrinted := FALSE;

4 Add the following lines to the OnPreSection trigger of the first GroupFooter section
of the Cust. Ledger Entry section:

IF IsDatePrinted THEN

CurrReport.SHOWOUTPUT(TRUE)

ELSE

CurrReport.SHOWOUTPUT(FALSE);

5 Add the following lines to the OnPreSection trigger of the second GroupFooter
section of the Cust. Ledger Entry section:

IF IsDatePrinted THEN

CurrReport.SHOWOUTPUT(FALSE)

ELSE BEGIN

CurrReport.SHOWOUTPUT(TRUE);

IsDatePrinted := TRUE;

END

What happens is:

1 When a new iteration of the Cust. Ledger begins, a date has not yet been printed.

2 If the loop generates any output at all, only the second GroupFooter section
(containing the Date text box) will be included as output in the first iteration.

3 If additional output is generated, only the first GroupFooter section (without the
Date text box) will be printed.
206

11.3 Advanced Sample Reports
Printing the Selected Range of Dates

The final touch to the report is to add a line at the end of the report that shows the total
number of entries and the total amount of these entries. How to calculate the figures
has already been described. The posting dates are used as a kind of header in the left
margin of the report, however, so the report would look good if the final line of this
header could display the range of dates that the user selected. This is easy to
implement:

1 Create a variable of type Text, with a length of 100, and call it DateFilter.

2 Add the following line to the OnPreReport trigger of the report:

DateFilter := Date.GETFILTER("Period Start");

3 Add a text box to the footer section of the Date data item that has DateFilter as
source expression.

When the OnPreReport trigger is executed, the RequestForm will already have been
run. The GETFILTER function returns any filters on the field that is passed as an
argument as a text string.

The Final Report

The report will look like this with sample data:

Document Type AmountDate Qty

Payment -1,555,252.48301/15/95

Invoice 1,906.251

Credit Memo -2,640.001

-1,555,986.23Total 5

Invoice 10,101.25101/16/95

10,101.25Total 1

Credit Memo -6,950.00101/17/95

-6,950.00Total 1

Invoice 74,658.58101/18/95

74,658.58Total 1

Invoice 12,162.65101/19/95

12,162.65Total 1

Invoice 420,327.98201/20/95

Credit Memo -12,109.572

408,218.41Total 4

Invoice 27,027.30101/22/95

27,027.30Total 1

Payment -17,095.25101/23/95

Invoice 149,167.222

Credit Memo -2,230.001

129,841.97Total 4

18 -900,926.07Total01/15/95..01/23/95
207

Chapter 11. Extending the Functionality of Your Reports
Creating a Simple Document
This section will describe how to create a document by using the Report Designer.
The example is a skeletal sales invoice, that is, an invoice that does not take the
complexities of VAT calculations into account and does not test for a number of
conditions that will have to be tested in a real-life situation. Furthermore, it does not
print out all the information you would expect to find on an invoice.

Defining the Data Model

The two primary tables involved in creating a sales invoice are the Sales Invoice
Header and the Sales Invoice Line tables. Some supporting tables are used to
expand the codes used in the invoice tables to more descriptive texts (Payment
Terms, Shipment Method), and the Company Information table is used to retrieve
information about the company that is preparing the invoice.

The Sales Invoice Header table contains general information about each posted
sales invoice, while the Sales Invoice Line table contains the individual lines that are
part of each invoice. The tables are related through a field that is called No. in the
header table (and is the primary key of this table) and Document No. in the lines
table.

In order to define the data model, follow these steps:

1 Create a data item, based on the Sales Invoice Header table.

2 Create another data item, based on the Sales Invoice Line table, and indent this
data item one level.

3 By default, the DataItemLinkReference of the Sales Invoice Line data item points to
the Sales Invoice Header data item. Leave it like this, and set the value of
DataItemLink property to Document No.=FIELD(No.).

4 Enter the Amount field as the value of the TotalFields property of the Sales Invoice
Line data item, in order to calculate the total amount for all lines on the invoice.

5 Finally, in order to let the users of the report select a posted invoice to print, enter
the No. field as the value of the ReqFilterFields of the Sales Invoice Header data
item.

This completes the definition of the data model itself. In this report, some supporting
variables are needed in order to access information from tables that cannot be fitted
into the data model.

To create the variables, follow these steps:

1 Choose C/AL Globals from the View menu. This will open the form where you can
declare variables.
208

11.3 Advanced Sample Reports
2 Declare the variables like this:

3 The two last variables must be declared as arrays. Open the Property Sheet for
each variable and set Dimensions to 6 for the variable called CustAddr, and to 4 for
the variable called CompAddr.

This concludes the definition of the data model. Next, a small amount of C/AL code
must be added to the report triggers.

Using the Triggers

This report, in this basic version, needs a very limited amount of C/AL code in order to
function. The picture below actually contains all the code that is needed:
209

Chapter 11. Extending the Functionality of Your Reports
The entire code is in the triggers of the first data item, Sales Invoice Header. In the
OnPreDataItem trigger, the statements work like this:

· The first line, CompInfo.GET, retrieves a record – in fact, the only record – from the
Company Information table.

· The next four lines assign the contents of a field in the record in the Company
Information table to an element of the CompAddr array.

· The final line of that trigger uses the COMPRESSARRAY function with the
CompAddr array as an argument, in order to eliminate empty elements from the
array. The reason for doing this is that you cannot be certain that all fields in the
retrieved record have values assigned. If you just printed each field on a separate
line, an empty field would cause an empty line to be printed.

The code in the OnAfterGetRecord works like this:

· The first six lines assign values from the record in the Sales Invoice Line data item
to elements of the CustAddr array.

· After this, COMPRESSARRAY is used for the reasons described above.

· The last two lines use the GET function (with the codes for Payment Terms and
Shipment Method from the Sales Invoice Header record as arguments) to retrieve
the related records from the Payment Terms and Shipment Method tables. When
you design the sections, the full text descriptions can then be extracted from these
records.

Designing the Sections

Now that you have defined the data model and written C/AL code to retrieve
supporting information, you can design the sections. The picture below shows the
Section Designer after the necessary sections have been inserted and the relevant
controls added to the sections:
210

11.3 Advanced Sample Reports
In the Header section of the Sales Invoice Header data item, you should notice these
points:

· Six text boxes have been inserted with CustAddr[1]..CustAddr[6] as source
expressions. If you compare it with the document reproduced below, you will see
that in this particular invoice, only four of these array elements contain data. Using
COMPRESSARRAY has moved the data up, so to speak.

· Likewise, in the invoice shown below only three of the four elements of the
CompAddr array contain data.

· The text box that prints the posting date does not have the Posting Date as its
direct source expression. Instead, the source expression is the C/AL expression
FORMAT("Posting Date",0,4), which, in the example here, formats the date as
January 19, 1995.

· In the Footer section of the Sales Invoice Line data item, the Amount field is a
totaled field, containing the total of all amounts printed in the Body sections.

· In the same section, the full text descriptions of Payment Terms and Shipment
Method are printed using PaymentTerms.Description and
ShipmentMethod.Description as source expressions, respectively.

This is how the invoice document looks when sample data is used:

Invoice

CRONUS International Inc.

5 The Ring

9999 Kugleby

January 19, 1995

01/31/95Due Date

943028No.

941013Order No.

Englunds Kontorsmöbler AB

Box 3319

Kungsgatan 18

600 03 Norrköbing

No. Description Quantity Unit Price Discount % Amount

1952-W OSLO Storage Unit/Shelf 1 1,589.62771 15 1,351.19

1928-W ST.MORITZ Storage Unit/Drawers 2 3,431.11242 15 5,832.89

1964-W INNSBRUCK Storage Unit/G.Door 2 2,928.56984 15 4,978.57

12,162.65Total

Current monthPayment Terms

Cost Insurance and FreightShipment Method
211

Chapter 11. Extending the Functionality of Your Reports
A Nonprinting Report
To complete the examples, we will create a non-printing report. Although you can
achieve the same functionality by writing a codeunit, there are several good reasons
for using non-printing reports whenever you can:

· The functionality that is available through a request form (prompting for options,
setting filters) is achieved with little effort, while recreating this functionality in a
codeunit is a considerable task.

· Using the features of the Report Designer to prompt for options and to set filters
ensures consistency, not only in the application that you are creating, but also with
the Navision application and add-on products.

· Instead of writing C/AL code to open tables and retrieve records, you just define a
data item.

The report we will create is a simple one: it adjusts prices in the Item table. The user
can set filters on some of the fields in the table in order to select a range of items by
number, by posting group or by vendor, and, of course, can choose the factor to adjust
the prices by.

Defining the Data Model

This report has one data item, based on the Item table.

To define the data model:

1 Create a data item based on the Item table.

2 Set the value of the ProcessingOnly property of the report to Yes.

3 Set the value of the DataItemTableView property of the Item data item to No. (by
using the assist-edit button). Though this is not strictly necessary for the
functionality of the report, it does serve one purpose: it removes the Sort ... button
from the request form that will be presented to the user of the report. As the report
will not print anything, the order in which data items will be run through is irrelevant.

4 Select the fields that the user will be able to filter, by using the assist-edit button in
the ReqFilterFields property:
212

11.3 Advanced Sample Reports
5 Declare three variables, like this:

· The Window variable, declared as a Dialog type, will be used for printing a
message on the screen while the report runs.

· The Adjustment variable will be used for the value that the user enters in the
request form.

· NewPrice will be used to store an intermediate result.

Creating the Request Form

Step 4 of Defining the Data Model above has already taken care of creating a request
form with a tab where the user can set filters on some of the fields of the data item.
You must add an Options tab, where the user can define the adjustment factor.

To create an Options tab:

1 Open the Request Options Form Designer by choosing Request Form from the
View menu.

2 Add a text box with a label to the form (to have the label added automatically, press
the Add Label button in the Toolbox before selecting the Text Box tool).

3 In the Property Sheet of the text box, set the source expression to Adjustment, the
newly created variable.

Using the Triggers

Now that you have defined the data model and designed the request form, you must
add a small amount of C/AL code to the triggers of the Item data item in order to
213

Chapter 11. Extending the Functionality of Your Reports
perform the actual price adjustment. The picture below shows all the C/AL code that is
necessary:

The code functions like this:

· The first statement in the OnPreDataItem trigger opens a window, intended to show
the progress of the report as it is run. (Because the report is non-printing, the usual
window that shows printing progress is not shown. If the table is very large, the
report may run for a while. Therefore, it is a good idea to indicate to the user that
something is actually happening.)

· The first statement in the OnAfterGetRecord trigger enters the item number in the
window each time a new record has been retrieved.

· The second statement in the OnPreDataItem simply causes the report to end
without doing any processing if the adjustment factor is 0 (zero). If the adjustment
factor were allowed to be zero, then all prices in the table would be set to zero,
which would certainly never be the intention. The statement used here is a very
crude way of handling this situation: in a more polished version, the user should, for
example, have an opportunity to reenter the adjustment factor (or at least be
notified of the reason for quitting the report run).

· The last three lines in the OnAfterGetRecord trigger actually update the prices.
First, the adjusted value is assigned to the NewPrice variable. Then, the VALIDATE
function of the Unit Price field is used to update the price. In this way, any special
processing (for example, updating of other fields that are related to this field) in the
OnValidate trigger of the table field will be performed. Finally, the MODIFY function
is used to commit the change.
214

Part 4
Codeunits

Chapter 12
Codeunit Fundamentals

This chapter explains what a codeunit is and how to create
one. It also shows you how to use the functions in a
codeunit from other application objects.

· What Is a C/SIDE Codeunit?

· Creating Codeunits

· Using Codeunits

Chapter 12. Codeunit Fundamentals
12.1 WHAT IS A C/SIDE CODEUNIT?

In the previous parts of this book you have seen examples of C/AL code in forms and
reports. This code was always stored in a form or report object. In simple applications
the normal approach is to place the code in the object that calls the functions, but as
your application grows you will often find that you use the same functions repeatedly.
Instead of declaring the same functions over and over again, it would be useful if you
only had to define them once. This is where the codeunit comes in. Think of a
codeunit as a container for C/AL code that you want to use in many application
objects.

In codeunits you can define:

Functions A function is a sequence of C/AL statements, which you define in order to
create new functionality. Within each function you can define local variables, that is,
variables whose scope is limited to the function in which they are defined.

Global variables A global variable is a variable whose scope covers all the functions
in the codeunit.

Temporary tables A temporary table is a table that is not stored in the database.
Temporary tables are mainly used as structured variables that hold data temporarily
while you work on it. Refer to Defining and Using a Temporary Table on page 72 for a
description of how to create a temporary table.

Each function you add to a codeunit will be shown in a separate section when you
view the file in the C/AL Editor.

In a codeunit you can
store general
functions that are not
directly associated
with any of your other
application objects
218

12.1 What Is a C/SIDE Codeunit?
All codeunits include two default sections called Documentation and OnRun. In the
Documentation section, you can add optional information about the code such as the
purpose of the codeunit, a version number and so on. In the OnRun section, you can
include code that you want the system to execute when the codeunit is run.

.
Codeunits Contain Functions But Can Also Be Run

Besides being a container for functions that can be run individually, a codeunit can
itself be run by writing <Codeunitname>.Run. When you run a codeunit, it is the code

.
in the OnRun section of the codeunit that will be run.

When you add your
own functions they
will be shown here
219

Chapter 12. Codeunit Fundamentals
12.2 CREATING CODEUNITS

You create a new codeunit or modify an existing codeunit in the same way you create
and modify other application objects, that is, by using the Object Designer.

To create a codeunit:

1 From the menu bar, choose Tools, Object Designer. C/SIDE will open the Object
Designer.

2 Click the Codeunit button in the Object Designer.

3 Click New to create a new codeunit. C/SIDE will open the C/AL Editor, where you
can create functions.

To modify an existing codeunit:

1 Click the Codeunit button in the Object Designer.

2 Select the codeunit you want to modify.

3 Click the Design button. C/SIDE will open the C/AL Editor, where you can modify
the codeunit by changing existing functions or adding new functions.

Using the C/AL Editor
The C/AL Editor is where you view and edit your code. This editor is designed to make
it easy for you to create and modify C/AL code. When you are in the C/AL Editor, you
have access to the C/AL Symbol Menu that helps you define C/AL functions. When
you use the C/AL Symbol Menu, you can get help about all C/AL commands. Select
the C/AL function name in the column to the right and press F1. Read more about the
C/AL Symbols Menu in the section "Using the C/AL Symbol Menu" on page 226.

When you create a codeunit, the window shows the two default sections described
above (the Documentation and the OnRun section).

Select codeunit. Click New to create a
new codeunit.

Click Design to modify
an existing codeunit.
220

12.2 Creating Codeunits
From the Object Designer you can open as many codeunits as you like. Each time you
create a new codeunit or open an existing one, it will be displayed in a separate
window. This makes it easy to cut and paste lines of code between the codeunits.

If you have tried to use other Windows editors, you’ll find the C/AL Editor easy to use.
You can access the editing functions either from the Edit menu:

Or you can access the editing functions from the toolbar:

When you are working in the C/AL Editor, you can use a number of shortcut keys:

Defining Variables, Text Constants and Functions in Codeunits
When you have created a new codeunit, the next step is to define the global variables,
text constants and functions you need in the codeunit. You use the C/AL Globals tool
for this.

To... Press...

cut the selected text to the clipboard. CTRL+X

copy the selected text to clipboard. CTRL+C

paste the text at the clipboard into the codeunit
at the cursor position.

CTRL+V

open the Find dialog to search for trigger
names.

CTRL+F

Add your own
functions here.

Use the Cut, Copy
and Paste functions
to edit the C/AL

Write
documentation for

Copy

Paste

Cut
221

Chapter 12. Codeunit Fundamentals
To access the C/AL Globals tool:

Make sure that focus is on the C/AL Editor. From the View menu, choose
C/AL Globals. C/SIDE will display the C/AL Globals window:

In the C/AL Globals window, you select whether you want to add a global variable, a
text constant or a function.

Global variables To add a global variable:

1 Click the Variables tab in the C/AL Globals window.

2 Add a name and a type. If the type you select corresponds to an application object,
you also have to add a subtype, that is, the name of a specific object in the
database. If you select text or code you have to define a length for the variable (the
default length is 10 characters for code, and 30 for text). If you select OCX or
Automation, you also have to add a subtype as described in the chapter Extending
C/AL. Refer to Defining and Using a Temporary Table on page 72 for information
about how to create temporary tables.

Text constants To add a text constant:

When you are about to create a message for the user in the C/AL Editor you must do
the following:

1 Click the Text Constants tab in the C/AL Globals window:

2 In the first available Name field, enter the name of the new text constant.
222

12.2 Creating Codeunits
.
Note

There is no naming convention for the text constants. Using the unique ID for the

.
name is a suggestion but not a requirement.

3 Open the property sheet for the text constant.

A unique ID number has been automatically assigned to the text constant in the ID
field.

4 Copy the ID number to the Name field in the C/AL Globals window, for example
Text1000, if the ID number in the ID field is 1000.

The C/AL Globals window will look like this:

5 In the ConstValue field, click the AssistButton k to open the Multilanguage Editor
window.

6 In the Language field, enter ENU for English (United States).

7 In the Value field, enter the message string that this text constant will represent.

8 Click OK to exit. If you do not click OK, the information is not saved.

9 In the C/AL Editor, copy the ID number to the place where you want the message or
error message to appear.

EXAMPLE

IF FileName = ' ' THEN

ERROR(Text1000);

Text1000 is an available number in the text constants number series for that object.

When you move the cursor over the new text constant, you will see its contents on the
message line.
223

Chapter 12. Codeunit Fundamentals
.
Note

If you remembered to set the application language to English (United States) before
entering the Object Designer, you can enter the message string directly into the
ConstValue field in the C/AL Globals window. Then you should open the

.
Multilanguage Editor to make sure that the text is saved as English (United States).

Functions To add a function:

1 Click the Functions tab in the C/AL Globals window. C/SIDE will open the following
window:

2 Enter a name for each function you want to add.

3 Click Locals to define the parameters, return value, local variables and text
constants for each function. C/SIDE will display the C/AL Locals window:

4 For each parameter you have to specify the calling method, a name, and a data
type. You can specify a subtype and a length, but this is optional.

The calling method can be specified as Var, which means that the parameter is
passed by reference rather than by value. The value of a variable can only be
changed by a function when it is passed to the function by reference. When the
parameter is not specified as Var, only a copy of the variable is passed to the
function. If the function changes that value, the change affects only the copy and
not the variable itself.
224

12.2 Creating Codeunits
If the type you select corresponds to an application object, you also have to add a
subtype, that is, the name of a specific object in the database. If you select text or
code you have to define a length for it (the default length is 10 characters for code,
and 30 for text).

5 Click the Return Value tab to define the return value for your new function. C/SIDE
will display:

6 Enter a name for the return value and select a data type from the drop-down list.
You can also select a length, but only if the type is text or code.

7 Click the Variables tab in order to define local variables. C/SIDE will display:

8 For each local variable, you must add a name and a type. If the type you select
corresponds to an application object, you also have to add a subtype, that is, the
name of a specific object in the database. If you select text or code, you have to
define a length for the variable (the default length is 10 characters for code and 30
for text).
225

Chapter 12. Codeunit Fundamentals
9 Click the Text Constants tab in order to define text constants for the function.
C/SIDE will display:

See page 222 about text constants for a description on how to fill in the Name field
and the ConstValue field.

Using the C/AL Symbol Menu
When you write C/AL code in the C/AL Editor, you can use the C/AL Symbol Menu
window to get an overview of the following:

· All variables defined in the codeunit

· All C/AL functions

The information in the C/AL Symbol Menu window is divided into three or more
columns:

· The column to the left shows variable names (if you have defined any) and function
categories.

· The second column shows the subcategories.

· The third column shows the functions in the category you have selected.
226

12.2 Creating Codeunits
You can see the syntax and other information, such as the Caption property
corresponding to the field name you have selected, in the bottom left-hand corner of
the window. For more information about the FieldCaption subcategory, see page 382.

In some cases, for example, when a control on a form is a subform or when a field is a
BLOB field, there are more than three columns. You can use the right-arrow button to
scroll the symbol menu columns to the right and the left-arrow button to scroll them
back.

Click OK or Apply to make C/SIDE insert this string in the C/AL Editor. If you click OK,
the C/AL Symbol Menu window is closed automatically; if you click Apply, the
window stays open.

If you need help with any of the C/AL functions shown in the column to the right, select
the function name and press F1 to activate the context-sensitive online Help: C/SIDE
Reference Guide.

Compiling and Saving Codeunits
Before the functions in a codeunit can be run, the code has to be compiled and saved.
When you compile the code, the system checks the syntax of the statements. If the
compiler finds any errors in the code it will display a message.

To compile the code in a codeunit:

1 From the Tools menu, choose Compile.

2 If the system finds any errors in your code it will display a message. Correct the
errors and choose Compile from the Tools menu again.

Click OK or Apply to paste the syntax description into the editor
227

Chapter 12. Codeunit Fundamentals
To save the codeunit:

1 From the File menu, choose Save. C/SIDE will display:

2 Enter an ID number and a name. The number is used as a unique identification,
while the name serves as a label. If you save the codeunit without compiling it, you
won’t be able to run it or call any of its functions.

.
Why Save without Compiling?

If you are working on a large and complicated codeunit, you will want to save you work
at regular intervals, even though it is not yet finished and cannot yet be compiled. In
this case, you have to remove the check mark from the Compiled box before you

.
save.

Enter a unique ID
and a Name.

Select whether you
want the system to
compile the code
before it is saved.
228

12.3 Using Codeunits
12.3 USING CODEUNITS

When you use codeunits, you eliminate the need to duplicate code and at the same
time make the code easier to maintain. If you use the same code repeatedly in your
forms or reports, you should create a function in a codeunit. When you have created a
function in a codeunit you can access it as:

<CodeunitName>.<FunctionName>

EXAMPLE

Assume that you have created a codeunit containing two statistical functions named F and G. The
illustration below shows how to access these functions from a form.

This method is generally applicable. That is, from any application object you can
access functions in other application objects by prefixing the function name with the
name of the application object containing the function.

You can access codeunits through codeunit variables – either by explicitly declaring a
variable with the data type codeunit or by setting the RunObject property on forms to a
codeunit. A codeunit variable does not contain a codeunit, but only a reference to a
codeunit. More than one codeunit variable may refer to the same codeunit as shown in
the following figure:

Codeunits contain internal variables that are defined as global variables. These
variables are not accessible directly from code outside the codeunit, but they can be
accessed through user-defined functions on the codeunit. Whenever a codeunit

Codeunit named StatFun

Any form

F(x:integer)

Begin

...

G(x:integer)

Begin

...

End

...

Result :=

StatFun.F(3425)+StatFun.G(346);

...

variables
GlobalCU

CU Variable 1 CU Variable 2
229

Chapter 12. Codeunit Fundamentals
variable is used for the first time, a new instance of the codeunit is created, that is, a
new set of internal variables is initialized so that different codeunit variables use
different sets of internal variables.

Codeunit
assignment

Codeunits can be treated as objects – one codeunit variable can be assigned to
another codeunit variable, which creates a new reference to the same codeunit
instance. In other words, the codeunit variables then use the same set of internal
variables.

EXAMPLE

Codeunit 50000 has two functions Set and Get. Set sets an internal variable to the value of the
parameter given. Get returns the value of the internal variable.

VAR

CoMIC1: Codeunit 50000;

CoMIC2: Codeunit 50000;

//codeunit 50000 is a standard codeunit

BEGIN

CoMIC1.Set(1);

CoMIC2.Set(2);

//both codeunit variables are instantiated - they have different

//instances

CoMIC1.Get();

CoMIC2.Get();

//CoMIC1 returns 1; CoMIC2 returns 2

CoMIC2 := CoMIC1;

//CoMIC2 is assigned to CoMIC1 and they now both use the same

instance

CoMIC1.Get();

CoMIC2.Get();

//both codeunit variables return 1

END;

CLEAR on codeunits When you use the function CLEAR on a codeunit variable that has a reference to a
codeunit instance with two or more references, CLEAR only deletes the reference to
the codeunit and not the actual codeunit instance. In other words, the codeunit stays
intact and can still be used by other codeunit variables that may have been assigned a
reference to this codeunit. To delete a codeunit instance, you must clear all references
to the codeunit with the function CLEAR. If you need to clear the internal variables in a
codeunit, you must call CLEARALL from a user-defined function within the codeunit.
When a local codeunit variable goes out of scope, meaning that it is no longer used by
the codeunit, it is automatically cleared.

Single Instance
Codeunit

In some cases, the situation requires that only one instance of a codeunit exists. This
means that all codeunit variables of a particular codeunit will use the same set of
variables. By setting the SingleInstance property for the codeunit to Yes, all codeunit
variables of that codeunit will use the same instance, thus allowing the developer to
create global variables.
230

12.3 Using Codeunits
.
Note

It is recommended that you avoid using global variables for most types of code.
However, in certain situations, it may be necessary to use them, for example, to make

.
sure that you are only using one instance of an external variable.

A single instance codeunit is instantiated when you use it for the first time. Normal
codeunit instances (codeunits that do not have the SingleInstance property set) are
deleted whenever the last codeunit variable that uses that codeunit instance goes out
of scope. However, single instance codeunits remain instantiated until you close the
company.

EXAMPLE

Codeunit 50001 has two functions Set and Get. Set sets an internal variable to the value of the
parameter given. Get returns the value of the internal variable. Codeunit 50001 has the
SingleInstance property set.

VAR

CoSIC1: Codeunit 50001;

CoSIC2: Codeunit 50001;

//codeunit 50001 is a single instance codeunit

BEGIN

CoSIC1.Set(7);

//a codeunit instance is created if one did not exist

CoSIC2.Get();

//returns 7 - CoSIC2 uses the same instance as CoSIC1, so //they use

the same internal variables

END;

.
Note

It is possible to use a single instance codeunit across objects and not only within the

.
same object.

Limitations on Codeunits
Global variables and temporary tables in a codeunit cannot be accessed directly from
other application objects. The only way to access these values is through the
functions you have created in the codeunit.

All C/AL functions can be used in a codeunit. Notice, however, that you cannot create
a function with the same name as a built-in function. Neither can two or more user-
defined functions have the same name (unless they are part of different application
objects).
231

Chapter 12. Codeunit Fundamentals
232

Chapter 13
Introducing the C/AL Language

This chapter introduces the C/AL language. It describes
how you can use the language to create functions, and it
describes the syntactical rules of the language.

· What Can You Do with C/AL?

· What Are Statements, Expressions, and Operators?

· Introducing the Elements of C/AL Expressions

· The C/AL Control Language

Chapter 13. Introducing the C/AL Language
13.1 WHAT CAN YOU DO WITH C/AL?

The previous parts of this book have shown you how to design various database
objects such as tables, forms and reports. But simply getting these individual objects
up and running is not enough. To turn these objects into a coherent application you
have to make the database objects work together. C/AL code is the glue that does this
for you. When you are designing professional applications you will often need
specialized functions. C/AL makes it possible to go beyond what C/SIDE does
automatically. For example, you can create special functions for use anywhere in the
database.

Here are the most important things C/AL lets you do:

Design Your Own Functions Although C/SIDE has a large number of intrinsic
functions, you will sometimes find it convenient or necessary to add your own
functions, for example, if the application you are developing repeatedly uses the same
non-trivial processing.

Connect Database Objects C/AL code glues your database objects together. C/AL
includes a number of commands that control how the individual database objects in
your application interact.

Read, Write and Modify Data C/AL includes standard functions for reading, writing
and modifying table data.
234

13.2 What Are Statements, Expressions, and Operators?
13.2 WHAT ARE STATEMENTS, EXPRESSIONS, AND OPERATORS?

In this section the following terms are introduced:

· Statements

· Expressions

· Data types

· Operators

Consider the following C/AL code sample:

Amount := 34 + Total;

This individual code line is also called a statement. The table below illustrates how the
statement can be broken into smaller elements.

What Is a C/AL Expression?
An expression is a fundamental C/AL concept. This section describes expressions
and how they are used.

An expression can be used as an argument of a C/AL function. Consider the C/AL
statement below:

Date := DMY2DATE(31, 12, 1996);

This function takes three simple expressions as arguments, 31, 12 and 1996.

A C/AL expression is a group of characters (data values, variables, arrays, operators
and functions) that can be evaluated, with the result having an associated data type.

All expressions in C/AL are built from:

· Constants

· Variables

· Operators

· Functions

Element Description

34 + Total An expression. In this case the expression consists of an arithmetic
operator (+) and two arguments (34 and Total), which also could be called
sub-expressions. All valid C/AL expressions can be evaluated to a specific
value.

:= The assignment operator. When the right-hand side expression has been
evaluated, this operator is used to assign (store) the value in the variable
Amount.

Amount This is called a variable. It is used to reference a memory location where
data is stored.
235

Chapter 13. Introducing the C/AL Language
Depending on the elements in the expression, the evaluation will result in a value with
a C/AL data type. The table below shows some typical expressions.

The first row shows a text string which is evaluated to itself. The second row evaluates
into a concatenation of the two strings. The third row shows a decimal number, which
is evaluated to itself. The expression in the fourth row contains a function, with which
the given argument is evaluated to the number 7234. The last row shows a
comparison between a variable and a numerical constant.

The above examples show that when C/AL expressions are evaluated, the results
have a specific data type. The next section explains the C/AL data types in more
detail.

Introducing the C/AL Data Types
As you have already seen, variables can be used to store data of various types. By
declaring variables to be of the proper type, you:

· create faster code.

· save space.

· avoid runtime errors due to overflow or impossible type conversions.

For example, if you know that a variable will always contain an integer number
between 0 and 700, you should use an integer variable instead of a decimal variable.
All calculations will be faster because the system uses 4 bytes per integer operation
instead of the 12 bytes that decimal variables require. On the other hand, you will
have to use a data type that can hold all possible values needed in your calculations.
For example, if you try to store the value 1233.345 in an integer variable you will get a
runtime error. C/AL contains a wide range of data types.

Expression Evaluates to:

'Welcome to Hawaii' The string 'Welcome to Hawaii'

'Welcome' + ' to Hawaii' The string 'Welcome to Hawaii'

43.234 The number 43.234

ABS(-7234) The number 7234

len1 < 618 TRUE or FALSE depending on the value of len1
236

13.2 What Are Statements, Expressions, and Operators?
These data types can be divided into the following categories:

Fundamental Data Types

In C/AL, there are a number of fundamental data types, which are designed to store
boolean values, numbers, text, time and dates.

boolean The values TRUE or FALSE.

integer Used to store integers between -2,147,483,647 and 2,147,483,647.

biginteger Used to store very large whole numbers.

duration Used to represent the difference between two datetimes, in milliseconds.

option This denotes an option value. Option values can freely be converted to
numeric ones. The values range from -2,147,483,647 to 2,147,483,647.

EXAMPLE

Assume that Number is a numeric variable and that Type denotes a field of type Option in the
Purchase Header table. In the statement below the option value is converted to a number:

Number := "Purchase Header".Type;

Fundamental

Complex

Binary
Boolean

Option

Integer
Decimal
Char

Code

Time
Date

String

Numeric

 C/AL Data Types

BLOB
Table
Form
Codeunit
File
System
Dialog
Report
OCX
Automation
InStream
OutStream
Variant

Text

BigInteger

Duration

DateTime

DateFormula
GUID
TableFilter
Record
RecordID
RecordRef
FieldRef
KeyRef
237

Chapter 13. Introducing the C/AL Language
EXAMPLE

This example illustrates how the possible values of an option field can be used as constants in
your C/AL code:

"Purchase Header".Type := "Purchase Header".Type::Invoice;

decimal Denotes decimal numbers ranging from -10+E63 to +10+E63. The
exponent ranges from -63 to +63. Decimal numbers are held in memory with 18
significant digits.

date Denotes dates ranging from January 1, 0 (the year zero) to December 31,
9999. An undefined date is expressed as 0D. All dates have a corresponding closing
date. The closing date for a given date is regarded by the system as a period following
the given date but before the next normal date. Thus a closing date is sorted
immediately after the corresponding normal date but before the next normal date.

time Denotes a time. An undefined time is expressed as 0T. Any time in the range
00:00:00 to 23:59:59.999 is valid.

datetime Use this data type to denote the date and time of day.

The datetime is stored in the database as Coordinated Universal Time (UTC). UTC is
the international time standard (formerly Greenwich Mean Time, or GMT). Zero hours
UTC is midnight at 0 degrees longitude. The datetime is always displayed as local
time in Navision. Local time is determined by the time zone regional settings used by
your computer.

You must always enter datetimes as local time. When you enter a datetime as local
time, it is converted to UTC using the current settings for the time zone and daylight
saving time.

There is only one constant available when you use this data type: undefined datetime.
DateTime := 0DT

· Navision Database Server

The earliest permitted datetime is January 1, 0000, 00:00:00.000.

The latest permitted datetime is December 31, 9999, 23:59:59.999.

· SQL Server

The earliest permitted datetime is January 1, 1754, 00:00:00.000.

The latest permitted datetime is December 31, 9999, 23:59:59.999.

Any datetimes that are not within this range and that you try to enter or construct by,
for example, adding a datetime to a duration, are regarded as undefined datetimes
and give an error message.

Undefined dates are stored as January 1, 1753, 00:00:00.000.
238

13.2 What Are Statements, Expressions, and Operators?
char Stores a single character as a value in the range 0 to 255. This data type can
be freely converted between a number and a character. This means that you can use
the same mathematical operators as with a number type variable.

EXAMPLE

You can assign a constant string of the length 1 to a char variable:

C := "A";

EXAMPLE

You can also assign a single char in a text, code or binary type variable to a char variable:

C := S[2];

.
Note

When you use the text and code data types, it is important to distinguish between the
maximum length of the string and the actual length of the string. The maximum length
can be seen as the upper limit for the number of characters in the string, while the

.
actual length describes the number of characters used in the string.

text Denotes a text string. The maximum length of the string ranges from 1 to 1024
characters. You can index any character position in a string – for example A[65] refers
to the 65th character in the variable called A. The resulting values will be of type char.
The length of a variable of type text corresponds to the number of characters in the
text. An empty text string thus has the length 0.

The table below illustrates some typical examples of text strings. In these examples it
is assumed that the variable t is of type text and has a maximum length of 6.

code Denotes a special type of text string. When a given text is assigned to a code
type variable, the text is transformed to uppercase, and leading and trailing spaces
are removed. You can index any character position in a string – for example, A[65].
The resulting values will be of type char. The maximum length of a code type variable
ranges from 1 to 250 characters. The length of a code type variable always
corresponds to the number of characters in the text without leading and trailing
spaces.

Assignment Results in...

t := 'AbC'; The variable t now contains "AbC".

t := '123456abx'; Results in a runtime error because the length (9) exceeds the maximum
length (6).
239

Chapter 13. Introducing the C/AL Language
EXAMPLE

The table below shows some typical examples of code string assignments. In the examples, it is
assumed that the variable c has the type code, and the maximum length 4.

Descriptive Data types

In order to describe the syntax of the C/AL language, some descriptive data types are
used. It is important to stress that these are not real system data types, but are used in
the C/SIDE documentation for descriptive purposes only.

The table below summarizes the correspondence between the descriptive data types
and the simple C/AL data types.

Complex Data Types

C/AL also contains a number of complex data types. Complex data types are used
when you need to work with, for example, records in tables, pictures (bitmaps) or disk
files. As C/AL is object oriented, each complex data type can include both member
variables and member functions.

BLOB This is a Binary Large Object. Variables of this data type differ from normal
numeric and string data type variables in that they have a variable length. BLOBs are
used to store memos (text), bitmaps (pictures) or user-defined types. The maximum
size of a BLOB is normally determined by your system’s disk storage capacity, as the
upper limit is 2GB.

record This is a complex data type, consisting of a number of simpler elements
called fields. A record corresponds to a row in a table. Each field of the record is used
to store values of a certain data type. The fields are accessed using the variable name
of the record (often the same as the name of the corresponding table), a dot (a period)
and the field name. A record is typically used to hold information about a fixed number
of properties.

form Variables of this data type are used to store forms. This is a complex data type
which can contain a number of simpler elements called controls. Controls are used to
display information to the user or to receive user input.

Assignment The variable c now contains... The length is...

c := 'AbC'; 'ABC' 3

c := '1'; '1' 1

c := ''; '' (empty string) 0 (zero)

c := ' 2 '; '2' 1

c := '1 2'; '1 2' 3

Descriptive data type Includes these system data types...

Numeric char, integer, biginteger, duration, option, and decimal

String text and code
240

13.2 What Are Statements, Expressions, and Operators?
codeunit Variables of this data type are used to store codeunits. This is a complex
data type which can contain a number of user-defined functions.

file Variables of this data type give you access to operating system files.

dialog Variables of this type are used to store dialog windows. A number of functions
are available for manipulating dialogs.

report Variables of this data type are used to store reports. This is a complex data
type that can contain a number of simpler elements called controls. Controls are used
to display information to the user.

dateformula Use this data type to contain a date formula that has the same
capabilities as an ordinary input string for the CALCDATE function. The DateFormula
data type is used to provide multilanguage capabilities to the CALCDATE function.

GUID Use this data type to give a unique identifying number to any database object.

The Globally Unique Identifier (GUID) data type is a 16 byte binary data type. This
data type is used for the global identification of objects, programs, records and so on.
The important property of a GUID is that each value is globally unique. The value is
generated by an algorithm, developed by Microsoft, which assures this uniqueness.

The GUID is a 16 byte binary data type and can be logically grouped into the following
subgroups: 4byte-2byte-2byte-2byte-6byte. The standard textual representation is
{12345678-1234-1234-1234-1234567890AB}.

tablefilter Use this data type to apply a filter to another table. At the moment, this
data type can only be used when you are setting security filters from the Permission
table.

recordref This complex data type identifies a row in a table. Each record consist of
fields (which form the columns of the table). A record is typically used to hold
information about a fixed number of properties.

The RecordRef object can refer to any table in the database. Use the
RecordRef.OPEN function to select the table you want to access. When you use the
RecordRef.OPEN function a new object is created. This object contains references to
the open table, filters and the record itself and all the fields it contains.

If one RecordRef variable is assigned to another RecordRef variable, they both refer
to the same table instance.

recordID This complex data type contains the table number and the primary key of a
table. You can store a RecordID in the database but you cannot set filters on a
RecordID.

fieldref This complex data type identifies a field in a table and gives you access to
this field. The fieldref object can refer to any field in any table in the database.

keyref This complex data type identifies a key in a table and the fields in this key.
This gives you access to the key and the fields it contains. The keyref object can refer
to any key in any table in the database
241

Chapter 13. Introducing the C/AL Language
InStream and OutStream Variables of these data types enable you to read from or
write to files and BLOBs. In addition, you can use InStream and OutStream to read
from and write to objects of the types Automation and OCX.

Variant This data type can contain the following C/AL data types: record, file, action,
codeunit, Automation, boolean, option, integer, decimal, char, text, code, date, time,
binary, DateFormula, TransactionType, InStream and OutStream. For more
information about this data type, see the online C/SIDE Reference Guide.

OCX and Automation See the chapter Introducing the C/AL Language, on page
299.

Creating Arrays of Variables

It is possible to create 10-dimensional variables, using the simple and complex data
types presented above. There are no limitations on how many elements a dimension
can contain but an array variable can never have more than 1,000,000 elements in all.
The physical size of an array is limited to 2 GB (or available memory). Arrays are
always indexed with a number for each dimension that ranges from 1 to (and
including) the size of the dimension. If you accidently index outside the range of the
dimensions of an array, a runtime error will occur.

EXAMPLE

Assume that Foo is a one-dimensional array variable of the Integer type, with the dimension 10.

To index the first element, use Foo[1]. To index the last element, use Foo[10].

EXAMPLE

Assume that Bar is an array variable of type Date with the dimensions 2x3x4. Then Bar has 24
elements.

To index the first element, use Bar[1,1,1]. To index the last element, use Bar[2,3,4].
242

13.3 Introducing the Elements of C/AL Expressions
13.3 INTRODUCING THE ELEMENTS OF C/AL EXPRESSIONS

The previous sections have introduced you to C/AL expressions and data types. The
aim of this section is to present the basic elements of C/AL expressions. The following
subsections will briefly discuss:

· Constants

· Variables

· Operators

· Functions

We start by defining ranges and properties of constants in C/AL.

Constants
A constant is the simplest type of operand used in C/AL. The value of a constant
cannot be changed during the execution of the code. Constants can be defined for
each of the simple data types in C/AL.

.
Entering Values in C/SIDE

Beware that in the examples below, numbers such as 2,147,483,647 and
999,999,999,999,999.99 cannot be entered in the C/AL system in this form. The
commas are only used to increase the legibility of this document. If you use commas

.
when you enter numbers in the C/AL editor, a compilation error will occur.

boolean constant A boolean constant may have either the value TRUE or FALSE.

integer constant An integer constant has a value in the range
-2,147,483,647 to 2,147,483,647.

decimal constant A decimal constant must contain a decimal point "." and have at
least one digit to the right of the decimal point (for example the digit "0"). A constant of
type decimal can be used to represent decimal numbers between -
999,999,999,999,999.99 and 999,999,999,999,999.99 with 18 significant digits.

date constant A date constant is written as six or eight digits followed by the letter
"D" (the date constant expressing "undefined date" is, however, entered as "0D"). The
digits specify the date in the format MMDDYY or MMDDYYYY.

time constant A time constant is written as six or nine digits followed by the letter 'T'
(the "undefined time" constant is, however, entered as "0T"). The nine digits specify
the time in the format HHMMSS[.XXX], that is, a 24 hour format with an optional part
specifying thousandths of a second.

text constant A text constant is a character string. C/SIDE assigns unique IDs to
text constants, so that an ID number represents a specific text constant. Examples of
text constants are error messages, messages and warnings.
243

Chapter 13. Introducing the C/AL Language
The table below illustrates different types of C/AL constants:

Using Variables in C/AL
There are two types of variables in the C/AL system: user-defined variables and
system-defined variables.

User-defined variables are ones you define when you create new C/AL code. You can
define variables that are global to all functions within a codeunit and variables that are
local to each function in a codeunit. Both types of user-defined variables are local to
the codeunit in which they are defined. These variables can be used to store
information at runtime, and the values can be changed as desired.

In addition, a number of predefined variables are provided by the system. These
variables are automatically maintained by the system and are called system-defined
variables. The system-defined variables are, for example, Rec, xRec, CurrForm and
CurrReport.

When the system is running, it executes code in functions and triggers, for example
entry-processing code for a table. Before the code is executed, the system
automatically assigns values to the associated system-defined variables, and the
values of these variables can be used in the triggers and the local functions.

During the execution of triggers and functions, the system-defined variables can be
used just like normal variables (new values can be assigned to them). That is, the
values of the system-defined variables are not updated by the system while the C/AL
code is being executed, but only before the function or trigger is executed.

.
Note

The value in a system-defined variable does not propagate backwards. In other words

.
the user cannot use a system-defined variable to modify the state of the system.

Variable Names

Variable names must be unique, that is, two user-defined variables with the same
name are not allowed in a C/AL codeunit. Furthermore, you cannot have user-defined
and system-defined variables with the same name. Uppercase and lowercase letters
are not distinct, that is Smith and SMITH refer to the same variable. In standard
Pascal notation, a variable name (an identifier) can only be written as an unbroken

Constant Description

TRUE boolean constant

50000 integer constant

-23.7 decimal constant

122196D date constant (December 21, 1996)

141230T time constant (the time 14:12:30)

ABC text constant
244

13.3 Introducing the Elements of C/AL Expressions
word. This restriction is relaxed in C/AL: here it is also possible to use special
characters (for example, spaces) in a variable name.

Observe the following basic restrictions:

· The maximum length of a variable name is 30 characters.

· A variable name must not be the same as the name of a C/AL function name or a
reserved word. Please note that this rule applies to both uppercase and lowercase
spellings. For example, neither BEGIN nor begin is valid.

All ASCII characters are valid in variable names, except the following:

· Control characters (ASCII 0-31, 255)

· The character " (ASCII 34)

When naming a variable, be careful to note that characters cannot be combined freely
unless you encapsulate the variable name in double quotes, as in "Customer No.". If
you don’t, you should name variables like this:

The first character must be:

· a letter in the range: a..z, A..Z (ASCII 97-122, 65-90), or

· an underscore (ASCII 95),

...followed by a maximum of 29 characters, which can be either

· a letter a..z, A..Z (ASCII 97-122, 65-90)

· an underscore (ASCII 95), or

· digits in the range 0..9 (ASCII 48-57).

As mentioned, it is also possible to include one or more special characters (spaces,
and so on) in a variable name in C/AL, but then the entire variable name must be put
in double quotes. In this case, the name can contain any mix of letters, digits and
special characters.

.
Note

The double quotes are not part of the variable name, but are necessary in order to

.
avoid a compile-time error.

Here are a number of examples showing valid variable names:

· Customer

· StockGroup1

· "@Vendor"

· "1st AddressLine"

· "Purchase/Sales"

· "Sales In GBP"
245

Chapter 13. Introducing the C/AL Language
· " YesCrazy Name1Ñ3"

...and the following are examples of invalid variable names

· 34467

· 23"Tubes

· Stock Group4

· "Sale"s in GBP"

·)-Names

· END

Initialization

Variables are automatically initialized before C/AL code is executed. A boolean
variable is set to FALSE and numeric variables are set to the default value zero, while
strings (text and code) are initialized to the value '' (the empty string) and date and
time variables are set to the undefined time 0T and the undefined date 0D,
respectively.

As previously mentioned, the system automatically handles the system-defined
variables. This also includes the necessary initialization. This means that no actions
are required by the user before the system-defined variables can be used.

Assignment and Type Conversion

Assignment of values can be performed in one of two ways:

· As parameter assignment, for example FUNCTION(Expression). The resulting data
type of the evaluation of the expression must correspond to a specific data type or
have a type which can be converted automatically to the correct type. (For a
detailed discussion about evaluation and type conversion in expressions, refer to
the chapter Type Conversion on page 389.)

· By using the assignment operator ":=" (for example Variable := Expression).
Generally, the resulting data type of the evaluation of the right-hand side expression
must be of the same type as the variable (left operand) or have a type which can be
converted automatically to the type of the left operand.

Automatic type conversion in assignments takes place when:

· A parameter in a function call does not have the correct type. This occurs for
instance if a function that is supposed to be called with an integer argument is
called with, for example, a decimal argument.

· The evaluation of the expression on the right-hand side of an assignment operator
(:=) results in a type that differs from the type of the variable on the left-hand side.

The automatic type conversion in assignments can freely take place between the
following numeric data types, provided overflow does not occur:

char integer decimal
246

13.3 Introducing the Elements of C/AL Expressions
The automatic type conversion in assignments can also freely take place between the
String data types:

All of the above has been based on simple variables. Nevertheless, the same
assignment rules apply for arrays in C/AL. Furthermore, if the left operand in an
assignment (the variable) is an array, the dimension(s) of the right-hand expression
must correspond to the dimension(s) of the variable.

.
Note

The type conversion that takes place in assignments can cause runtime errors even
though the types are convertible. A runtime error can occur in an assignment if the
converted value is outside the valid range for the left-hand side variable.
Correspondingly a runtime error can occur if the converted value is outside the valid

.
range for a parameter in a function call.

EXAMPLE

Let the variable A be defined as a one-dimensional array with four text type elements with the
maximum length 15. A value could be assigned to the second element in the array as shown
below:

A[2]:= 'Enter your name';

EXAMPLE

Result is an option variable, while Amount and Total both are decimal variables.
Consider the following assignment statements:

Amount := 10;

Total := 4;

...

Result := Amount + Total;

The above code can always be compiled, but a runtime error will occur if the result of the right-
hand side expression "Amount + Total" exceeds the valid range of the data type of the left-hand
side variable Result, that is, outside the range -2,147,483,647 to 2,147,483,647.

Valid Assignments

The following tables shows whether it is possible to assign the value of an expression
of a given type to a variable of the same type or to a variable of a different type. These
tables only cover the numeric and string data types.

code text
247

Chapter 13. Introducing the C/AL Language
Numeric Data Types:

String Data Types:

c THE ASSIGNMENT IS VALID

i THE ASSIGNMENT IS VALID, BUT OVERFLOW MAY OCCUR

Using Operators in C/AL
Operators can be used in expressions to combine, investigate and manipulate values
and data elements. This section describes the function of the operators in C/AL. The
table below shows the valid operators in C/AL:

Variable
Type

Expression Type

char option integer biginteger duration decimal

char c i i i i i

option c c c i i i

integer c c c i i i

biginteger c c c c c i

duration c c c c c i

decimal c c c i i c

Expression Type

Variable Type text code

text i i

code i i

C/AL operator Meaning

. Fields in records, controls in forms and reports

() Parentheses

[] Indexing

:: Scope

+ Addition

- Subtraction or negation

* Multiplication

/ Division

DIV Integer division

MOD Modulus

> Greater than
248

13.3 Introducing the Elements of C/AL Expressions
The "+" and the "-" operators can be used both as unary and binary operators, the
"NOT" operator only as an unary operator, while all other operators are binary.

Most of the above operators can be used on different data types. The action of these
operators may depend upon the data type of expression they are used on. Below are
some typical examples

EXAMPLE

The "+" operator used as a binary operator:

number + number

This returns the sum of the numbers, that is, a result of the type number.

EXAMPLE

The "+" operator used as a binary operator:

string + string

This returns the concatenation of the strings, that is, a result of the type string.

EXAMPLE

The "+" operator can be used as an unary operator to indicate sign, for instance:
+ 34545

You can read more about the function of each operator in the chapter Type
Conversion, on page 389, which explains the type conversion mechanisms in C/AL.

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equal to

<> Not equal to

IN In range

AND Logical conjunction

OR Logical disjunction

NOT Logical negation

XOR Exclusive logical disjunction

.. Range

C/AL operator Meaning
249

Chapter 13. Introducing the C/AL Language
Operator Hierarchy
The operators just discussed are organized in a hierarchy that determines the order in
which the operands in a given expression will be evaluated. The following list shows
the precedence order of the C/AL operators:

1 .(fields in records), [] (indexing), () (parentheses), :: (scope)

2 NOT, - (unary), + (unary)

3 *, /, DIV, MOD, AND, XOR

4 +, -, OR

5 >, <, >=, <=, =, <>, IN

6 .. (range)

The example below illustrates the effect of the operator hierarchy. The expressions,
which apparently are the same, will produce different results.

EXAMPLE

The expression

2 + 3 * 4

is evaluated to 14, whereas the expression

(2 + 3) * 4

is evaluated to 20.

Function Calls
C/AL has a number of functions for different purposes, such as string handling, text
formatting, database handling and so on. Some of these functions differ from standard
Pascal, as it is possible to use a variable number of parameters. In a function call, the
parameters are separated by commas, and the optional parameters may be omitted
from the right.

This means that if the function has, for instance, 3 optional parameters, then it is not
possible to omit the second without omitting the third.

EXAMPLE

The fictitious function

FUNCTION([Optional1] [, Optional2] [, Optional3])

can be called as

FUNCTION(Optional1, Optional2)

but not as

FUNCTION(, Optional2, Optional3)
250

13.3 Introducing the Elements of C/AL Expressions
EXAMPLE

ABS is a typical example of a C/AL function with a fixed number of parameters (1).

Value := -1033;{A negative integer value}

PositiveValue := ABS(Value);{Calculate the positive value 1033}

EXAMPLE

The function DMY2DATE is a typical example of a function which can be called with a variable
number of parameters

NewDate := DMY2DATE(5, 11, 1992);{Returns the date November 5, 1992}

Depending on the use of the DMY2DATE function, 1, 2 or 3 parameters can be passed to the
function, as the second and third parameter are optional. When the second and third parameters
are not used, the system uses values from the system date as default.
251

Chapter 13. Introducing the C/AL Language
13.4 THE C/AL CONTROL LANGUAGE

This section describes the basic structures in the control language in C/AL and how to
use them. All the C/AL programs you create consist of one or more statements, which
are executed sequentially in top-down order. However, you will often need to control
the direct top-down flow of the execution. You may have to repeat the execution of
one or more statements a number of times, and in another situation you may have to
make the execution of a certain statement conditional.

The control structures in C/AL are divided into the following main groups:

· Compound Statements

· Conditional Statements

· Repetitive Statements

· WITH Statements

Using Compound Statements
In some cases, the C/AL syntax will only allow use of a single statement. If you have
to execute more than one simple statement in such a case, the statements can be
turned into a compound statement, by "encapsulating" the statements between the
keywords BEGIN and END. The syntax is

BEGIN

<Statement 1>;

<Statement 2>;

.

.

<Statement n>;

END

The individual statements are separated by a semicolon. In C/AL and Pascal a
semicolon is used to separate statements, and not, as in other programming
languages, as a terminator symbol for a statement. Nevertheless, an extra semicolon
before an END does not cause an error because it is interpreted by the compiler as an
empty statement.

The above BEGIN END structure is also called a block. Blocks can be very useful in
connection with the other control structures to be discussed in the following.

Conditional Statements
By using a conditional statement, you can specify a condition and one or more
commands to be executed, according to the evaluation of the condition: TRUE or
FALSE. There are two types of conditional statements in C/AL:

1 IF THEN [ELSE], when there are 2 choices.

2 CASE, when there are more than 2 choices.
252

13.4 The C/AL Control Language
The IF THEN ELSE Control Structure

This statement type has the following syntax:

IF <Condition> THEN <Statement1> [ELSE <Statement2>]

which means

If <Condition> is true, <Statement1> is executed. If <Condition> is false,
<Statement2> is executed.

As defined earlier, the square brackets around ELSE <Statement2> mean that this
part of the statement is optional.

This statement is used when different actions are to be executed, depending on the
evaluation of the <Condition>.

It is possible to build even more complex control structures by nesting IF THEN ELSE
statements. A typical example is

IF <Condition1> THEN IF <Condition2> THEN <Statement1> ELSE

<Statement2>

If <Condition1> is false, nothing is executed. If <Condition1> and <Condition2>
are both true, <Statement1> is executed. If <Condition1> is true, and
<Condition2> is false, <Statement2> is executed. Please note that a semicolon
preceding an ELSE is not allowed.

Several nested IF THEN ELSE statements may seem confusing but a general rule is
that an ELSE belongs to the last IF that lacks an ELSE.

Here are some examples of IF THEN ELSE statements:

EXAMPLE

Illustration of an IF statement without the optional ELSE part:

IF Amount < 1000 THEN Total := Total + Amount;

EXAMPLE

(1)...

(2) IF Amount < 1000

(3) THEN BEGIN

(4) IF I > J THEN Max := I

(5) ELSE Max := J;

(6) Amount := Amount * Max;

(6) END

(7) ELSE

(8)...

A common error for the C/AL newcomer is to put an extraneous semicolon at the end of a line
before an ELSE (line 4). As mentioned above, this is not valid according to the syntax of C/AL, as
the semicolon is used as a statement separator. (The end of line 4 is inside the inner IF statement).
253

Chapter 13. Introducing the C/AL Language
The CASE Control Structure

The syntax of the CASE statement is

CASE <Expression> OF

<Value set 1> : <Statement 1>;

<Value set 2> : <Statement 2>;

...

...

<Value set n> : <Statement n>;

[ELSE <Statement n+1>]

END;

In the above definition, the <Expression> cannot be a record, and the <Value set>
must be an expression or a range.

CASE statements are also called multiple option statements and are typically used
when a selection between more than two different actions is to be made. The function
of the CASE statement is as follows:

· The <Expression> is evaluated, and the first matching value set causes the
associated statement, if any, to be executed.

· If none of the value sets matches the value of the expression, and the ELSE part
has been omitted, no action will be taken; but if the optional ELSE part is used, then
the associated statement will be executed.

The type of the value sets must be the same as the type of <Expression> or at least
convertible to the same type.

.
Note

The data type of the value sets will be converted to the same data type as the
evaluated <Expression>, if necessary. This type conversion may cause an overflow

.
at run time if the resulting data type cannot hold the values of the value sets.

EXAMPLE

This C/AL code sample will print various messages depending on the value of Number. If the value
of Number does not match any of the entries in the CASE structure, the ELSE entry will be used as
default.

CASE Number OF

1,2,9: MESSAGE('1, 2 or 9.');

10..100: MESSAGE('In the range from 10 to 100.');

ELSE MESSAGE('Neither 1, 2, 9, nor in the range from 10 to 100.');

END
254

13.4 The C/AL Control Language
Using Repetitive Statements
A repetitive statement is also known as a loop. The looping mechanisms in C/AL are:

· FOR, which repeats the inner statement until a counter variable equals the
maximum or minimum value specified.

· WHILE, which repeats the inner statement while the specified condition is TRUE.
The statement in a loop of this type is repeated 0 or more times.

· REPEAT, which repeats the inner statements until the specified conditions evaluate
to TRUE. The statements in a loop of this type are always executed at least once.

The FOR TO/DOWNTO Control Structure

The syntax of the FOR TO (and FOR DOWNTO) statement is

FOR <Control Variable> := <Start Number> TO <End Number> DO

<Statement>

<Control Variable>, <Start Number> and <End Number> must be boolean,
number, time or date data types.

FOR statements are used when a code block is to be executed a specific number of
times. A control variable is used to control the number of times the code block is
executed. The <Control Variable> may be increased or decreased by one,
according to whether TO or DOWNTO is used.

.
When declaring the type of the <Control Variable>...

it should be noticed that when the system executes the FOR statement, the <Start
Number > and <End Number> will be converted to the same datatype as <Control

.
Variable>, if necessary. This type conversion may cause a runtime error.

When using a FOR TO loop, the <Statement> will not be executed if the <START
NUMBER> is greater than the end value. Correspondingly, the <Statement> will not be
executed in the FOR DOWNTO loop if the start value is less than the end value.

.
Note

If the value of the control variable is changed inside the FOR loop, the behavior of the
system is not predictable. Furthermore, the value of the control variable is undefined

.
outside the scope of the FOR loop.

EXAMPLE

The following FOR loop uses an integer control variable named Count.

FOR Count := 1000 TO 10000000000000000 DO

When the above statement is executed, a runtime error will occur because the system tries to
convert the start and end values to the same type as the control variable; but as Count has been
255

Chapter 13. Introducing the C/AL Language
declared as an Integer variable, an error will occur when 10000000000000000 is to be
converted, because this end value is outside the valid range for Integers.

EXAMPLE

This example illustrates nesting of FOR statements:

FOR I := 1 TO 5 DO

FOR J := 1 TO 7 DO

A[I,J] := 23;

The two FOR statements above could be used to initialize every element in a 5 x 7 array with the
value 23.

The WHILE DO Control Structure

The WHILE DO statement has the following syntax:

WHILE <Condition> DO <Statement>

If <Condition> is TRUE, <Statement> is executed repeatedly, until <Condition>
becomes FALSE. If <Condition> is FALSE from the start, <Statement> is never
executed.

When a block of code is to be repeated as long as an expression is TRUE, the WHILE
DO statement may come in handy.

EXAMPLE

The C/AL code below increases the variable i until it equals 1000:

WHILE i < 1000 DO i := i + 1;

The REPEAT UNTIL Control Structure

The syntax for the REPEAT UNTIL statement is:

REPEAT <Statements> UNTIL <Condition>

<Statements> will be executed repeatedly until <Condition> is TRUE.

This might at first glance seem to function just like a WHILE control structure, but as
the REPEAT UNTIL statement is executed from left to right, it is easily seen that the
<Statements> always will be executed at least once, no matter what the
<Condition> is evaluated to. This contrasts with the WHILE control structure, which
performs the evaluation before the <Statement> is executed–implying that if the first
evaluation of <Condition> returns FALSE, then no statements will be executed.

EXAMPLE

This is a typical example of a REPEAT UNTIL control structure:
256

13.4 The C/AL Control Language
Count := 0;

IF Customer.FIND(`-') THEN

REPEAT

Count := Count + 1;

UNTIL Customer.NEXT <= 0;

This code uses a REPEAT UNTIL loop to count the number of entries in the Customer table. The
FIND function finds the first entry in the table. Each time NEXT is called, it steps one record
forward. When NEXT = 0 there are no more entries in the table and the system exits the loop.

The EXIT Statement

The EXIT statement is used to control the flow of the execution. The syntax of an EXIT
statement is:

EXIT([<Value>])

An EXIT statement is used to interrupt the execution of a C/AL trigger. The interruption
will take place even when the execution is inside a loop or a similar structure. The
EXIT statement is also used when a local function is to return a value: EXIT(Value).

Using EXIT without a parameter in a local function corresponds to using the parameter
value 0. That is, the C/AL function will return the value 0 or '' (empty string).

A compile-time error will occur if EXIT is called with a return parameter from:

· system-defined triggers.

· local functions that are not supposed to return a value.

EXAMPLE

The following illustrates the use of the EXIT statement in an arbitrary local function. Assume that
the IF statement is used to detect an error. If the error condition is met, the execution is stopped
and the local function returns the error-code 1.

FOR I := 1 TO 1000 DO

BEGIN

IF Amount[I] < Total[I] THEN EXIT(1);

A[I] := Amount[I] + Total[I];

END;

The WITH Statement

The syntax for the WITH statement is:

WITH <Record> DO <Statement>

When you work with records, addressing is carried out as record name, dot (period)
and field name: <Record>.<Field>

If you work continuously with the same record, you can use WITH statements. When
you use a WITH statement, it is only necessary to specify the record name once.
257

Chapter 13. Introducing the C/AL Language
Within the scope of <Statement>, fields in <Record> may be addressed without
specification of the record name.

Several nested WITH statements may be used. In case of identical names, the inner
WITH will overrule the outer WITH-statements.

EXAMPLE

This example shows two ways of writing the same code:

CustomerRec.No := '1234';

CustomerRec.Company := 'Windy City Solutions';

CustomerRec.Manager := 'Joe Blow';

CustomerRec.Address := '1241 East Druid Avenue';

CustomerRec."State and Zip":= 'Chicago, IL 60079';

Another way of expressing the same is:

WITH CustomerRec DO

BEGIN

No := '1234';

Company := 'Windy City Solutions';

Manager := 'Joe Blow';

Address := '1241 East Druid Avenue';

"State and Zip" := 'Chicago, IL 60079';

END;

How to Annotate Your Programs

You can insert comments about the code or "outcomment" parts of your code to
prevent execution.

There are two ways to insert comments:

· Use "//" to insert a single line comment. When the compiler encounters the "//"
symbol in your code, it interprets the rest of the line as a comment.

· Use "{' and '}" to mark the beginning and end, respectively, of a block of comments.

Any number of nested comments may occur. In such cases, the comment runs from
the first comment start to the last comment end.

EXAMPLE

{

This is a sample comment which is ignored by the C/AL compiler

}

EXAMPLE

// This is also a sample comment which is ignored by the C/AL

compiler
258

13.4 The C/AL Control Language
EXAMPLE

{ This comment { is partly inside } another comment }

EXAMPLE

The final example illustrates what you shouldn’t do:

Because the comment is to the right of the C/AL statements, the system assumes that the third
and fourth lines are part of the comment. That is, only A and B are assigned values, while C and D
are not. Instead you should use single line comments:

A := 34;

B := 56; {******************

C := 345; * Don’t do this! *

A := 34;

B := 56; //*******************

C := 345; //* Do it this way! *

D := 781; //*******************
259

Chapter 13. Introducing the C/AL Language
260

Chapter 14
Using C/AL

This chapter describes some aspects of using C/AL. The
first section gives advice on using the system-defined
variables. The second describes how to handle functions
that may or may not generate runtime errors, depending on
how they are used. The last, and largest, section provides
an overview of a subset of C/AL functions and examples of
how to use them. The functions in this subset are the most
commonly used, and if you understand how to use them,
you will be able to create quite sophisticated C/SIDE
applications.

· Overview

· System-Defined Variables

· Handling Runtime Errors

· The Essential C/AL Functions

Chapter 14. Using C/AL
14.1 OVERVIEW

This chapter describes how to use C/AL. The first sections concentrate on giving
some advice on the things you should consider when you use C/AL–the most
important subject being where you place the code.

The concepts of system-defined variables and runtime errors are explained, and the
final, larger, section describes and gives examples on how to use a subset of C/AL
functions – a subset that experience has shown will be the set of functions that
developers will use most often.

Where to Write C/AL Code
As described in previous chapters, almost every object in C/SIDE has triggers where
C/AL code can be placed. In summary, you have triggers for:

· Tables

· Table fields

· Forms, including request options forms

· Form controls

· Reports

· Data items

· Sections

The execution of C/AL can also be initiated from:

· Command buttons

· Menu items

You can also place C/AL code in codeunits and call it from code in any of the locations
mentioned above.

As you can see, you can put C/AL code in a large number of places and initiate or
trigger its execution in many ways. You should not, however, choose a location for
your C/AL code at random. A few simple guidelines should be followed:

· In general, place the code as close as possible to the object it operates on. This
implies that code that modifies records in the database should normally be placed
in triggers of the table fields that are involved.

· In reports, there should always be a clear distinction between logical and visual
processing, and you should position C/AL code accordingly. This implies that it is
acceptable to have C/AL code in a section trigger – if that code controls either the
visual appearance of controls or whether the section should be printed. On the
other hand, you should never place data-manipulating code in section triggers.

· The principle of placing code near to the object it operates on can be overruled in
some situations. One very good reason is security. Users do not have direct access
to tables with sensitive data – such as the general ledger entry and register tables.
If you place the code that operates on the general ledger in a codeunit and give the
262

14.1 Overview
codeunit access to the table and the user the right to execute the codeunit, you will
not compromise the security of the table, and the user will still be able to access the
table.

· There are other reasons than security for putting a posting function like the one
described in the item above in a codeunit. A function that is placed in a codeunit
can be called from many places in the application – perhaps including some that
you did not have in mind when you first designed the application.

Reusing Code
Perhaps the most important reason for placing C/AL code consistently, and as close to
the objects it manipulates as possible, is that it lets you reuse code. Reusing code
makes it faster and easier to develop applications, but this alone is not the most
important reason for reusing code whenever you can. If you place your C/AL code as
suggested, your applications will be less prone to errors.

By centralizing the code, you will not inadvertently create inconsistencies by
performing essentially the same calculation in many places, for example in a number
of control triggers that have the same table field as their source expression. If the code
has to be changed, you could easily either forget about some of these controls or
make a mistake when editing one of them.
263

Chapter 14. Using C/AL
14.2 SYSTEM-DEFINED VARIABLES

C/SIDE automatically declares and initializes a number of variables for use in
application development. These are the system-defined variables

In addition, some triggers (for example, the OnFormat trigger of a control) have a
parameter that is defined as a local variable by the system.

EXAMPLE

You could put the Rec/xRec pair of records to use in a situation like this: in an application, data is
stored in two tables, a header table and a line table. The header table contains general information
about, for example, sales orders, while the line table contains the specific order lines. On the form
where the user enters information in the header table there are fields that contain the customer’s
address. These fields are related to a Customer table, and can be filled out by using a lookup
function in the field that establishes the relationship. In the header table, only the customer number
is stored, and the other fields with customer information (name, address, and so forth) are
retrieved from the Customer table when the Customer No. field is validated.

Now, should the user be able to change the customer number? In some situations the answer
would be yes, in others no. If the order has already been shipped, the answer should definitely be
no, but there could be situations where it would be yes–it should, for example, be possible to
correct an erroneous number on an order that has not been processed any further.

You could do something along these lines:

- When validating the customer number field, check whether the order has been shipped.

- If it has, compare the customer number fields in the xRec and Rec records. If they differ, reject
the change.

In real life, you would certainly add some more checks and some user dialog, but this is the basic
idea.

Variable Comments

Rec When a record is modified, the Rec variable contains the current
record (including the changes that are made), while the xRec
variable contains the original values (before the changes).

xRec

CurrForm Refers to the current form. You can access the controls of the form
through this variable and set the dynamic properties of the form
and its controls.

CurrReport Refers to the current report in the same way as CurrForm refers to
the current form.

RequestOptionsForm Refers to the request options form of the current report.

CurrFieldNo The field number of the current field in the current form–retained for
compatibility reasons.
264

14.3 Handling Runtime Errors
14.3 HANDLING RUNTIME ERRORS

In the chapter on debugging (chapter 15, Debugging C/AL Code), the section Other
Runtime Errors on page 284 describes how to handle functions that return a boolean
value that can be processed or ignored.

When you use these functions, four different scenarios are possible, as depicted in
this table:

A typical example of a function that will or will not produce a runtime error, depending
on how you handle the return value. is GET. The syntax is:

[Ok :=] Record.GET([Value1], [Value2],...)

Ok is a boolean value, which will be TRUE if the record is found and FALSE otherwise.
If GET is used as below, and no record is found,

Customer.GET("Customer Number");

a runtime error will occur. If, on the other hand, GET is used as below, and no record is
found,

IF Customer.GET("Customer Number") THEN

....

ELSE

...

execution will continue. In this case you will need to handle the situation yourself in the
ELSE part of the statement.

Return value is ignored Return value is processed

Function succeeds Execution continues Execution continues

Functions fails A runtime occurs Execution continues, and you must
handle the situation yourself
265

Chapter 14. Using C/AL
14.4 THE ESSENTIAL C/AL FUNCTIONS

Although there are more than 100 functions in C/AL, you will find that you use a limited
set of these functions repeatedly, while you use the rest of the functions only
occasionally. That is to say: during basic application development you use perhaps no
more than 20 different functions. This does not mean that the rest of functions are
obsolete or that you will never use them – but it does mean that if you are comfortable
with this set of essential functions, you will be able to go a long way in C/AL
programming. As you need to add more specialized functionality to your
applications–or you want to round them off by adding "bells and whistles"–you can
familiarize yourself with the full set of functions.

Below are some examples of how to use this set of essential functions. You should,
however, always refer to the online C/SIDE Reference Guide for full and updated
information on any C/AL function.

Searching For Records
The three functions described in this section are used to search for records. When you
are going to search for records, it is important to remember the difference between
GET and FIND – and how you can use FIND and NEXT in conjunction.

GET GET retrieves one record, based on the value of the primary key. That is, if the No. field
is the primary key of the Customer table, GET can be used like this:

GET(Customer,'4711');

The result will be that the record of customer 4711 will be retrieved. GET is one of
those functions that will produce a runtime error if it fails and the return value is not
inspected by the code, and otherwise not. This means that your actual code would
probably look more like this:

IF GET(Customer,'4711') THEN

.... // do some processing

ELSE

.... // do some error processing

GET searches for records, regardless of current filters, and it does not change any
filters. In other words: GET always searches among all records in a table.

FIND An important difference between GET and FIND is that FIND respects (and is limited
by) the current setting of filters. Further differences are that FIND can be instructed to
look for records where the key value is equal to, larger than or smaller than the search
string, and finally, FIND can find the first or the last record (given the sorting order
defined by the current key).

You can use these features in various ways. When developing applications under a
relational database management system, you will often have one-to-many
relationships between tables. An example could be the relations between an Item
table, which registers items, and a Sales Line table, which registers the detail lines
266

14.4 The Essential C/AL Functions
from sales orders. Obviously, one record in the Sales Line table can only be related to
one item, but each item can be related to any number of sales line records.

You would not want an Item record deleted while there are still open sales order
records that include the item. You can use FIND to check this.

To do this, insert the following code in the OnDelete trigger of the Item table:

SalesOrderLine.SETCURRENTKEY("Document Type",Type,"No.");

SalesOrderLine.SETRANGE(

"Document Type",SalesOrderLine."Document Type"::Order);

SalesOrderLine.SETRANGE(Type,SalesOrderLine.Type::Item);

SalesOrderLine.SETRANGE("No.","No.");

IF SalesOrderLine.FIND('-') THEN

ERROR(

'You cannot delete because there are one or more outstanding

sales orders that include this item.');

NEXT NEXT is often used with FIND to step through records of a table, as in this fragment:

FIND('-');

REPEAT

// process record

UNTIL NEXT = 0;

Here, FIND is used to go to the first record of the table. Afterwards, NEXT is used to
step through every record, until there are no more (then, NEXT returns 0 (zero)).

Sorting and Filtering Records
These functions are used to filter records in a table, that is: to set limits on the value of
one or more specified fields, so that only a subset of the records are displayed,
modified, deleted, and so forth. You will also find a description of how to change the
sorting of the records in a table.

SETCURRENTKEY This function is used to select a key for a record, thereby setting the sorting order that
will be used for the associated table. SETCURRENTKEY has this syntax:

[Ok :=] Record.SETCURRENTKEY(Field1, [Field2],...)

You should have these points in mind when you use SETCURRENTKEY:

1 Fields that are not active are ignored

2 When searching for a key, C/SIDE selects the first occurrence of the specified
field(s).

For example, even if you specify only one field as a parameter when calling
SETCURRENTKEY, the key that is actually selected may consist of more fields; if several
keys have as their first component the field that you specified, you may not get the key
that you think you will.
267

Chapter 14. Using C/AL
If no keys can be found that include the specified field(s), a runtime error will occur
unless you test the boolean return value of SETCURRENTKEY in your code. If you do
test the return value, you will have to decide what to have the program do if the
function returns FALSE, because without a runtime error, the program will continue to
run even though no key has been found.

SETRANGE This function is used to set a delimitation on a field – that is, a simple filter. The syntax
is:

Record.SETRANGE(Field [,From-Value] [,To-Value]);

as in this example:

Customer.SETRANGE("No.",'10000','90000');

which would limit the Customer table by selecting only those records where the No.
field has a value between 10000 and 90000.

SETRANGE will remove previous filters. If used without the From-Value/To-Value
parameters, the function can be used to remove any filters that might already be set.
And, finally, if only From-Value is used, To-Value will be set to the same value as
From-Value.

SETFILTER SETFILTER sets a filter in a more general way than SETRANGE. SETFILTER has this
syntax:

Record.SETFILTER(Field, String [, Value], ...];

where Field is the name of the field to set a delimitation on. String is a filter
expression that may contain %1, %2 and so on to indicate locations where the system
will insert values (but not operators) given as the Value parameter(s) in a filter
expression.

Here are two examples of using SETFILTER:

Customer.SETFILTER("No.", '>10000 & <> 20000');

This statement would select records where the No. is larger than 10000 and not equal
to 20000.

Customer.SETFILTER("No.",'>%1&<>%2',Value1, Value2);

If the variables V1 and V2 have been assigned "10000" and "20000", respectively, this
statement will have the same effect as the first one.

GETRANGEMIN This function retrieves the minimum value of the delimitation currently in effect for a
field. GETRANGEMIN has this syntax:

Record.GETRANGEMIN(Field);
268

14.4 The Essential C/AL Functions
GETRANGEMIN will cause a runtime error if the filter currently in effect is not a range.
That is, if a filter has been set like this:

Customer.SETFILTER("No.",'10000|20000|30000');

then

BottomValue := Customer.GETRANGEMIN("No.");

will fail, since the filter is not a range.

GETRANGEMAX GETRANGEMAX works like GETRANGEMIN, except that it retrieves the maximum value of
the delimitation currently in effect.

Inserting, Modifying and Deleting Records
These function are used to maintain the database by adding, modifying and removing
records.

Generally, these functions return a boolean value that indicates whether they
succeed. If you do not handle the return value in your code, a runtime error will occur
when a function returns FALSE. If you handle the return value – by testing its value in
an IF statement – no error will occur, and you must take corrective action yourself
(knowing that the function did not succeed, of course).

INSERT This function inserts a record in a table, as in this example:

Customer.INIT;

Customer."No." := '4711';

Customer.Name := 'John Doe';

Customer.INSERT;

These statement will insert a new record, with No. and Name having the assigned
values, while other fields will have their default values. Supposing that No. is the
primary key of the Customer table, the record will be inserted in the Customer table
unless there already is a record in the table with the same primary key. In that case, as
the return value is not tested, this error message would be displayed:

MODIFY This function is used to modify an already-existing record. Like INSERT, it returns a
boolean – TRUE, if the record to be modified exists, FALSE otherwise.

MODIFY is used like this:

Customer.GET('4711');

Customer.Name := 'Richard Roe';

Customer.MODIFY;
269

Chapter 14. Using C/AL
The statements above would change the name of customer 4711 to Richard Roe.

MODIFYALL This function is used to do a bulk update of records. MODIFYALL respects the current
filters, meaning that you can perform the update on a specified set of records within a
table. MODIFYALL does not return any value, nor does it cause an error if the set of
records to be changed is empty.

You could use MODIFYALL like this:

Customer.SETRANGE("Salesperson Code",'PS','PS');

Customer.MODIFYALL("Salesperson Code",'JR');

The SETRANGE statement selects the records where Salesperson Code is PS, and
MODIFYALL changes these records to have Salesperson Code set to JR.

DELETE This function is used to delete a record from the database. The record to delete must
be specified (using the value(s) in the primary key fields) before calling the function.
(This means that DELETE does take filters into consideration.) Here is an example in
which DELETE is used to delete the record with customer number 4711:

Customer."No." := '4711';

Customer.DELETE;

DELETE returns a boolean value: TRUE if the record could be found, FALSE
otherwise. Unless you test this value yourself, a runtime error will occur when DELETE
fails (returns FALSE).

When developing your application, your should consider this scenario:

1 You retrieve a record from the database.

2 You perform various checks to determine whether the record should be deleted.

3 You delete the record, if step 2 indicated that you should.

Now, this can cause problems if, in a multiuser environment, another user modifies or
deletes the record between steps 2 and 3. If the record is modified, then perhaps the
new contents of the record would have changed your decision to delete it. If it has
been deleted by the other user, you can get a seemingly inexplicable runtime error if
you have just verified that the record existed (in step 1).

If the design of your application indicates that you can encounter this problem, you
should consider using the LOCKTABLE function (described below) – but LOCKTABLE
should be used as sparingly as possible, since this function effectively short-circuits
the concept of optimistic concurrency, thereby degrading performance.

DELETEALL This function is used to delete all records that are selected by the filter settings – if no
filters are set, all records in the table will be deleted.
270

14.4 The Essential C/AL Functions
The following statements would delete all records where Salesperson Code is PS
from the Customer table:

Customer.SETRANGE("Salesperson Code", 'PS', 'PS');

Customer.DELETEALL;

Transactions
Normally, you do not need to be concerned with transactions and table locking when
developing applications in C/SIDE. Chapter 22, C/SIDE in Multiuser Environments,
explains the details.

There are, however, some situations where you will have to lock a table explicitly. For
example, if you, in the beginning of a function, inspect data in a table, then use this
data to perform various checks and calculations and finally want to write back a
record, based upon the result of this processing, you will want the values that you
retrieved at the beginning to be consistent with the data in the table now. In short, you
cannot allow other users to update the table while your function is busy doing its
calculations.

LOCKTABLE The solution is to lock the table yourself, at the beginning of your function, by using the
LOCKTABLE function.

Working with Fields
These functions perform various actions on fields.

CALCFIELDS The CALCFIELDS function is used to update FlowFields. As described in Form and
Control Properties on page 116, FlowFields are automatically updated when they are
direct source expressions of controls, but they must be explicitly calculated when they
are not (that is, are part of a more complicated expression).

When you use FlowFields in C/AL functions, you have to update them yourself, and
this is what you use the CALCFIELDS function for. In the statements below, the
SETRANGE function sets a filter, and then CALCFIELDS is called. CALCFIELDS will
calculate the Balance and Balance Due fields by taking account of the filter setting and
performing the calculations that are defined as the CalcFormula properties of the
FlowFields.

SETRANGE("Date Filter",0D,TODAY);

CALCFIELDS(Balance,"Balance Due");

CALCSUMS The CALCSUMS function is used to calculate the sum of one or more fields that are
SumIndexFields in the record. For CALCSUMS to work, a key that contains the
SumIndexFields must be selected as the current key. Like CALCFIELDS, CALCSUMS
takes the current filter settings into account when performing the calculation.

In the statements below, an appropriate key is selected. Then filters are set, and finally
the summation is performed.
271

Chapter 14. Using C/AL
SETCURRENTKEY("Customer No.")

SETRANGE("Customer No.",'10000','50000');

SETRANGE(Date,0D,TODAY);

CALCSUMS(Amount);

FIELDERROR The FIELDERROR function triggers a runtime error after having displayed a field-related
error message. The function is very similar to the ERROR function, described on page
276, but is has some benefits. For one thing, it is easier to use. The more important
reason, however, is that if the name of a field is changed (for example translated to
another language) in the Table Designer, the message from the FIELDERROR function
will reflect the current name of the field.

FIELDERROR can be called simply as:

Item.GET('70000');

IF Class <> 'HARDWARE' THEN

FIELDERROR(Class);

This will cause an appropriate message to be displayed, depending on whether Class
currently is empty or has a value.

A message like this will appear when a field has a "wrong" value:

You will see a message like this when a text or code field contains the empty string:

(When a numeric field is empty, it is considered as having the value 0 (zero) – and will
produce a message like the first one shown, with "0" instead of "FOOD".)

Finally, you can add your own text if the default texts don’t suit your application. Then,
you call FIELDERROR like this:

IF Class < '4711' THEN

FIELDERROR(Class,'must be greater than 4711');

and the message will look like this:
272

14.4 The Essential C/AL Functions
FIELDNAME The FIELDNAME function returns the name of a field. Again, you could simply use the
name, as you probably know it when you are writing the code, but by using
FIELDNAME, you can create messages that will still be meaningful if the field name is
later changed. FIELDNAME could be used together with FIELDERROR, in a construction
like this:

FIELDERROR(

Quantity,'must not be less than ' +

FIELDNAME("Quantity Shipped"));

INIT The INIT function initializes a record. If a default value for a field has been defined (by
the InitValue property), this value will be used for the initialization – otherwise, there is
a default value for each data type (see the online C/SIDE Reference Guide entry for
INIT).

Note that INIT does not initialize the fields of the primary key.

TESTFIELD This function is used to test a field against a value. If the test fails, that is if the values
are not the same, an error message is displayed, and a runtime error is triggered,
meaning that any changes made to the record will be discarded. If the value to test
against is the empty string, the field has to have a value other than blank or 0 (zero).

The following statements:

Code := 'DK'

TESTFIELD(Code,'ZX');

would give this error message:

VALIDATE The VALIDATE function is used to call the OnValidate trigger of a field, as in this
example, where it will call the OnValidate trigger of the Total Amount field:

VALIDATE("Total Amount");

The function is useful for centralizing processing – thus making your application easier
to maintain. Suppose that the OnValidate trigger of the Total Amount field performs a
calculation with values from three other fields as operands.

If the contents of any of these fields changes, the calculation must be performed. You
should avoid entering the calculation formula in the OnValidate triggers of each field –
there will be all sorts of possibilities for errors if the calculation formula later has to be
changed.

Instead, you should perform the calculation in the OnValidate trigger in only one of the
fields and call this trigger code from the OnValidate triggers of the other fields.
273

Chapter 14. Using C/AL
User Messages And Dialogs
There are several specialized functions available for displaying messages and
gathering input – but generally, you should use forms whenever it is possible. When
you use forms, your application will have a much more consistent user interface.

There are, however, situations where it is reasonable to use the dialog functions. The
two most important uses are to display a window that indicates the progress of some
processing that may take a long time and to halt execution (in order to display an error
message or get the user to confirm a choice before the program continues execution).
You will also find the STRMENU function useful for creating forms to present options to
the user – it is much faster to use this function than to design a form solely to present
a limited set of options to the user.

Creating a Window to Indicate Progress

When you have written an application where some processing may – for perfectly
good reasons – take a long time, you should consider displaying a window that
informs the user of the progress that is being made. The information itself may be
superfluous, but it is a good idea to indicate to the user that something is actually
going on and the program is still running.

Using a dialog window will also give the user an opportunity to stop the processing – a
Cancel button is automatically part of a dialog window.

In some applications, you can create an indicator control to do this. How to do it is
described in the section Using an Indicator to Display Values on page 137. In other
applications, you can create a window like this instead:

The idea is that each field is updated while the program is running. In the example
here, the fields are used to count the number of postings being made. In another
situation you could display, for example, the number of the account that is currently
being processed, like this:
274

14.4 The Essential C/AL Functions
To create a window like this:

1 Declare a variable of type Dialog:

2 Open the dialog window, and define the string that will be displayed:

ProgressWindow.OPEN('Processing account number #1#######');

The part of the string that contains pound signs (#) and a number defines a field
that will be displayed in the window, and the number ("1" in this example) can be
used to refer to the field.

3 You can display the value of any variable in the field. In the example below, the
number of each account will be displayed as it is processed:

REPEAT

ProgressWindow.UPDATE(1,ChartOfAcc."No.");

// process the account...

UNTIL ChartOfAcc.NEXT = 0;

4 Finally, close the window when you are finished using it:

ProgressWindow.CLOSE;

Other User Messages

There are a number of other dialog functions available for displaying short user
messages. A common trait of these dialogs – except MESSAGE – is that execution
stops until the user makes a response.

MESSAGE The MESSAGE function displays a message in a window that remains open until the
user clicks the OK button on the window. Note that MESSAGE executes
asynchronously, that is: MESSAGE is not executed until the function from which it was
called ends or another function requests user input. The function is useful for notifying
the user that some processing has been successfully completed, as in this example:
275

Chapter 14. Using C/AL
The window was created by this statement:

MESSAGE(

'Quote %1 has been changed to order %2.',

"No.",SalesOrderHeader."No.");

.
Note

Unlike in the example of the progress indication windows, the MESSAGE function was
used without first declaring a variable of type Dialog, since there will be no need to

.
refer to this window again.

ERROR The ERROR function is very similar to the MESSAGE function, except for one detail: when
the user has acknowledged the message, execution ends. See also the description of
FIELDERROR on page 272.

CONFIRM The CONFIRM function is used to display a message, just like MESSAGE: but unlike
MESSAGE, this function returns a value that can (and must) be used, depending on
whether the user chooses Yes or No. Its obvious use is for asking a question like this:

The window was created by this statement:

IF CONFIRM('Do you want to convert the quote to an order?',FALSE)

THEN

.... // do the conversion

ELSE

EXIT;

The FALSE parameter means that the negative answer (No) will be the default.

A Quick Options Form
The STRMENU function is used to create and display a form with an option group, and
to return the user selection to the program.

STRMENU has this syntax:

OptionNumber := STRMENU(OptionString [, DefaultNumber]);

where OptionNumber is the number of the option the user chooses. The first option in
the OptionString is number 1 – if the user closes the form with ESC, STRMENU returns 0
(zero). If it is defined, DefaultNumber is used to select the default option (if
DefaultNumber is not defined, the system will use option number 1 as the default.)
276

14.4 The Essential C/AL Functions
The statement

Selection := STRMENU('Save,Close,Cancel',3);

will create this:

Notice that the Cancel option is the default – as the DefaultNumber parameter was set
to 3. It is a good idea to let the default option be a "harmless" action, like Cancel, as
this option can be chosen by pressing ENTER. If the user inadvertently presses ENTER,
no catastrophes will happen, which they might, if, for example, one of the options was
"Delete all".
277

Chapter 14. Using C/AL
278

Chapter 15
Debugging C/AL Code

This chapter describes the nature of program errors, bugs,
and how to use the Microsoft Business Solutions–Navision
Debugger to track down errors.

· What Are Bugs?

· Syntax Errors

· Runtime Errors

· Program Logic Errors

· The Microsoft Business Solutions–Navision Debugger

Chapter 15. Debugging C/AL Code
15.1 WHAT ARE BUGS?

There are three categories of errors you can meet when you develop applications that
use C/AL code

· Syntax errors

· Runtime errors

· Program logic errors

Traditionally, errors in computer programs are called bugs, and the process of finding
and correcting errors is, correspondingly, called debugging.

This chapter describes how you can find and eliminate bugs and errors, and it shows
how you use the Navision Debugger to find runtime and program logic errors.
280

15.2 Syntax Errors
15.2 SYNTAX ERRORS

These errors are detected by the C/AL compiler when you try to compile C/AL code,
be it in a codeunit or as code in another object (table, form, report, dataport or
codeunit). The compiler will notify you of the error with a message like this:

or this:

When you have pressed ENTER and acknowledged the error message, the C/AL editor
will appear with the cursor in front of the offending expression. Note that the error
message may not always reflect the nature of the error. Consider this message:

When you look at the offending code in the editor, it becomes clear that the error has
nothing to do with an unknown variable:

The real error is a misspelling of IF, which has been entered as UF. From the point of
view of the compiler, UF is an unknown identifier, hence the error message. When you
look at the code, however, it is easy to see what was really the matter.

The compiler will not compile code that contains any syntax errors, like a missing THEN
in an IF statement, or code that uses undeclared variables.
281

Chapter 15. Debugging C/AL Code
15.3 RUNTIME ERRORS

Runtime errors occur when the program is executed. These errors are not detected by
the compiler, because the code is syntactically correct in these cases. A good
example is division by zero. Consider this statement:

Ratio := First_number / Second_number;

There is nothing wrong with the syntax, but the statement may cause the following
error:

This error occurs because the Second_number variable has been assigned a value of
0 (zero), thereby causing a division by zero.

If all three variables are of type integer, the following error could occur:

This error occurs because the result of the division cannot be contained in an integer.
Therefore, the result is converted to decimal, but then the conversion back to integer
(to fit the result into the Ratio variable) fails. The common trait of these errors is that
the code can work perfectly in many situations, and then fail in some. The real danger
is that since there is nothing syntactically wrong with the code, the error could occur
when the program is already in use.

Unless you handle the runtime error in your code, the default messages shown above
will appear. If, as in the example, the division by zero was attempted using three
variables that were assigned values in a simple form, like this:
282

15.3 Runtime Errors
and the form was designed like this:

and, finally, the expression

Ratio := First_number / Second_number;

was entered in the OnValidate trigger of the Second_number text box. Then, after the
user has acknowledged the runtime error by clicking OK, the form will look like this:

At this point, the user cannot move out of the text box where Second_number is to be
entered, or close the form, without changing the value to something other than 0
(zero).

.
About Runtime Errors and Data Consistency

You may now be wondering if runtime errors could compromise the integrity of the
database, for example, if some fields are updated in a trigger and a runtime error
occurs while some other fields have not been updated. Chapter 22, C/SIDE in
Multiuser Environments, explains how data integrity is always maintained, under all
circumstances. When a trigger is entered, a write transaction is begun. If a runtime
error occurs inside the trigger, the write transaction will be rolled back and the

.
execution of the trigger terminated.

How to Avoid Runtime Errors
Basically, runtime errors should never occur, and they do not have to, provided that
you exercise care when programming. The description below gives some guidelines
on how to avoid runtime errors, but they are only guidelines, as the conditions under
which runtime errors occur are highly dependent on the context of your application. If,
for example, you use the GET function to locate a record, you will have to handle the
possibility that a runtime error will occur if there are situations where no record is
found. On the other hand, if you are absolutely certain that the specific context
precludes this situation, you can omit handling a possible runtime error. (The context
could be that the existence of a record is verified before the GET function is used.)
283

Chapter 15. Debugging C/AL Code
Generally speaking, there are two categories of runtime errors: those that are related
to the use of data types, and those that occur if a function does not succeed in doing
what it is supposed to do. Division by zero does not fit readily into either of these
categories, but it has been placed in the first one.

The heading of this section is, perhaps, overly optimistic: you can only prevent some
errors (mainly the data type-related ones) from occurring. Other errors cannot always
be avoided, but you can write code that shields the user from the error. That is,
instead of the default error handling (which amounts to displaying a message, closing
the form that was active when the error occurred and rolling back any changes to the
database), you can write a better error handler that, for example, gives the user a
chance to correct the input that caused the error, or, at least, displays a message that
explains in further detail why the error occurred.

Data Type-Related Errors

The most important thing to do to avoid this category of runtime errors is to use correct
data types. Errors like the type conversion error on page 282, and overflow errors, can
be avoided by using the correct data types. In the context of the example, integer was
obviously not a good choice for the Ratio variable. See Introducing the C/AL Data
Types on page 236. for a description of the data types, and Chapter 19 for a
description of how type conversion takes place in C/SIDE.

The division by zero error on page 282 could have been avoided in several ways,
depending upon the context where the code fragment is used. If the user enters the
denominator (the Second_number variable) in a text box immediately before the
evaluation of the statement, you could test the value of Second_number before
performing the division, and reject a value of 0 (zero):

IF Second_number <> 0 THEN

Ratio := First_number / Second_number

ELSE

MESSAGE('Second_number must not be 0');

If Second_number is a field in a database table, and it never should be allowed to
have a value of 0 (zero), the best place to perform this check is in the OnValidate
trigger of the field. In this way, a value of 0 (zero) could never be entered in the field,
no matter how many different text boxes are used to enter data in the field.

Other Runtime Errors

Any function that can fail to accomplish what it is intended to do can cause a runtime
error. A good example is the GET function, used to locate a record in a table according
to specified criteria. Consult the online C/SIDE Reference Guide for the GET function,
and observe the syntax of the command

[Ok :=] Record.GET([Value1], [Value2],...)

The return value of the function is Ok, a boolean. If a record is found, Ok will be TRUE,
otherwise it will be FALSE. This return value can be ignored, as indicated by the
square parentheses. If it is ignored, and the requested record cannot be found, a
runtime error will occur and a system-generated error message will be displayed. If,
284

15.3 Runtime Errors
on the other hand, you test the return value, a runtime error will not occur, as it is then
assumed that you handle the condition yourself.

The online C/SIDE Reference Guide always describes whether a function handles
errors in a way similar to GET. You can also look at the syntax description in the
Symbol Menu, to see if the function you intend to use returns a value called Ok. If it
does, you should consult the online C/SIDE Reference Guide as there are some
functions that return a boolean for other reasons than those described here. For
example, the ASCENDING function can be used to check the sorting order of a table,
and in this case it will return TRUE if the sorting order is ascending, and FALSE if it is
descending.

EXAMPLE

By using the return value, in a construction like this:

IF NOT Customer.GET("No.") THEN

Customer.INIT;

or like this

IF NOT Customer.GET("No.") THEN

BEGIN

MESSAGE('Customer %1 not found', "No.");

EXIT;

END;

you can shield the user from a runtime error. In the first example, if a Customer record with the
given No. cannot be retrieved, an (empty) record is initialized. In the second example, the user is
notified that a record cannot be found and the trigger from where the GET function was called is
exited.

You should only take the examples above as general guidelines. You will have to consider how to
handle situations like these in the context of your own application.

Finding and Correcting Runtime Errors
As you can see from the runtime error messages reproduced on page 282, this type of
message is supposed to be read by the end user. Therefore, the messages do not
include references to variables or functions, but rather an explanation and the "real"
values that caused the error. This means that these errors can be a little harder to
locate than, for example, syntax errors.

To track down a runtime error, you will need an exact description of the sequence of
events that led to the error: that is, what the user was doing at the time of the error,
and what values the user had entered or what record caused the error.

If the error was caused by something as simple as a calculation formula that failed to
check whether a division by zero was about to be carried out, you should be able to
find the statement that led to the error quite easily. If, on the other hand, the
circumstances that led to the error are more complicated, and you cannot pinpoint the
285

Chapter 15. Debugging C/AL Code
exact place directly, you can use the debugger as described in The Code Coverage
Tool on page 297.
286

15.4 Program Logic Errors
15.4 PROGRAM LOGIC ERRORS

The third major category of errors is the program logic errors (strictly speaking, the
term bug should perhaps be reserved for errors of this type). A program logic error is
an error in an application that could perfectly well be compiled, that can be run without
causing runtime errors, but that fails to function as was intended.

It can be argued that many, if not most, runtime errors are also program logic errors.
However, the "true" program logic error will not make itself noticed in a similarly
spectacular way but will quietly generate erroneous data that may not always be
detected straight away. The following example illustrates what a program logic error is.

EXAMPLE

In an application, sales orders are entered on a main form/subform: the general information is
entered in the sales header table from the main form, and specific information about items that are
ordered is entered in the sales line table from the subform. During data entry, a form that shows
statistics about the current order can be displayed. When the form is called, a series of calculations
take place and the resulting information is shown like this:

When the form is run with sample data, something appears to be wrong. When compared with the
sales order entry forms, the Quantity on the Sales Statistics form seems to be incorrectly
calculated.

The sum of the quantities for those two sales lines that are visible in the subform alone is 4 (and
there are several lines below those two lines).
287

Chapter 15. Debugging C/AL Code
The numbers that are shown in the Sales Statistics form are calculated in the OnAfterGetRecord
trigger of the form, like this:

The erroneous statement is highlighted. Instead of adding the quantity from each sales line in the
REPEAT loop to the variable LineQty (the source expression of the Quantity text box), the variable
is assigned the quantity on the current sales line in each iteration. The value that is finally
displayed is simply the quantity on the last of the sales lines.

In this example, the error was easy enough to find, just by looking at the C/AL code.
The Code Coverage Tool on page 297 shows how the debugger can be used to find
the error. In a more complex application, this will be, if not the only way, then the
fastest.
288

15.5 The Microsoft Business Solutions–Navision Debugger
15.5 THE MICROSOFT BUSINESS SOLUTIONS–NAVISION DEBUGGER

Overall Description
Navision provides an integrated debugger to help you check, correct or modify code
so that your application can build successfully, run smoothly and act as you expected.
The basic concept in debugging is the breakpoint, which is a mark that you can set on
a statement. When the program flow reaches the statement, the debugger intervenes
and suspends execution (breaks) until you instruct it to continue. Without any
breakpoints, the code would just run normally when the debugger is active. The state
disabled breakpoint means that the breakpoint is still present on the statement but is
momentarily disabled (execution will not stop at this breakpoint).

If you wish to track down a runtime error, you simply disable the Break on Triggers
setting from within the debugger and click Go. The debugger will automatically stop
execution of the code when it encounters an error.

You can also use the debugger to find a logical error. However, finding the error will
not be as easy, and you must have a good understanding of how the code is
supposed to work. The debugger enables you to execute your C/AL code one
statement at a time while you inspect the contents of global variables, local variables
and text constants at each step. In this way, you can see whether the values that are
actually used differ from those you expected when you designed the application.

The Breakpoint on Triggers setting (SHIFT+CTRL+F12) is enabled by default when you
activate the debugger for the first time. Otherwise the code would be executed
normally because there are no breakpoints. The debugger will therefore suspend
execution of the code when it reaches the first trigger. At this point you can set other
breakpoints and then disable the Breakpoint on Triggers option if you want to. If you
do not disable the Breakpoint on Triggers setting, the debugger will suspend
execution of the code at every trigger it reaches.

The code coverage functionality, which is described on page 297, enables you to log
and view code that was executed in one or more transactions. You can use this
functionality as an alternative to, or in combination with, the debugger.

Activating the Debugger
You can activate the debugger from Navision and from Navision Application Server:

From Navision

To activate the debugger from Navision, click Tools, Debugger, Active
(SHIFT+CTRL+F11). You can also start Navision with the debugger active from the
command line by using the debug parameter:

EXAMPLE

fin.exe debug
289

Chapter 15. Debugging C/AL Code
From Navision Application Server

To activate the debugger from Navision Application Server, you include the debug
parameter at start-up:

EXAMPLE

nas debug,startupparameter=”test”,servername=PC0123

If you deactivate the debugger, you cannot activate it again unless you terminate
Navision Application Server and then start it up with the debug parameter.

The Debugger Interface
The debugger interface provides special menus, windows and a dialog box. These are
described in the following.

Debugger Menus

You can find debugging commands in the Edit, View and Debug menus:

The Edit Menu From this menu, you can access the Breakpoints dialog box
(SHIFT+F9). It displays a list of the breakpoints that you have set for the object you are
debugging. You can enable, disable and remove breakpoints in the list.
290

15.5 The Microsoft Business Solutions–Navision Debugger
The View Menu This menu contains commands that display the various debugger
windows, such as the Variables window and the Call Stack window. It also contains
a command for adjusting the size of the text shown in the interface, and a command
for showing/hiding the standard and debug toolbars.

The Debug Menu This menu contains commands that start and control the
debugging process, for example, Go, Step Into, Step Over and Show Next Statement.

Go executes code from the current statement until a breakpoint or the end of the code
is reached, or until the application pauses for user input.

Step Into executes statements one at a time, and you can decide how to continue after
each statement. The execution will step into any function that is called, which means
that the debugger will single-step through the statements in the function.

Step Over executes statements one at a time, like Step Into, but if you use this
command when you reach a function call, the function is executed without the
debugger stepping through the function instructions. Note, however, that if you use
this command when the Breakpoint on Triggers setting is enabled, the debugger will
still suspend code execution at every trigger it reaches. Furthermore, if there is a
breakpoint in one of the functions you step over, the debugger will break at that
breakpoint.

Show Next Statement shows the next statement in your code.

The Debug menu also contains commands for setting, enabling/disabling and
removing breakpoints. Note that the Breakpoint on Triggers option is set
independently of other breakpoints, so the Remove All Breakpoints command does
not affect it.

The Debugger Toolbar

The toolbar buttons represent commands that are also available from the menus.

Use these toolbar buttons
to show/hide the Output,
Variables, Call Stack and
Watch windows.

Insert/Remove Breakpoint
Enable/Disable Breakpoint
Remove All Breakpoints

The Go and Stop Debugging buttons

Step Into and Step Over

Show Next Statement
291

Chapter 15. Debugging C/AL Code
Debugger Windows

There are four specialized windows for displaying debugging information: Output,
Variables, Call Stack and Watch. You can access these windows from the View
menu and from the standard toolbar.

The Output Window Displays information related to the debugging process.

The Variables Window Displays name, value and type information for variables
used in the current and previous statements, including the values of an array
structure. The window has four tabs: All, Locals, Globals and Text Constants. You
cannot add variables to the Variables window (you must use the Watch window for
that). You can expand or collapse the variables shown using the tree controls. You can
expand a variable if it has a plus sign (+) box in the Name field. If there is a minus sign
(–) box in the Name field, the variable is already fully expanded.

The Call Stack Window Displays the stack of function calls that are currently active.
When a function is called, it is pushed onto the stack. The debugger displays the
currently executing function at the top of the stack and older function calls below that.

When you double-click a call stack line, a green arrow appears to the left of the line. In
the window that contains the code being debugged, a corresponding green arrow
appears to indicate how far the debugger has reached in the specific trigger for the
call stack line that you selected.

The Watch Window Use the Watch window to monitor variables of special interest
while debugging your program. You can drag and drop the name of the variable that
you want to watch from the Variables window or from the window that contains the
code being debugged. You can also type the names of variables in this window.

This window simply contains
the code that is being
debugged for a specific
object - here it is a form.

All built-in functions and AL
statements are shown in
blue. Comments are shown
in green and text strings are
shown in red.

The Call Stack window

The Watch window

The Output window

The Variables window
292

15.5 The Microsoft Business Solutions–Navision Debugger
The Watch window contains three tabs: Watch1, Watch2 and Watch3. You can
group variables that you want to watch together onto the same tab. For example, you
could put variables related to a specific window on one tab and variables related to a
dialog box on another tab. You could watch the first tab when debugging the window
and the second tab when debugging the dialog box.

Symbols used in the Debugger Interface

The symbols used in the debugger interface are as follows:

Working with Breakpoints in the C/AL Editor
To toggle between setting, enabling/disabling and removing breakpoints in the C/AL
Editor, use the F9 key (or select the Tools, Debugger, Toggle Breakpoints menu
command). Information about the breakpoints is stored in the Breakpoints virtual
table when you close the C/AL Editor.

The Breakpoints Virtual Table
The Breakpoints virtual table, which has ID 2000000059, can store the following
information about the breakpoints that you set:

Symbol Meaning

There is an enabled breakpoint at this statement.

There is a disabled breakpoint at this statement.

This is a statement that will be executed.

Indicates that you have double-clicked a call stack line. This
arrow also appears in the window containing the code that
is being debugged. Here it indicates how far the debugger
has reached in the trigger for the call stack line that you
selected.

Field Description

Object ID The ID of the object for which breakpoint information has been stored.

Object Type Table, Form, Report, Dataport or Codeunit.

Trigger Line The number of the trigger line where there is a breakpoint.

Code No. A code number for the trigger that contains a breakpoint. C/SIDE uses
this number to identify the trigger at runtime.

Trigger Name The name of the trigger where there is a breakpoint.

Object Name The name of the object.

Enabled A check mark indicates whether or not the breakpoint is enabled.
293

Chapter 15. Debugging C/AL Code
You must create a tabular form based on the Breakpoints virtual table to manage
breakpoints. Here is an example of how your form could look:

Information about breakpoints is saved when you close an object or when you save a
new object – compilation is unnecessary. Breakpoints are therefore not stored for
objects that you do not save.

Storage of Breakpoints in an XML File
Breakpoints that are stored in the Breakpoints virtual table are automatically stored
in a NaviBP.xml file. The file is located by default in the same folder as the fin.zup
file. On a Windows 2000 or Windows XP computer, the path is: C:\Documents and
Settings\user\Application Data.

Here is an example of an XML file that contains breakpoint information for two objects:

This file contains breakpoints for MyCodeunit 1 and MyCodeunit 2. The objects are
shown as XML elements called "Object". The object element has three attributes:
Type, ID and Name.

If we expand the first object, MyCodeunit 1, we can see one "Breakpoint" element.
This shows that the object contains one breakpoint:
294

15.5 The Microsoft Business Solutions–Navision Debugger
When a breakpoint element is expanded, we can see four types of information for the
breakpoint:

Starting Navision or Navision Application Server Using Another Breakpoint
File

You can start both Navision and Navision Application Server with a breakpoints
parameter. This enables you to specify a particular file for saving and loading
breakpoints.

EXAMPLE

FIN.EXE breakpoints=C:\MyBreakpoints.xml

Storage of Debugging Information in the FIN.ZUP File

The selections that you make in the Tools, Debugger, Active and Tools, Debugger,
Breakpoint on Triggers menu commands are stored in the fin.zup file. This means,
for example, that if the debugger was active and set to break on triggers when you
logged off, then these selections will apply when you log on again.

Overview of Shortcut Keys
Here is a list of the shortcut keys for the most common debugging commands:

XML Tag Description

TriggerName The name of the trigger that contains the breakpoint.

CodeNo The Code Number for a specific trigger in an object. C/SIDE uses this
number to identify the trigger at runtime.

Trigger Line The number of the line in the trigger where the breakpoint has been
defined.

Enabled A Boolean expression of whether or not the breakpoint is enabled.

Shortcut Key Command

SHIFT+CTRL+F11 Debugger Active

F5 Go

F9 Toggle Breakpoint

SHIFT+CTRL+F12 Breakpoint on Triggers

SHIFT+F9 Open Breakpoints Dialog Box

CTRL+SHIFT+F9 Remove All Breakpoints

F8 Step Into

CTRL+F8 Step Over

ALT+NUM* Show Next Statement

SHIFT+F5 Stop Debugging
295

Chapter 15. Debugging C/AL Code
.
The Debugger and the Command Buffer

C/SIDE uses a command buffer to improve performance. However, when you run the
debugger, C/SIDE deactivates the command buffer. For more information, see

.
Chapter 25 Performance.
296

15.6 The Code Coverage Tool
15.6 THE CODE COVERAGE TOOL

When you add the function (trigger) with ID 6 to Codeunit 1, you can access the code
coverage functionality from the Debugger submenu of the Tools menu. You can now
start and stop code logging. You can also view the code that is logged. Further, you
can use the CODECOVERAGELOG function to start and stop the logging of code. This
function can also retrieve the current logging status. See the online C/SIDE Reference
Guide for information about the CODECOVERAGELOG function.

The code coverage functionality is useful when you are customizing Navision and
want to test your work. It provides a quick overview of the objects for which code has
been executed, and it displays the code that has been logged.

The Code Coverage window displays the objects (tables, forms, reports, dataports
and/or codeunits) for which code has been executed and logged during one or more
transactions. The Code Overview window displays the code that has been logged for
a selected object. You can read about the Code Coverage and Code Overview
windows in the following section.

Using the Code Coverage Tool

As stated earlier the Code Coverage tool is useful for giving you an overview of the
objects that are called when you perform any tasks and the code that is used during
these transactions.

To log code:

1 Click Tools, Debugger, Code Coverage. The Code Coverage window appears:

2 Click Start. The Code Coverage tool is now ready to log code.

3 When you have completed the transactions that you want to monitor, return to the
Code Coverage window. It now contains a list of any tables, forms, reports,
dataports and codeunits that were used.

4 Click Stop.

5 Select an object whose code you wish to view. Click Code to open the Code
Overview window:
297

Chapter 15. Debugging C/AL Code
The Code Overview window displays code for the object that you selected in the
Code Coverage window. Lines of code that were executed during the transaction(s)
are shown in black. Lines of code that were not executed are shown in red.

The Code Overview window displays code in a similar way to the debugger.
However, while you see code being executed in the debugger, the Code Overview
window shows you the end result: the code that has been executed. When a line of
code is executable, a bullet symbol is shown on the left of the line. Only the
information for lines that are marked with a bullet is correct. The lines of code that are
not marked with a bullet are simply displayed in the color of the neighboring code
lines.

.
Important

You must not modify objects while using the Code Coverage tool because this will

.
produce inconsistent results.
298

Chapter 16
Extending C/AL

This chapter describes how you can extend C/AL by using
COM technologies. C/SIDE supports automation servers by
acting as an automation controller and using OCXs (custom
controls).

· What Is COM?

· Using COM Technologies in C/SIDE

· Using C/SIDE as an Automation Controller

· Receiving Events in C/SIDE

· Using Custom Controls from C/SIDE

· Acquiring Controls

Chapter 16. Extending C/AL
16.1 WHAT IS COM?

This is not the place for anything but a very brief explanation of what the terms COM,
OCX, Automation, OLE, ActiveX and so forth mean. The subject is a huge and
complicated one that has been described in a number of good books.

COM and C/SIDE In C/SIDE, you can use COM technologies in two ways: you can use custom controls
(OCXs), and you can use Automation (C/SIDE in the role of an automation controller
or client). There is a vast array of commercially available OCXs that perform all kinds
of tasks, and you can develop your own. When you use C/SIDE as an automation
controller, you will probably work with programs such as the Microsoft Office suite of
products.

If you are going to develop custom controls yourself, you will probably use tools like
Microsoft Visual C++ or Microsoft Visual Basic. Both products use wizards to make it
very easy to develop COM objects. It is, in fact, entirely possible to develop functional
controls without understanding any of the complex details of COM itself. If you are
going to use existing COM objects (controls or automation servers) from C/SIDE, you
certainly do not need to know anything about COM. Using the functionality provided
by a COM object is no different than using any C/AL function.

If, however, you do want to know more, here is a list of recommended books:

This book gives a broad overview of the subject without going into too much detail:

· David Chappell. Understanding ActiveX and OLE. Microsoft Press (1996).

This book provides a more technical description:

· Dale Rogerson. Inside COM. Microsoft Press (1997).

For those who really want to know the details, this book is very extensive (but it is also
older than the other two books mentioned here):

· Kraig Brockschmidt. Inside OLE, 2nd edition. Microsoft Press (1995).

The very rapid evolution in this area has turned the concepts and the terminology that
is used to describe them into what David Chappell calls "moving targets," which
means that it is no easy task to keep printed documentation updated. The Microsoft
Web site (http://www.microsoft.com) offers a wealth of regularly updated online
information, including the latest specifications of all aspects of COM.
300

16.1 What Is COM?
Terminology and History
Parallel with the rapid development of the technology, the terminology used to
describe the technology has changed fast. The table below shows how terms have
been added and meanings have changed as the technology has evolved:

Term Description

OLE version 1.0 OLE is introduced as Object Linking and Embedding, allowing users to
create compound documents (for example, a Microsoft Excel spreadsheet
could be embedded in a Microsoft Word document.)

COM OLE is generalized into COM: the Component Object Model. COM is seen
as an architecture for interaction between software components.

OLE version 2.0 Building on the COM paradigm, OLE version 2.0 refines the linking and
embedding concepts of OLE version 1.0, and adds new concepts such as
OLE Automation. OLE version 2.0 is a suite of (more or less) related
technologies that use COM rather than "just" linking and embedding.

OLE In accordance with the broadening of the concept, OLE is no longer
considered an acronym but a name in its own right (pronounced o-lay).

OLE Automation OLE Automation is the name for the ability of one program to expose any
or all of its capability for another program to use. In other words:
programmability. The preferred term is now Automation, with the program
providing functionality being called the Automation server and the program
that uses this functionality the Automation controller (or client).

OLE Controls Influenced by VBX, Visual Basic Extensions, OLE Controls are defined as
COM objects that meet a certain, well-defined set of specifications. An
OLE Control (also called a Custom Control) is a COM object that can be
"plugged in" and used by a control container. In this way, applications can
be built from reusable (binary) software components. OLE Controls usually
have .ocx as their file name extension.

ActiveX The first specifications for OLE Controls were rather strict and demanded,
among other things, that a control should implement a vast number of
interfaces. With the advent of the Internet and the emergence of the
Internet Explorer as a favored control container, the specifications were
relaxed in order to make it possible to create controls that have a smaller
footprint and therefore will load faster. At the same time, OLE Controls
were renamed ActiveX controls.

DCOM The specifications for DCOM (Distributed COM) were released in 1996.
DCOM expands COM to make communication over a network transparent
to the clients and servers that are involved.

COM+ COM+ is the backward-compatible successor to COM. It enhances COM
with a rich set of new features.
301

Chapter 16. Extending C/AL
16.2 USING COM TECHNOLOGIES IN C/SIDE

C/SIDE supports COM technologies in two ways: using custom controls (OCXs) and
as an automation controller. This support has a few limitations:

Only non-visual controls are supported. This means that a control cannot be
used to add graphical elements to a C/SIDE object (you cannot, for example, add a
third-party control to a form). The control can, however, display information and
interact with the user in a window of its own.

Exception handling. C/SIDE does not allow the retrieval of information about
exceptions from a control or automation server through the Invoke method of the
IDispatch interface and the EXCEPINFO structure (as described, for example, in
Inside OLE). The samples in the C/OCX Samples – the control and the C/SIDE
application that uses it – show a way to work around this limitation. You can find a
description on page 332.

Parameters, Return Values and Data Types
As you can see in the literature about COM, the mechanisms for calling methods in a
control, passing parameters and receiving return values are somewhat complicated.
Using tools like the wizards in Microsoft Visual C++ shields you from most of the
complexities.

You should know, however, that there is not a one-to-one relationship between the
data types that you can use when implementing methods in, for example, Visual C++
and the data types in C/AL. Some of the COM data types are not supported in C/AL
and some have a limitation imposed on their usage.

When you use the C/AL Symbol Menu, you can see the syntax for a method or
property with the return value and the parameters shown with the COM data types.
302

16.2 Using COM Technologies in C/SIDE
The following table shows how you map C/AL data types to COM data types:

The following table shows how you map COM data types to C/AL data types:

C/AL Data Type COM Data Type Comment

Boolean VARIANT_BOOL
(VT_BOOL)

Option long (VT_I4)

Integer long (VT_I4)

Decimal CURRENCY (VT_CY) The CURRENCY type in COM is a special
data type with a fixed point that has 15 digits
to the left of the point and 4 to the right. You
should be aware that the Decimal type in
C/AL does not have a fixed point and can
have a total of 18 digits. This could possibly
lead to some rounding being performed
when a type Decimal number is passed to a
method that expects a CURRENCY. The
server manipulates that number and returns
it as a CURRENCY. No matter how many
digits the original Decimal had to the right of
the decimal point, the returned CURRENCY
will have no more than 4 digits.

Char BSTR (VT_BSTR)

Text BSTR (VT_BSTR)

Code BSTR (VT_BSTR)

Date DATE (VT_DATE)

Time void (VT_VOID)

Automation TypedObject, UntypedObject
(VT_DISPATCH)

InStream VT_STREAM

OutStream VT_STREAM

Variant VARIANT (VT_VARIANT)

COM Data Type C/AL Data Type Comment

VT_UNKNOWN InStream or OutStream Only the IID_IStream and
IID_SequentialStream interfaces are
supported. If you pass any other IUnknown
interface, an error will occur at runtime.

short (VT_I2) Integer

long (VT_I4) Integer

float (VT_R4) Decimal

double (VT_R8) Decimal
303

Chapter 16. Extending C/AL
Unsigned char (VT_UI1), SCODE (VT_ERROR) and SAFEARRAY
(VT_ARRAY)

You can use the C/AL variant data type to pass unsigned char, SCODE or
SAFEARRAY to another variant that supports these types. You cannot assign them to
C/AL data types.

Further remarks When you call a method with a ByRef parameter, the normal C/AL type conversions
do not take place. This means, for example, that if the parameter is of type float, you
have to use a C/AL variable of type Decimal. You cannot use Integer and have C/AL
convert it for you. (Hint: if the value you want to pass has a "wrong" type, when, for
example, it is a value from a database record field, you can assign it to a C/AL variable
of the correct type before calling the COM object method.)

You will sometimes see a COM object method or a property in the C/AL Symbol Menu
that has type IDispatch. This means that the method or property returns or expects a
COM object. In this case, you must use a C/AL Automation variable that has been
declared (through the Subtype) to be the correct COM object. You will have to study
the documentation for the automation server to gain the necessary information.

You will also see properties and methods that do not have one of the "normal" types.
For example, a method in Microsoft Excel can have a return value of type
WORKBOOK. This means that the automation server has implemented a USERDEF
type. C/SIDE supports USERDEF types in two contexts: IDispatch and Enumeration.

CURRENCY
(VT_CY)

Decimal The CURRENCY type in COM is a special
data type with a fixed point, which has 15
digits to the left of the point and 4 to the
right. You must note that the Decimal type
does not have a fixed point and can have a
total of 18 digits.

DATE (VT_DATE) Date The COM DATE type contains both a date
and a time value. C/AL has Date and Time
as separate data types. Therefore, the time
part of a COM DATE type will be lost when
the COM DATE type is mapped to the C/AL
Date type.
S

BSTR (VT_BSTR) Text

VARIANT_BOOL
(VT_BOOL)

Boolean

TypedObject/
UntypedObject
(VT_DISPATCH)

Automation/OCX

VT_EMPTY Text

VARIANT
(VT_VARIANT)

Variant

COM Data Type C/AL Data Type Comment
304

16.2 Using COM Technologies in C/SIDE
If the USERDEF type is an IDispatch, it means that it is an interface (sometimes also
called class or object) with a specific GUID. You will have to use the same object for a
return value or parameter. You do this by creating an Automation variable with the
correct Subtype.

For example, Microsoft Excel has a number of methods that return a WORKBOOK
variable. This means that you must declare a variable of type Automation and subtype
'Microsoft Excel 8.0 Object Library'.Workbook.

If the USERDEF type is an Enumeration, you should know that you cannot use the
symbolic name (for example, xl3DPie) but instead must use the enumerator (for
example, -4102). For Microsoft Office products, you can find this value by using the
VBA Object Browser (see page 318).
305

Chapter 16. Extending C/AL
16.3 USING C/SIDE AS AN AUTOMATION CONTROLLER

The following description outlines the procedures for using an automation server from
C/SIDE. As you will see, there are very few steps required that are specific to C/SIDE
(C/AL). Using an automation server consists of five steps:

1 Declare the creatable (top-level) interface (class) of the automation server as a
variable of type Automation.

2 Declare all the other interfaces (classes) as variables of type Automation.

3 Use the C/AL function CREATE on the variable declared in step 1. Do not use
CREATE on any other variables.

4 Use the methods and properties of the automation server in your C/AL code.

5 You can CLEAR (destroy) the top-level object if you want. Otherwise, it will be
destroyed automatically when the variable goes out of scope.

You will write most of your code during step 4 using the methods and the properties of
the automation server. The syntax and the semantics of these methods and properties
are documented in the documentation for each automation server. Using these
methods and properties in C/AL does not involve any new or changed syntax.

The best way to learn how to use automation is to look at actual solutions. The
following two sections show you how to use Microsoft Word and Microsoft Excel,
respectively.

Writing a Letter In Microsoft Word
In this example, we will:

Implement functionality that writes a letter in Microsoft Word by clicking a menu
item on the customer card. The letter should only be created if the customer has
bought goods for more than LCY 2,500 during the past year. If the customer fulfills
this requirement, the letter offers a 3% discount.

Most of the information we need to transfer to Microsoft Word is in the Customer
table. Here we find the information about the customer that we will use in the
letterhead, such as the name and the address of the customer and the name of the
contact to whom we will address the letter.

The Customer table also contains a FlowField called Sales (LCY). This field contains
the financial information that we need, namely the aggregated sales for the customer.
For the sake of this example (where the emphasis is on using automation), we will
simply use this value as it is. Please note that this is not what you would do in "real
life." You would have to set up an appropriate date filter to get the sales for the past
year only.

We will also need to retrieve information from the Company Information and the
User tables to be used in the letterhead and in the greeting of the letter.
306

16.3 Using C/SIDE as an Automation Controller
We will put all the code in a separate code unit that is called from a menu item on the
customer card for the following reasons:

.
Where to Place Automation Code

There are two major concerns when deciding where to place code that uses
automation. The first is the fact that an object that uses automation can be compiled
only if the automation server is installed on the machine where the compilation takes
place. This means that if an object is to be recompiled and modified on a machine
where the automation server is not installed, you have to modify the code drastically in
order to compile it again. Therefore, it is recommended that you isolate code that uses
automation in separate code units.

The second concern is performance. There is some overhead involved in creating an
automation server (using the CREATE system call). If the automation server is to be
used repetitively, it will give better performance if you arrange your code so that the
server is created only once (as opposed to a series of CREATE/CLEAR calls).

That said, it is obvious that these two concerns will sometimes clash and you will have

.
to make some trade-offs, based on the actual context in which your code will be used.

In this example, we have chosen not to put the automation code on the customer card,
but to isolate it in a separate code unit. The performance in a situation where the user
wants to create letters to a series of customers in one session could have been
improved if we had kept the code on the customer card, thus avoiding having to create
and destroy Microsoft Word for each letter.

There is, however, a simple trick that more or less circumvents this problem: if
Microsoft Word is already open when it is created from C/AL, the running instance can
be reused. This means that the user could either open Microsoft Word "manually" or
just not close it after creating the first letter.

Background Information about Using Microsoft Word for This Example

What we are aiming for here is a way to transfer data about one customer at a time to
Microsoft Word, and the ability to initiate this transfer and the subsequent processing
in Microsoft Word from the customer card.

This approach to mail merge is different from the mail merge you can obtain by using
C/ODBC, which is better suited for bulk processing (creating a large number of
letters).

The chosen approach does, however, force us to use Microsoft Word in a slightly
unorthodox way. We want to have a template with a form letter and to put in
information at predefined places. In short, we need some placeholders. And here is
the catch: without using the regular mail merging facilities of Microsoft Word, there is
no straightforward way to do this.

Instead, we will "abuse" Microsoft Word a little. In the template (the form letter), we will
put in a number of fields (using Insert, Field... in Microsoft Word). Then we edit these
307

Chapter 16. Extending C/AL
fields to contain some convenient mnemonic names that correspond to the names of
the C/SIDE record fields we are going to use.

To make this work, we have to use two extra calls to Microsoft Word from our C/AL
code. Before starting to use the fields, we will call ActiveDocument.Fields.Update.
After we have transferred all our information we will call
ActiveDocument.Fields.Unlink. In this way we can sucessfully use the Microsoft Word
fields for placeholders.

And one more thing, while we can give the fields names like Customer or Address, we
will have to reference them by indexing into the Fields collection of the document. This
makes the C/AL code somewhat harder to understand.

Creating the Code Unit and Declaring Variables

The first step is to create the code unit that calls Microsoft Word. Later, we will add the
functionality that calls this code unit from the customer card.

1 Open the Object Designer, and click Codeunit.

2 Click New to create a new code unit.

3 On the menu bar. click View, Properties. The Properties form appears.

4 In the TableNo field, click the AssistButton p to open the Table List form. Select
the Customer table and click OK:

By setting the TableNo property to the Customer table, we get a very neat
connection between the customer card and this code unit. When we later add the
menu item that calls the code unit to the customer card, the code unit will be called
with the currently selected record of the customer card as its current record. We do
not have to do anything special to coordinate the two.

Declaring the
variables

5 Now we will declare the variables we need. Close the Properties form and click
View, C/AL Globals on the menu bar.

6 First, we will declare the top-level (creatable) class of Microsoft Word. The name of
this class is Application. (You can find information about it in the Microsoft Word
Objects entry of the online Help for Microsoft Word.) We will name this variable
wdApp.
308

16.3 Using C/SIDE as an Automation Controller
Enter wdApp as the name of a new variable, and give it the Automation data type.
When you move into the Subtype field, you will see that there is an AssistButton k
in the field:

7 In the Subtype field, click the AssistButton k and the Automation Object List
form appears:

This is the form where you will select the class of the automation server that this
variable is referring to, but first, you must select an automation server.

8 In the Automation Server field, click the AssistButton p. The Automation Server
List form appears:
309

Chapter 16. Extending C/AL
This is a list of the automation servers that are installed on the machine. Scroll
down to Microsoft Word, and select it:

9 Click OK. When the Automation Server List form has closed, you will see that the
Automation Object List form has been filled in with a list of all the classes in the
Microsoft Word 9.0 Object Library:

10Select Application, and click OK.

Now we have defined the creatable (top-level) class of Microsoft Word as a
variable:
310

16.3 Using C/SIDE as an Automation Controller
11We will need two more classes from Microsoft Word for this example: Document
and Range. Go ahead and declare the variables in the same way as we did for
Application. The C/AL Globals form should look like this when you are done:

12We also need a few other variables: two records that point to the Company
Information and User tables respectively, and a text variable to hold the name of
the template for the Microsoft Word letter we are writing. Setting up these variables
is straightforward. The C/AL Globals form should look like this when you are done:

Note that the length of the TemplateName text variable has been increased to 250
from the default value of 30.

Writing the C/AL Code

Before we start writing the part of the C/AL code that uses automation, we have to do
some initial processing:

Initial processing CALCFIELDS("Sales (LCY)");

IF ("Sales (LCY)" < 2500) THEN

EXIT;

CompanyInfo.FIND;

UserInfo.GET(USERID);
311

Chapter 16. Extending C/AL
We start by calculating the Sales (LCY) FlowField. Then we check if the customer
qualifies for a discount. Finally, we retrieve the information we will need to fill in some
fields in the letter from the Company Info and User tables.

Creating the
automation server

Before we can use Microsoft Word, we have to create it, that is, we have to create an
instance of Microsoft Word. The C/AL function CREATE does exactly this. We call
CREATE like this:

CREATE(wdApp);

Note that CREATE has an optional argument, NewServer, which by default is FALSE.
This means that an already running instance of the automation will be reused. If we
had set NewServer to TRUE, as in CREATE(wdApp, TRUE), we would have
requested a new instance of Microsoft Word. Note that ultimately the automation
server itself can control whether it can be reused or not (see the documentation for the
server in question if this aspect is important for your application.)

Adding a new
document

Now we will add a new document to Microsoft Word using a predesigned template:

TemplateName := 'C:\My Documents\Discount.dot';

wdDoc := wdApp.Documents.Add(TemplateName);

wdApp.ActiveDocument.Fields.Update;

Because the Add method of the Documents collection requires the path of a template
to be passed by reference, we have to set up the TemplateName variable to hold this
information. We will get a compile-time error if we try to put the path into the call as a
literal string. Take a look at the syntax string for the Documents property of wdApp (the
Microsoft Word Application class):

If you press F1 while the Documents property is highlighted, you will see the online
Help of Microsoft Word Visual Basic for the property. By browsing through this Help,
we learn that the Documents property returns a Documents collection representing all
open documents. We also learn that the Documents collection object has an Add
method, and that the Add method has this syntax:

expression.Add(Template, NewTemplate)

where expression is a required argument, and it has to be an expression that returns
a Documents object. Template and NewTemplate are optional arguments. We will use
Template to open a new document based on our form letter template.
312

16.3 Using C/SIDE as an Automation Controller
Now look at the syntax in the C/AL Symbol Menu again. Note that the Documents
property returns an object of type DOCUMENTS, a USERDEF type. It means that the
property returns a Documents class (or IDispatch interface). This information helps the
compiler perform a better compile-time type check.

It also means that the statement:

wdDoc := wdApp.Documents.Add(TemplateName);

succeeds and can pass both compile-time and runtime type checks.

Finally, the Add method returns a Document class. While we did not have to declare a
C/AL variable for the "interim" Documents class, we have declared a variable for this
return value, wdDoc.

The third line (wdApp.ActiveDocument.Fields.Update;) contains a call that is
necessary to make the template work as intended (see Background Information about
Using Microsoft Word for This Example on page 307 for details.)

Transferring data to
Microsoft Word

Now we are ready to transfer the actual data from the Customer record to the
placeholder fields in the Microsoft Word document.

If we set up the third field in the template for the address of the customer, we can
transfer the address like this:

wdRange := wdApp.ActiveDocument.Fields.Item(3).Result;

wdRange.Text := Address;

wdRange.Bold := 0;

Again, we are really tweaking Microsoft Word here. We cannot use the fields directly
as variables (and do an assignment such as ...Fields.Item(3) := Address).
Instead, we use the Result property of the field. This property returns the result of the
field as a range. We place this range in the third automation variable declared,
wdRange.

Then we can set the Text property of the range to the desired value, in this case, the
Address of the customer. Finally, we turn off the bold formatting that the text would
otherwise have by default.

.
Using Default Members

You will notice that the documentation for Microsoft Word Visual Basic uses this
syntax:
wdApp.ActiveDocument.Fields(3).Result

instead of
wdApp.ActiveDocument.Fields.Item(3).Result

in the examples. This is because the Item method is the default member for the Fields
collection. Visual Basic will use this method if the programmer does not provide a
method to be used. C/SIDE, however, does not have this facility, so you must use the

.
Item method explicitly.
313

Chapter 16. Extending C/AL
One thing to remember is that whatever data you are transferring, it has to be in text
format. If it is not, you will get a compile-time error. As you can see in the following
picture, wdRange.Text expects its arguments to be of type BSTR, which maps to
either Text or Code in C/SIDE.

Therefore, any data that is not Text or Code must be converted before it is passed on
to Microsoft Word. For example, we need to transfer the Sales (LCY) field, which is a
Decimal field. Thus, we have to use FORMAT to convert it to Text:

FORMAT("Sales (LCY)",0,'<Sign><Integer><Decimals,3>');

We can transfer data from tables other than the Customer table. These two
statements use some of the information we retrieved from the Company Info and
User tables:

wdRange := wdApp.ActiveDocument.Fields.Item(11).Result;

wdRange.Text := CompanyInfo.Name;

wdRange := wdApp.ActiveDocument.Fields.Item(12).Result;

wdRange.Text := UserInfo.Name;

Finishing the code After transferring the data we need to Microsoft Word, we need two more statements
to finish the processing:

wdApp.Visible := TRUE;

wdApp.ActiveDocument.Fields.Unlink;

The first statement makes Microsoft Word visible (it was not visible before). The
second statement is part of the Microsoft Word tweaking to make fields work as
placeholders.

Save and compile Finally, save and compile the code unit and give it a number and a name. In this
example, we have used the name DiscountLetter.

To-do list Although the code described above will work, you will have to add a few things to
make it a ready for the real world:

· It is not a good idea to use a hard-coded template name. It should be kept in a
table, and the user should select it from a form. You could have different templates
for different kinds of letters to the customer.
314

16.3 Using C/SIDE as an Automation Controller
· You should add some error-handling code. For example, the CREATE call fails if
the user does not have Microsoft Word installed or if the installation has been
corrupted. You should check the return value of CREATE and give an appropriate
message if it fails.

· The user should get a message if the customer does not qualify for the discount. In
the example, the code unit closes without further ado.

Calling the Code Unit from the Customer Card

The final task is to make it possible to call the code unit from the customer card. We
will add a menu item to the Customer menu button.

1 In the Object Designer, click Form.

2 Scroll down to the Customer Card form (Form 21), and select it.

3 Click Design.

4 Right-click the Customer menu button. The context-sensitive menu appears.

5 Click Menu Items in the context-sensitive menu. The context-sensitive will close.

6 Scroll down to the bottom of the list of menu items.

7 Click Separator to insert a separator line.

8 Fill in the Caption field with the text you want to appear in the menu (here, we have
used Word Letter).

9 In the Action field, click the AssistButton f, and select RunObject.

10In the RunObject field, click the AssistButton p and select the code unit you have
created:

11Save and compile the Customer Card.

Graphing With Microsoft Excel
In this example, we will transfer data from the G/L Entry table to Microsoft Excel and
create a graph. The main point of the example is to show how to handle
enumerations.
315

Chapter 16. Extending C/AL
Background Information about This Example

We will create a graph in Microsoft Excel that shows the distribution of personnel
expenses by departments. In the chart of accounts, we can see that Total Personnel
Expenses is the total of accounts 8700 to 8790. In the Departments table, we can
see that there are three departments: ADM, PROD and SALES.

We will create a code unit that retrieves the data from the G/L Entry table, transfers it
to Microsoft Excel and creates a graph. We will run the code unit directly from the
Object Designer, but in a real application you would call it from an appropriate place,
for example, from a menu in the Chart of Accounts window.

Creating the Code Unit: Declaring Variables

The first series of steps involve defining the necessary variables:

1 Open the Object Designer, and click Codeunit.

2 Click New to create a new code unit.

3 On the menu bar, click View, C/AL Globals.

4 Define a Record variable that has the G/L Entry table as Subtype. Here, we have
called it G/L Entry.

5 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Application as Automation Object. Call it xlApp.

6 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Workbook as Automation Object. Call it xlBook

7 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Worksheet as Automation Object. Call it xlSheet.

8 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Chart as Automation Object. Call it xlChart.

9 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Range as Automation Object. Call it xlRange.

After these steps, the C/AL Globals form should look like this:
316

16.3 Using C/SIDE as an Automation Controller
Creating the Code Unit: Initial Steps

The code itself is quite simple. First, we will set the key we need for the G/L Entry
table and then use SETFILTER to select the accounts we are interested in:

"G/L Entry".SETCURRENTKEY("G/L Account No.","Business Unit

Code","Department Code","Project Code","Posting Date");

"G/L Entry".SETFILTER("G/L Account No.",'8700..8790');

Then, we proceed to create Microsoft Excel:

CREATE(xlApp);

Next, we add a new workbook to Microsoft Excel:

xlBook := xlApp.Workbooks.Add(-4167);

xlSheet:= xlApp.ActiveSheet;

xlSheet.Name := 'Personnel Expenses';

In the first line, we use the Add method of the Workbooks collection to return a new
workbook. Then we use the ActiveSheet property of the Application class to make
sure that what we do next will affect the active sheet of the new workbook. In the third
line we give the sheet a name.

Now you are probably wondering what the argument, -4167, to Add is? If we look in
the Microsoft Excel Visual Basic online Help, we can see that the Add method has one
argument, Template. It is of type VARIANT. The description says:

If this argument is a constant, the new workbook contains a single sheet of the
specified type. Can be one of the following: XlWBATemplate constants:
xlWBATChart, xlWBATExcel4IntlMacroSheet, xlWBATExcel4MacroSheet, or
xlWBATWorkSheet.

We want to create a workbook with a single sheet. Judging from the description, we
should give an XlWBATemplate constant with the value xlWBATWorkSheet as the
Template argument.

Nevertheless, we are passing the number -4167. The following paragraphs explain
why.

Enumerations As described on page 304, this particular VARIANT is an enumeration.

There are two types of enumerations: those that are USERDEF types, and those that
are not. This is not a USERDEF type, so it looks like a VARIANT in the C/AL Symbol
Menu. You have to look in the Microsoft Excel Visual Basic Help to figure out that it is
actually an enumeration. The hint is that the arguments can be constants with names
of the form xl* (in Microsoft Word, they would be wd*, and in Microsoft Outlook ol*).

In C/SIDE, you cannot use the symbolic name (xlWBATWorkSheet). You have to use
the enumerator (-4167). But how do you find this value?
317

Chapter 16. Extending C/AL
Finding an
enumerator value

1 Open Microsoft Excel.

2 On the menu bar, click Tools, Macro, Visual Basic Editor.

3 On the menu bar, click View, Object Browser.

4 Select Excel in the list box in the upper left-hand corner of the form.

5 Scroll down in the Classes list (to the left) until you can see XlWBATemplate, and
select it.

6 In the Members of ‘XlWBATemplate’ list to the right, select xlWBATWorkSheet.

7 The value can now be seen in the information pane at the bottom of the form:

Alternatively, you can try this shorter method:

A shortcut to the
enumerator

Create a macro in Microsoft Excel, and call the MsgBox function:

Sub x()

MsgBox (xlWBATWorksheet)

End Sub

When you run the macro, a box will pop up with the value of the enumerator:
318

16.3 Using C/SIDE as an Automation Controller
Creating the Code Unit: Transferring Data

To transfer the data, we need to do two things: calculate the data and transfer the
results of the calculation. To calculate the data, we do the following:

"G/L Entry".SETRANGE("Department Code", 'ADM');

"G/L Entry".CALCSUMS(Amount);

We use SETRANGE to filter the entries in the G/L Entry table on the Department Code
field. The first department is ADM (Administration). Then, we use CALCSUMS(Amount)
to get the sum for the ADM department.

Now we can transfer the data to Microsoft Excel:

xlSheet.Range('A2').Value := 'Administration';

xlSheet.Range('A3').Value := "G/L Entry".Amount;

We repeat this for the other two departments, PROD and SALES:

"G/L Entry".SETRANGE("Department Code", 'PROD');

"G/L Entry".CALCSUMS(Amount);

xlSheet.Range('B2').Value := 'Production';

xlSheet.Range('B3').Value := "G/L Entry".Amount;

"G/L Entry".SETRANGE("Department Code", 'SALES');

"G/L Entry".CALCSUMS(Amount);

xlSheet.Range('C2').Value := 'Sales';

xlSheet.Range('C3').Value := "G/L Entry".Amount;

This is how the data looks once it is transferred to Microsoft Excel:

Creating the Code Unit: Making the Graph

The final step is to create the graph. We will use the ChartWizard method to create a
3D pie chart. This is a fast and simple way to do it. You can more tightly control the
design of the graph by setting it up using the methods and properties of the various
Chart objects (ChartArea, Legend, and so on).

First, we must define a range for the data for the graph:
319

Chapter 16. Extending C/AL
xlRange := xlSheet.Range('A2:C3');

Then, we add a new chart sheet and give it a name:

xlChart := xlBook.Charts.Add;

xlChart.Name := 'Personnel Expenses - Graph';

Finally, this call creates the graph for us:

xlChart.ChartWizard(xlRange,-4102,7,1,1,0,0,'Personnel Expenses');

We use the first eight of the optional arguments of the ChartWizard method:

And, finally, we make Microsoft Excel visible:

xlApp.Visible := TRUE;

Microsoft Excel produces a General Protection Fault error when you close a new
Excel worksheet created while Microsoft Excel is invisible. To solve the problem, you
can make Microsoft Excel visible immediately after you create a new worksheet.
Alternatively, you can make Microsoft Excel visible just before you create a new Excel

Argument Description Value

Source The range that contains the
source data for the new chart

xlRange – the object returned by
xlSheet.Range(‘A2:C3’).

Gallery The chart type -4102 – the enumerator for the xl3DPie
XlChartType enumeration. See Finding an
enumerator value on page 318.

Format The option number for the
built-in autoformats

We found this one by trial and error,
because the Microsoft Excel documentation
does not say much about it.

PlotBy Specifies whether the data
for each series is in rows or
columns

1 – the enumerator for the xlRows XlRowCol
enumerator.

CategoryLabels An integer specifying the
number of rows or columns
within the source range that
contain category labels.

1 – we have one row with category labels
(the department names).

SeriesLabels An integer specifying the
number of rows or columns
within the source range that
contain series labels

0 – we do not have series labels in our data.

HasLegend TRUE to include a legend 2 – for some reason this value works well.
There is a possible error in either Microsoft
Excel or the documentation here.

Title VARIANT with the title of the
chart

We pass a string, ‘Personnel Expenses -
Graph.’ This works well and the runtime
conversion will succeed.
320

16.3 Using C/SIDE as an Automation Controller
worksheet and then make it invisible again immediately after creating the new Excel
worksheet. In this case you would write:

xlApp.Visible := TRUE;

xlBook := xlApp.Workbooks.Open(FileName);

xlApp.Visible := FALSE;

The graph looks like this:
321

Chapter 16. Extending C/AL
16.4 RECEIVING EVENTS IN C/SIDE

C/SIDE can receive events from the components (automation servers and OCXs) that
it controls. When you declare a global variable of the type Automation, you can specify
whether you want to receive events. You do so by setting the WithEvents property for
the variable to Yes. This automatically generates AL triggers for the events that the
component provides. A trigger name consists of the name of the automation variable
followed by "::<Event name>." For example, if you declare an automation variable with
the name MyEventVar, and the component provides the event MessageReceived(...),
the name of the trigger is MyEventVar::MessageReceived(...). For information about
the limitations on event triggers, see page 324.

In the following example, "Receiving Notification of Inbound XML Documents," we
enable C/SIDE to receive events from the Navision Communication Component.

For more information about the Navision Communication Component and the way in
which it handles the exchange of data streams between Navision Application Server
and a bus adapter, see the online Help Development Guide for Communication
Components.

Receiving Notification of Inbound XML Documents
Before reading on, it will be helpful for you to read the example, Writing a Letter In
Microsoft Word on page 306.

In this example, we enable C/SIDE to receive an event – notification of an inbound
XML document. There is also an example of the code that can be executed when
such an event occurs.

Declaring Variables for the External Components

To receive XML documents from a message bus, C/SIDE depends on the existence of
two external components, the Navision Communication Component and a bus
adapter. The first step is therefore to declare variables of the data type Automation for
both components. For each variable, we must also select an automation server and
the class of the automation server that the variable refers to.
322

16.4 Receiving Events in C/SIDE
Setting the WithEvents Property

Now that we have declared variables for the Navision Communication Component
and a bus adapter, we must set the WithEvents property for the Navision
Communication Component to Yes. By doing so, we subscribe to events from this
component. This means that C/SIDE can receive notification of inbound XML
documents.

Setting the WithEvents property to Yes automatically creates a trigger for each event
that the selected subtype of the global variable provides. In the case of the Navision
Communication Component, it creates the following trigger:

Creating the Automation Servers

Before we can use the Navision Communication Component and a bus adapter, we
have to create instances of them. To do this, we use the C/AL function CREATE. We
call CREATE in the following way:

ComCom.Init(Bus) initializes the Navision Communication Component and checks
whether the bus adapter has the correct interface.

Writing Code in the Trigger

By writing code within the MessageReceived trigger, we determine what will happen
when the event occurs. In the following example, the code loads the XML document
into an XML DOM.
323

Chapter 16. Extending C/AL
.
Important

If you delete a global variable to which event triggers are associated, the event
triggers and their code will also be deleted. Furthermore, if you change the DataType

.
or Subtype for a global variable, all the event triggers and their code will be deleted.

Event Triggers
The following information is useful when you have enabled C/SIDE to receive events
from a component that it controls, for example, an automation server. The information
is also relevant for component developers.

There are certain limitations on the triggers that are automatically generated for the
events, which the component provides. Furthermore, incoming data is subject to
certain restrictions.

Limitations

· C/SIDE only supports the default outgoing, that is, source interfaces, which are
defined by the automation variable. If more than one outgoing interface is defined
by the automation server for a coclass, only event triggers for the default outgoing
interface are generated in the AL code.

· There can be a maximum of 39 parameters in function calls.

· There can be a maximum of 1024 characters in prototype text strings for functions.

· The connectable object strategy in COM is used to connect Navision and the
automation server. The Sink object defined in this strategy and implemented in
Navision only supports the IDispatch interface (and IUnknown). It is therefore
expected that the automation server calls on IDispatch when executing events.

· Parameter names will be truncated to a maximum of 30 characters.

· There are no return values on event triggers.

· The variable name along with "::" and the event trigger name will be truncated to a
maximum of 30 characters.

Restrictions on Incoming Data

All received data is copied to an internal data type, which can handle any data type
that COM allows. No data is lost in this conversion and there is no check for valid AL
data types.

The data remains in this internal data type until it is used inside the trigger. When data
is used, it is converted to the necessary AL data type. Note, however, that if the data
type is Variant, no conversion occurs. No data is lost in the conversion and all the
required checks are made. If the conversion is not possible because there is an invalid
data type, or because data is outside range, the event trigger causes an error
message to pop up and terminates execution. Note that if data is never used in the
event trigger, no checks for valid data, data type and data range are performed.
324

16.4 Receiving Events in C/SIDE
If parameter is a VAR parameter (that is, called ByRef) and data is used inside the
event trigger, there will be an implicit conversion just before the event trigger returns.
A check is made of whether conversion is possible. If this is not the case, an error
message is shown and the event trigger terminates.
325

Chapter 16. Extending C/AL
16.5 USING CUSTOM CONTROLS FROM C/SIDE

As mentioned in Terminology and History on page 301, Custom Controls are (or were)
also known as OLE Controls and ActiveX Controls. Because they often have the file
name extension .ocx, they have also been called OCXs.

Terminology in
C/SIDE

In C/SIDE, the term Custom Control is used, for example, in the Tools menu. When
you want to use a control, you define a variable (global or local) of type OCX and
reference the control as the subtype of this variable.

Simple Example
To show you how simple it is to use a custom control (an OCX) in C/SIDE, we will
have a look at the C/OCX Samples product. If you have access to the product, you
can see the code for yourself (both the C++ code for the OCX and the full code for the
C/SIDE sample that uses it). The sample comes with a Help file that contains help for
both the methods and properties for the control and for the sample application.

The sample OCX was made in Microsoft Visual C++ 4.2 (but will compile in Microsoft
Visual C++ 5.0), using the OLE ControlWizard and the ClassWizard. It has a number
of methods for annuity calculations.

Installing and Registering the Control

The first requirement for using a control is that it is physically installed on the target
machine. But a control also has to be registered with the operating system in order to
be used.

If the control has been installed physically by copying it to the hard disk, but has not
yet been registered, you can follow this procedure to register the control from within
C/SIDE:

1 Copy the control from the distribution media to the hard disk. If you have the C/OCX
Samples, there is a readme.txt file with more information.

2 On the menu bar, click Tools, Custom Controls... to open this window:
326

16.5 Using Custom Controls from C/SIDE
3 Click Control, Browse to open the following window:

4 When you have located the control, select it and click Open. This will register the
control with the system. You will receive a confirmation message once the
registration is complete. Click OK to return to the Custom Controls form. You can
verify that the control was added by closing this form and clicking Tools, Custom
Controls... again. The new control will appear in the list (see the top line in the
window below):

Using the Control in C/AL

The control must be declared as a (global or local) variable before you can access its
methods and properties from C/AL. Once you have done this, you can use the
methods and set the properties, and you can see the methods and the properties in
the Symbol Menu. If you press F1 while a method or a property is selected in the
Symbol Menu, you will get context-sensitive Help for this method or property from the
Help file of the control (provided there is a Help file. It is up to the creator of the control
to provide such a file).
327

Chapter 16. Extending C/AL
Declaring the Control as a Variable

Follow these steps to declare the control as a variable:

1 On the menu bar, click View, C/AL Globals to open the following window:

2 Give the variable a name (this example uses Fin), and select OCX as the type. In
the Subtype field, click the AssistButton p to open the following window:

3 Find the control on the list and select it. Then click OK.

If the control you want to use is not on the list, read the section Installing and
Registering the Control on page 326 for a description of how to install and register a
control.
328

16.5 Using Custom Controls from C/SIDE
4 Now the C/AL Globals form should look like the following picture. The CLSID of
the FinSamp control has been entered in the Subtype field:

5 When you move the cursor out of the Subtype field the name of the control
replaces the CLSID (which is rather cryptic):

Accessing the Control

Now you can access the methods and the properties of the control from C/AL. You can
explore these methods and properties in the C/AL Symbol Menu:

1 Click View, C/AL Symbol Menu to open this window:

2 Whenever a method or a property is selected (they are in the column at the right),
you can see a short syntax description at the bottom of the window. If there is a
329

Chapter 16. Extending C/AL
Help file for the control, you can access it by pressing F1 while the method or
property you are interested in is selected. The following picture shows the Help for
the PVAL method:

3 When you click OK or Apply in the C/AL Symbol Menu, a "template" statement with
the method or property is pasted into the C/AL Editor (provided that the editor is
open) at the current insertion point:

Using a Method

Once the control has been installed and registered and you have declared the variable
in the manner described in the preceding sections, using the methods and properties
the control exposes is no different from using a normal C/AL function. The statement
below uses the PVAL method of the FinSamp control:

Amount := Fin.PVAL(Rate,NoOfPeriods,-Payment,0,0);
330

16.5 Using Custom Controls from C/SIDE
The interesting details are:

Fin is the name of the OCX variable and it points to the FinSamp control from the
C/OCX Samples.

You can see in the C/AL Symbol Menu that the PVAL method has this syntax:

[DOUBLE PVAL]:= PVAL(DOUBLE Rate, DOUBLE Nper, DOUBLE Pmt, DOUBLE Fv,

SHORT Type)

The two last arguments (Fv and Type) are both constants with a value of 0 (zero) and
will be passed on to the control with the appropriate types (double and short). Rate,
Nper and Pmt are Rate, NoOfPeriods and Payment, respectively, in C/AL. They are all
of type decimal in C/AL (see Parameters, Return Values and Data Types on page
302). The return value is stored in Amount, a C/AL decimal.

Using Properties

The properties of a control are read and set just as other properties. For example, the
FinSamp control has a boolean property called Error (see the section about
exceptions later in this chapter for more information about the purpose of the
property). The value can be read like this:

Result := Fin.Error

where Result is a Boolean and Fin is the FinSamp control.

The Error property is meant to be read from C/AL, and cannot be set. FinSamp has
another called property called RateGuess that is used for the initial interest rate when
using the iterative IRATE method. RateGuess is set like this:

Fin.RateGuess := 0.07

or

DefaultGuess := 0.07

Fin.RateGuess := DefaultGuess

where DefaultGuess has been declared as a Decimal.

Parameterized
properties

Properties can be parameterized (also known as property arrays). The term property
array describes exactly what this is: a group of related properties can be grouped
together as one property. Each value is then accessible as an element of the array
through subscripting.

Suppose that we are using a control that has been declared as an OCX variable with
the name MyControl. This control has a parameterized property called COLOR of type
short. COLOR has two parameters, both shorts.

If Result has been declared as a C/AL Integer, the value of the property COLOR[2][3]
can retrieved in C/AL by:

Result := MyControl.COLOR(2,3);
331

Chapter 16. Extending C/AL
If NewValue has been declared as a C/AL Integer, the value of the property
COLOR[2][3] can be set by:

NewValue := 4;

MyControl.COLOR(2,3,NewValue);

Handling Exceptions

As mentioned earlier (see page 302), you cannot use the exception-handling
mechanisms that are described in, for example, Inside OLE. The samples in the
C/OCX Samples show how you can handle exceptions in another, just as easy, way
(but only for controls you create yourself).

The control has two properties, Error and ErrorCode, that are used for exception
handling. Every time a method is called, the Error property (a boolean) is used to flag
errors; it is set to TRUE if an error occurred, FALSE otherwise. What constitutes an
error is defined by the methods in the control. In the control in the C/OCX Samples
one error is, for example, that an arithmetic operation caused numeric overflow,
another that an illegal (out of range) value was passed as a parameter.

When an error occurs (and Error is set to TRUE) ErrorCode is set to a numeric code
that can be used by the caller to decide what action to take (for example to display an
appropriate message to the user).

Calls to methods in the control can then be wrapped like this in C/AL:

IF (Fin.Error) THEN

// do error handling, for example:

ErrorHandlerFunction(Fin.ErrorCode)

ELSE

// continue processing
332

16.6 Acquiring Controls
16.6 ACQUIRING CONTROLS

Buy It is possible to buy a third-party control and use it in C/SIDE, provided that the control
fits within the restrictions imposed. These restrictions are described on page 302. In
short, they are:

· Only non-visual controls are supported.

· Events are not supported.

Develop To develop a control yourself, you will need an appropriate tool for doing so. Currently,
the recommended tools are:

· Microsoft Visual C++ 4.0, or later

· Microsoft Visual Basic 5.0

There are other tools on the market capable of creating controls, but the tools
mentioned above have been tested with C/SIDE. Furthermore, they both have highly
efficient wizards that make the process of creating controls much easier (as opposed
to programming by hand on top of the "raw" API).

On the other hand, it should be said that the controls thus created are considerably
larger than controls created more directly, and they will require additional runtime
libraries (for example, controls created with the wizards in Microsoft Visual C++
require the Microsoft Foundation Classes runtime library). For controls that are meant
to be loaded over the Internet, this is a consideration of real importance. For controls
distributed as extensions to C/SIDE, this consideration is probably less important.

If you decide to create controls without using the wizards (in C++), you should study
the recommended books, especially Inside OLE, and the documentation that comes
with Microsoft Visual C++ very carefully before embarking on the project.
333

Chapter 16. Extending C/AL
334

Part 5
Dataports

Chapter 17
Dataports

Dataports are used to export data to external text files, and
to import data from external text files.

· What Are Dataports?

· Designing Dataports

· Exporting Data

· Importing Data

Chapter 17. Dataports
17.1 WHAT ARE DATAPORTS?

Dataports are objects that are used for importing data from and exporting data to
external text files. During importing and exporting there is a wide range of options for
defining the format and layout of the external file.

When importing, you can control what happens if a record in the import file has the
same value in the key as an existing record in the database table. In addition, at field
level, you can control whether or not to run the OnValidate trigger for each field.

Dataports can be dynamic, that is, on execution the dataport determines whether the
process is an import or an export and the name of the file to read from or to be written
to. This is achieved either with options that the user sets in the request form or by
programming.

The following diagram shows the components of the dataport object:

The diagram shows how a dataport is composed of a number of different components.
The following is a short description of each component.

Dataport Description This is the complete description of the dataport: how data is
collected, how data is formatted when written to the output file, and so on. The
dataport description is stored in the database.

Data Item A data item corresponds to a table in the database. To retrieve information
from a table, you define a data item and add dataport fields to it.

Field A dataport field can be a field in a data item, that is a field in a database table,
a field in a file from which data is to be imported, or a source expression to be
executed during import or export. Fields in the external file are defined either as
having a fixed length, or as delimited by certain characters that you define.

Request Form A request form is a form that is run before the actual dataport begins
execution. It is used to gather requests and options from the user of the dataport, for
example, the name of the external file. Note that dataports can be run without user

Dataport Description
Properties
Triggers
Data Items

Properties
Triggers
Fields

Properties
Triggers

Request Form
Properties
Triggers
Controls

Properties
Triggers
338

17.1 What Are Dataports?
interaction and that you cannot run dataports with request forms on Navision
Application Server.

Property A property is an attribute of an object – dataport, data item, field, and so
forth – that characterizes the object in some way. For example, this could be the
length and position of a field in a line (when importing), or whether the OnValidate
trigger for a field should be executed (when inserting imported data in a table).
Properties are set on the Property Sheet of an object.

Trigger Certain predefined events that happen to a dataport cause the system to
execute a user-definable C/AL function – the event triggers the function. As you can
see in the diagram, the dataport itself, the data items, the fields, the request form and
the controls on the request form all have triggers. You can edit triggers in the C/AL
editor.

Logical Design
Designing a dataport involves two distinct tasks: designing the data model and
defining the layout of the external file.

Designing the Data Model

You build the data model by designing data items. A data item corresponds to a table.

Export When exporting data, each data item is iterated for all records in the underlying table,
and you can set up sorting order, keys and table views to use. For each record you
can decide whether or not it should be written to the external file.

Import When importing data, records read from the external file can be inserted into tables
that correspond to data items. You can examine the records before inserting them,
and you can specify whether records should be inserted automatically and whether
records already in the database should be overwritten or updated when a record with
the same primary key is read from the external file (or, of course, whether this record
should be inserted at all).

External file

The layout of the external file is defined by means of a set of dataport properties.
During importing, these properties describe how the input stream should be broken up
into records and fields. During exporting, these properties describe how the fields and
records should be written to the file.

Depending on the file format of the external field, you can set different properties.
339

Chapter 17. Dataports
How a Dataport Is Run
The following flow chart is a simplified version of the full set of dataport flow charts in
Appendix C, Dataport Flow Charts, on page 493.

1 When the user initiates the dataport run, the OnInitDataport trigger is run. This
trigger can be used to initialize variables, but should not be used for general
processing purposes.

2 When the OnInitDataport trigger has been executed, the request form for the
dataport is run, if it is defined. Here, the user can choose to cancel the dataport run.
340

17.1 What Are Dataports?
3 If the user chooses to continue, the dataport enters a transaction (a Begin Write
Transaction (BWT) is issued) and then the OnPreDataport trigger is called. At this
point, no data has yet been processed.

4 The OnPreDataport trigger can be used to process the user input from the request
form.

5 When the OnPreDataport trigger has been executed, the external file is opened,
and the processing of the first data item begins.

6 When the first data item has been processed, the next (if any) data item is
processed in the same way.

7 When there are no more data items, the OnPostDataport trigger is called. You can
use this trigger to do any post processing that is necessary.

8 When the OnPostDataport has been processed, the external file is closed.

9 The transaction that was entered in step 3 ends with an End Write Transaction
(EWT) being issued.

The processing of each data item (steps 5 and 6) is, of course, different for importing
and exporting. For more detailed flow charts, see Appendix C. What is important to
note in the overall chart is that the entire processing of a dataport takes place within a
transaction. This means that if the processing is interrupted at any time before the final
EWT, there will be no trace left of the interrupted run afterwards in the database (an
external file will, however, often have been corrupted.)

Saving, Compiling and Running a Dataport
After you have designed a dataport, you must save and compile it before it can be run.
Normally, you do this when you have finished designing the dataport. However, you
may want to save a dataport that is not yet finished and thus cannot be compiled. You
can also test-compile a dataport without closing or saving it.

Saving and Closing a Dataport

A dataport is closed when the Dataport Designer window is closed. You can close
this window in the same ways that you can close any other window.

.
Note

If you enter ID and Name as dataport properties, these values will be used, and you

.
will not be prompted for ID and Name when you close the dataport.
341

Chapter 17. Dataports
To save a dataport without closing it, follow this procedure:

1 Click File, Save.

2 Assign a name and a unique identifier (ID) to the dataport. The ID must be unique
and follow the rules for numbering objects. For more information about object ID
numbers, contact your NTR.

3 If your dataport is not yet ready to be compiled, click the Compiled field to remove
the check mark.

4 Click OK to save the dataport.

In Step 1, if you click File, Save As, you can rename an existing dataport or you can
copy the dataport by assigning it a new ID number.

Compiling a Dataport

Dataports, like other objects in C/SIDE, must be compiled before they can be run.
Dataports can be compiled in two ways:

· When saving the dataport, as described in the section called "Saving and Closing a
Dataport".

· Without saving the dataport.

The second option is useful when you are designing a dataport, because you can test-
compile the object to find possible errors. To test-compile a dataport during design,
click Tools, Compile, or press F11.

Running a Dataport
In a finished application, your dataports will be incorporated into menus, or they will be
called, for example, from a command button on a form. However, while you are
designing dataports, you will often want to run them before they have been integrated
into an application.

Test-running
dataports

While designing a dataport, you can test-run it by clicking Tools, Run, or by pressing
CTRL+R. The dataport is then compiled and run in its current stage of development. It
will not be saved, which means that you can use this functionality to verify that the
changes you are making work as intended before you save the object.
342

17.1 What Are Dataports?
.
Note

If the dataport is an Import, no records will actually be saved in the database table

.
during a test-run.

Running dataports
from the Object
Designer

You can run a dataport from the list of dataports in the Object Designer by selecting it
and clicking Run.
343

Chapter 17. Dataports
17.2 DESIGNING DATAPORTS

This section provides an overview of the elements of designing dataports. The tables
of properties and triggers summarizes what each property or trigger is used for. Full
(and most up-to-date) explanations are found in the online C/SIDE Reference Guide.

Designing a dataport consists primarily of setting various properties. The following
sections explain which properties to use, and how to use them.

Dataport Properties
This set of properties describes the dataport in general, and this is also where you
specify the format of the external file.

Note that the Import and FileName properties can be set and reset dynamically. For
example, you can create a dataport where the user can select whether to import or
export, or select the name of the external file to read from or write to (or you can
generate a filename automatically once the dataport is run)

Property Meaning

ID ID of the dataport – must be unique among dataports.

Name Name of the dataport.

Caption Caption shown on the request form window. For example, the default
value in English (United States) is the same as the name of the dataport.

CaptionML List of all translations of the object’s caption. For more information, see
Chapter 18 "Multilanguage Functionality".

Import This property determines whether the dataport imports or exports data. It
can be set dynamically in the OnPreDataPort trigger. It cannot be
changed after the OnPreDataPort trigger has been run.

FileName The name of the external file to write data to or read data from. This
property can be set dynamically. If you reset the file name after a file has
been opened, this file is closed and a new file is opened.

FileFormat Determines the format of the external file: Variable, Fixed or UPXML.

FieldStartDelimiter When FileFormat is Variable, this property is used to define the string that
marks the beginning of a field on input or output.

FieldEndDelimiter When FileFormat is Variable, this property is used to define the string that
marks the end of a field on input or output.

FieldSeparator When FileFormat is Variable, this property is used to define the string that
separates fields on input or output.

RecordSeparator This property is used to define the string that separates records on input
or output.

DataItemSeparator This property is used to define the string that separates data items on
input or output.

UseReqForm This property determines whether the request form should be run before
the dataport itself is run.
344

17.2 Designing Dataports
The FieldStartDelimiter and the FieldEndDelimiter properties are used to place the
field contents in quotation marks in situations where the data of a field contains the
character that is defined as a separator (FieldSeparator, RecordSeparator or
DataItemSeparator). These delimiters are not obligatory. This means that if only one
field of a record needs to be placed in quotation marks, only this field has to be
enclosed by the FieldStartDelimiter and FieldEndDelimiter characters. The other fields
can have the delimiters optionally; it will make no difference during importing. During
exporting, all fields are written to the external file with all delimiters and separators.

File Format

The format of the external file is determined by the FileFormat property, which defines
how a record is read from or written to the file in conjunction with two other properties.
The RecordSeparator property defines how the file is broken up into records, and the
FileFormat property then defines how to break each record up into fields. Finally, the
DataItemSeparator property defines how data items should be separated if the
dataport has more than one data item. Note that data items cannot be nested,
although a dataport can have several data items that are processed sequentially.

.
Note

The file format you set for a dataport determines which properties are available for that
dataport. For example, if you set the file format to Variable, the FieldEndDelimiter,
FieldStartDelimiter and FieldSeparator properties become active, and if you set the file

.
format to UPXML, the XMLIncludeTextConst property becomes active.

FileFormat: Fixed When the format of the external file is Fixed, the fields in a record have a fixed width.
You can define the starting position and the width of each field in the record (if the
record separator is a newline character, you can think of a record as a line of text).

ShowStatus This property determines whether a status window will be shown while the
dataport is running. This window also has a Cancel button that makes it
possible to interrupt the dataport run – which is only possible otherwise if
you create a dialog yourself.

XMLIncludeTextConst This property is specific to User Portal and it is only visible when the file
format is set to UPXML. You use this property to include the texts
constants in the exported XML data. The property accepts the values Yes
and No.
If you set the XMLIncludeTextConst property to Yes, all text constants will
be appended to the XML output when data is exported.

TransactionType There are four basic transaction type options: Browse, Snapshot,
UpdateNoLocks and Update. Each transaction type defines the behavior
of a transaction in Navision and takes effect from the beginning of a
transaction.

Permissions The permissions of the dataport to access database objects. (The
dataport can have wider permissions than the individual user, thereby
enabling the user to use dataports that retrieve information from tables
that he or she cannot normally access.)
345

Chapter 17. Dataports
The positions and widths of the fields are properties of the fields and they are
described on page 348.

FileFormat: Variable When the format of the external file is Variable, the fields in a record are delimited by
characters that you define, and the fields can have varying widths. The fields are
separated by the string defined as the FieldSeparator property.

FileFormat: UPXML When the file format of the external file is set to UPXML, the dataport can be used by
User Portal Application Server to import data from User Portal and export data to User
Portal in XML format. When the file format is set to UPXML, a new property is added
to the Dataport Designer: XMLIncludeTextConst.

Data Item Properties
This set of properties describes the data items of the dataport. A data item is a table in
the dataport.

Most of these properties are the same and have the same function as the
corresponding properties of a data item in a report (see Chapter 10, page 173). Four
properties are special for a dataport: XMLDataItemName, AutoSave, AutoUpdate and
AutoReplace.

User Portal
Dataports

The XMLDataItemName property is one of four properties that are activated when the
FileFormat property for the dataport is set to UPXML. The other three are
DataItemIndent, DataItemLinkReference and DataItemLink, which are also used for

Property Meaning

DataItemTable The name of the underlying table. Can be set in the designer when
creating data items.

DataItemVarName The name of the data item as a variable. The default value is the value of
DataItemTable.

DataItemTableView The key, sort order and filters to apply.

ReqFilterHeading Tab caption for this item on the request form. The default value is the value
of DataItemTable.

ReqFilterFields Names of the fields that initially will be included in the ReqFilter form.

CalcFields Names of the fields that will be calculated after a record has been
retrieved.

AutoSave This property determines whether records that are imported will be
automatically inserted in a C/SIDE table.

AutoUpdate This property determines whether records that are imported will be
initialized with values from an existing record with the same primary key.

AutoReplace This property determines whether records that are imported will
automatically replace existing records with the same primary key.

XMLDataItemName This property to set the name for a data item that will be used in the XML
data generated by a User Portal dataport. An underscore character (_)
replaces special characters not supported by XML.
346

17.2 Designing Dataports
reports as described on page 176. These four properties are only used for User Portal
dataports.

.
Note

You can only indent data items in dataports where the FileFormat property is set to

.
UPXML. All other dataports cannot be compiled with indented data items.

AutoUpdate, AutoReplace, AutoSave

The three Auto* properties determine how records that are read from the external file
are handled. They are also used to resolve the conflict that arises when a record that
has been read from the external file during importing has the same primary key as a
record that already exists in the database table.

AutoSave and AutoReplace are used to define how records are saved in the database
table. Note that if AutoSave is No, the settings of AutoReplace and AutoUpdate have
no effect. In this case, you have to handle any conflicts from your C/AL code. The
following table outlines the effects of various combinations of settings of these
properties:

--- MEANS THAT THE SETTING DOES NOT MATTER.
* IF AUTOSAVE IS NO, IT IS POSSIBLE TO INSERT AND MODIFY RECORDS BY USING INSERT OR MODIFY
FROM C/AL.

AutoUpdate is useful in some particular situations. Its functionality is best explained by
a brief example:

Suppose you have a table that is an item list. You update the prices by exporting a list
with item numbers (the primary key) and prices to an external file and then you do
some calculations on the prices in a spreadsheet. Now, when the prices are calculated
and you are ready to import the file with the new prices, it is obvious that the records
read from the external file will have the same primary key as records that are already
in the database. Using AutoSave and AutoReplace will not solve the problem. If you

Auto
Save

Auto
Update

Auto
Replace

Record exists in database
and in import file

Record exists only in
import file

No* --- --- The record in the database is
not automatically updated or
replaced

The import record is not
automatically inserted in the
database

Yes No No A runtime error will be
provoked, and the import is
terminated

The import record is
automatically inserted in the
database

Yes No Yes The import record will replace
the existing record

The import record is
automatically inserted in the
database

Yes Yes --- The import record will update
the existing record in the
database

The import record is
automatically inserted in the
database
347

Chapter 17. Dataports
are replacing every record with the corresponding record from the import file, all the
information except the item numbers and the prices will be lost (it is assumed that the
table contains information other than the item numbers and the prices, for example
names of the items, stock level, and so forth).

AutoUpdate solves this dilemma. When a record is imported, it actually replaces the
existing record, but fields that are not present in the imported record are initialized with
the data from the already existing record instead of being left empty. The existing
record is updated with the information that was revised.

Field Properties
This set of properties describes the fields of a record. If FileFormat is Fixed, you use
the StartPos and Width properties of each field to define how a record that is read
from the external file is to be broken into fields. During exporting, these properties
determine how data from the database is written to the external file.

When fields are exported, the data is converted to text before the export. If the format
is Fixed and the Width property is set to a value smaller than the actual width of the
data after conversion, the contents will be truncated from the right until it has the

Property Meaning

Enabled Determines whether the field is enabled or disabled. A field that is disabled
is imported from the external file, but will not be inserted into the record.

SourceExpr The source expression of the field. For an import, this could be the name of
the database table field where the value that is read from the external
should be stored, but it can be any valid C/AL variable. For an export, this
could be the value that is exported to the external file – for example the
name of a database table field, but it can be any valid C/AL expression.

XMLFieldName Contains the name of a field that will be used in the XML data generated by
a User Portal dataport. An underscore character (_) replaces special
characters not supported by XML.
The default value of this property is the value of the SourceExpr property.

Caption Caption in the currently selected language. The value is taken from the
CaptionML property if this property is set. For example, the default value in
English (United States) is the same as the name of the field.

CaptionML List of all translations of the field’s caption. For more information, see
Chapter 18 "Multilanguage Functionality".

StartPos If FileFormat is Fixed, this is the starting position of this field. Positions are
numbered from 1 upwards.

Width If FileFormat is Fixed, this field contains the width of the field.

CallFieldValidate Determines whether the OnValidate trigger will be executed when the field
is imported.

Format Describes how the field will be formatted during exporting. For example,
you can determine the number of decimal places, and so forth.
348

17.2 Designing Dataports
defined Width. That is, a number is not rounded or truncated as a number, but as text,
from the right.

You will get a warning at design-time if you have defined fields with starting positions
and widths that could cause these fields to overlap. The error will make it impossible
to compile (and thus to execute) the dataport.

When you are importing data, a value that is too large for the data type or defined
width of the database table field where it is to be inserted will cause an error and
execution will stop. As the whole dataport is inside a transaction, no traces will be left
of the aborted run in the database.

Dataport Triggers
The following is a list of all triggers that are executed when a dataport is run. The
descriptions provide an overview only. The online C/SIDE Reference Guide contains
the full and most recent descriptions.

Dataport Trigger Name Executed

OnInitDataPort When the dataport is loaded, and before the request form is run
and table views and filters are set.

OnPreDataPort Before the dataport is run – but after the request form has been
run. Table views and filters are set when this trigger is run.

OnPostDataPort After all data items have been processed.

OnPreDataItem Before the data item is processed – but after the associated
variable has been initialized and table views and filters set.

OnBeforeExportRecord When a record has been retrieved and is ready for export.

OnAfterExportRecord After a record has been exported to the external file. You can use
this trigger, for example, to do some processing on the external file
before the next record is exported, such as moving the file pointer.

OnBeforeImportRecord Before a record is imported from the external file. You can use this
trigger, for example, to do some processing on the external file
before importing the next record, such as moving the file pointer.

OnAfterImportRecord After a record has been imported from the external file, but before it
is inserted in the table. You can use this trigger, for example, to
process the record before inserting it or to examine it in order to
decide whether to insert it at all.

OnPostDataItem When the data item has been iterated for the last time.

OnAfterFormatField After the value of a field has been formatted, but before the text is
written to the external file. This trigger gives you access to the
formatted value in its text format.

OnBeforeEvaluateField After a field has been read from the external file, but before the
value has been evaluated and validated. This trigger gives you
access to the imported field in text format.
349

Chapter 17. Dataports
17.3 EXPORTING DATA

This section tells you how to create dataports for exporting data using each of the two
basic formats for the external file: fixed and variable format. For examples of using the
UPXML file format, see the training manual User Portal Developer’s Guide. In the next
section, the last example tells you how to create a dataport that both exports and
imports, and updates records in the database when importing.

Exporting - Fixed Format
This sample dataport will export records to a file in fixed format. The records in the file
will be separated by newlines, and within each record (line, in effect), a field will have
the same width in all records, no matter how wide the actual data of the field is.

The database table that will be used as an example is the G/L Account table (the
chart of accounts). This table contains several FlowFields, which have to be
calculated when exporting.

Simple Version

The first version is very basic. It will be extended to a more refined object in the next
subsection.

To create a dataport, follow this procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Dataport.

3 Click New. The Dataport Designer window appears:

4 In the Dataport Designer window, in the first DataItem field, click the AssistButton
p and select the G/L Account table from the Table List form that appears. The
program automatically fills in the Name field with the name of the table. In this
dataport, this default value is acceptable.

5 Click an empty line in the Dataport Designer to select the object and press
SHIFT+F4 to open the Property Sheet for the dataport (not for the data item). To
select the object rather than a data item, click an empty line or click Edit, Select
Object.
350

17.3 Exporting Data
You can also open the Property Sheet by clicking View, Properties.

6 Leave the default settings except for the following two properties:
Import – set it to No to create a dataport that exports data.
FileFormat – set it to Fixed.

We have created a dataport with a single data item and must now specify which fields
from the underlying table will be used in the dataport.

Adding Dataport
Fields

To add dataport fields to a dataport, follow this procedure:

1 In the Dataport Designer, click the G/L Account data item to select it.

2 Click View, Dataport Fields.

3 When the Field Designer is open, click View, Field Menu.

4 Now, select the fields to be exported, for example the No., Name, Balance at Date
and Net Change fields. You may have to scroll the Field Menu to select these
fields, depending on how the Field Menu window is currently sized.

5 Click the Field Designer. You will be asked if you want to append the selected fields.
Click Yes.
351

Chapter 17. Dataports
6 Go to the Property Sheet of the G/L Account data item.

7 In the CalcFields property, click the AssistButton to open the Field List.

8 In the Field List window, select those fields from the data item that must be
calculated when they are exported, that is, the FlowFields. In this case, it is the
Balance at Date and Net Change fields. Click OK to close the Field List window.

You can now run the dataport. You can run it before saving it by clicking File, Run. If
you want to save the dataport first, you will be prompted for a name and a number as
with other objects. For more information about saving dataports, see page 341.

StartPos and Width
Properties

When the dataport fields have been inserted from the Field Menu, you can check the
settings of the StartPos and Width properties of all the fields in the Field Designer
window.

To open the Field Designer window, click View, Dataport Fields. In this example, the
following window appears:
352

17.3 Exporting Data
As you can see, both the StartPos and the Width properties have been filled in for you.
They are assigned values according to these rules:

Running the
Dataport

When you run the dataport, you will see the default request form. The first tab, G/L
Account, is of little interest, but the second one, Options, is important. Here you can
state the name of the external file to write to.

When you have stated the name of the file, click OK to run the dataport. The default
status window will show you the progress. When the run is over, you can look at the
file in a text editor:

Refined Version

The simple dataport is based on default values, but depending on what the dataport is
to be used for, several things can be changed to make it easier to use. The following
are examples of what you can do:

· The first tab in the request form should not be shown, as we do not want the user to
set filters and keys.

· Only accounts where the Account Type field is set to Posting or End-Total should
be exported.

Datatype of field Width assigned

Code If actual length > 10, actual length is used, otherwise 10

Text If actual length > 30, actual length is used, otherwise 30

Date 11

Time 10

Option 10

Decimal 12

Integer 7

Boolean 10
353

Chapter 17. Dataports
· The numbers must be formatted as thousands. There must be no thousand
separators, no decimals, and the sign should be prefixed.

Changing the
Request Form

You must not set the UseReqForm property to No in order to remove the request form.
Doing so will make it impossible for the user to set the name of the file to write the data
to. In fact, since no filename has been set, the dataport will provoke a runtime error.

Instead, you can keep the Options tab and remove the data item tab by setting a
DataItemTableView for the data item. When this property is set, as opposed to being
left undefined, the user cannot change key or sort order and cannot set a table filter,
and the corresponding tab will be removed by the system.

1 In the Dataport Designer, select the data item G/L Account and open the Property
Sheet.

2 In the DataItemTableView property, click the AssistButton to open the Table View
window:

3 Fill in at least one of the fields. In the picture above, the Key field and the Order
field have been modified.

Selecting Specific
Account Types

To select only some account types, you must set a table filter. You can do this in the
DataItemTableView property. Continue from step 3 above:

4 In the Table Filter field, click the AssistButton to open the following window:

5 Set the values of Field, Type and Value as shown in the preceding picture. This
creates a table filter that will select records where the account type is Posting or
End-Total (the character between the two values is a | (pipe) which means OR.)

6 Click OK to close the Table Filter and Table View windows.
354

17.3 Exporting Data
Changing the
Formatting of
Numbers

To export the decimal fields, Balance at Date and Net Change as thousands (so that
the number 1.444.723,67 is exported as 1444), you have to use the SourceExpr
property of these fields:

7 Go to the Property Sheet of both the Balance at Date and Net Change fields.

8 Enter this expression as the SourceExpr property of the first field:

FORMAT(ROUND("Balance at Date"/1000,1,'='),0,1)

In the C/AL statement, the value of the Balance at Date field is first divided by
1000. The result is rounded by the ROUND function, and then FORMAT is used to
render the return value from ROUND in format 1 (which for a decimal value means
<Sign><Integer><Decimals>).

9 Enter this expression as the SourceExpr of the second field:

FORMAT(ROUND("Net Change"/1000,1,'='),0,1)

The file that is created by this dataport could look as follows when it is imported into
a spreadsheet:

Exporting - Variable Format
This sample dataport will export the same records as in the previous example, but in a
variable format. Each field in a record will be delimited by characters that you define
and will only have the width of the actual data of the field in each of the records.

To create the dataport with variable file format, follow the procedure described in the
section called "Exporting - Fixed Format" on page 350 with the following exceptions in
the dataport properties:
355

Chapter 17. Dataports
The FileFormat property is set to Variable, and the FieldSeparator property is set to ;
(semicolon). The FieldStartDelimiter and FieldEndDelimiter properties are both set to
<None>. The RecordSeparator and the DataItemSeparator properties have been left
at their default settings, which means that records will be separated by newlines, and
data items by two newlines (which is not of real interest here, because we have only
one data item in this dataport.)

The exported file could look as follows in a text editor:

The semicolon was used as FieldSeparator because the fields include both space
characters and commas. Another solution would have been to use the delimiters. In
that case, the FieldSeparator could also have been a comma, but what you choose
should really depend upon the target application for the exported file, and upon the
formats that the application supports when it imports text files.
356

17.4 Importing Data
17.4 IMPORTING DATA

This section describes how to create dataports for importing data using each of the
two formats for the external file: fixed and variable format. The last example tells you
how to create a dataport that both exports and imports, and updates records in the
database when importing.

Importing - Fixed Format
Creating a dataport that imports data is not very different from creating one that
exports data. You must, however, take into consideration how the imported records
should be inserted in the database table that lies under the data item. This is
especially relevant if the table already contains records with the same primary key as
some of the records to be imported will have.

This first example assumes that the table is empty (or that other actions have been
taken to ensure that no conflicts will occur). A later example will show you how to deal
with conflicts during import.

The file that we are going to import records from looks as follows in an editor:

Setting Up the Table In this case, we will import the records into a newly created table. The table has the
following layout:

This means that we must decide how the lines in the import file – each line will
become a record in the data item – will be broken down into fields. The lines have a
357

Chapter 17. Dataports
fixed format, and by carefully looking at the layout of the lines, these field starting
positions displayed in the bottom line can be deduced:

:

This tells us that the fields must have the following properties:

Once it has been established how the lines in the import file are organized, creating
the dataport is straightforward:

1 Create a dataport as described earlier.

2 Set the Import property to Yes and the FileFormat property to Fixed.

3 Create a data item based on the table shown on page 357.

4 Add all the fields from the table to the dataport by using the Field Designer and the
Field Menu as described earlier.

At this point, the fields will be set up with sizes (and corresponding starting
positions), as deduced from the table design. It will look like this:

Field StartPos Width

No. 1 3

Name 4 11

Price 15 6

First field
Second field

Third field
358

17.4 Importing Data
5 Change the setting of the StartPos and Width fields to the values that are
appropriate for the actual file you are going to import data from. In this example, the
values should be set as follows (as described earlier):

6 Run the dataport.

Remember that if you run it from inside the Dataport Designer (by clicking File,
Run), the records will not be stored in the database; to have them stored, you must
run the dataport from the Object Designer, or call it from a menu.

You may also want to remove the unnecessary tabs from the request form (see the
description on page 354).

After running the dataport so that records actually are imported into the database, the
table will look like this:

Note that because Field No. is the primary key of the table, the records are displayed
in an order determined by this field, which, incidentally, is not the same order as they
appeared in the import file.

Possible Errors It is easy to make errors when deciding how to "cut up" the lines in the import file. In
some cases, this will give a runtime error when the dataport is run. Consider, for
example, if we made an error in setting up the Field No. field so that it had been
assigned a width that is one character too wide. For most of the import file, this would
make no difference at all; the resulting trailing space would be ignored. But the line
beginning with "112Oven..." would provoke a runtime error when C/SIDE read 112O
instead of 112. The "O" (upper case "o") cannot be inserted into an integer field.
359

Chapter 17. Dataports
You might consider it fortunate that the error actually provoked a runtime error. In
other cases, the error might not have been detected by C/SIDE, for example, if the
"cut" between two text fields was placed incorrectly. If you have the opportunity, test
your imports carefully before using them for production.

.
Hint

In some cases, the order of the fields you want in your table does not correspond to
the order of the fields in the import file. If this is the case, you can just design the data
item to reflect the order that you need, by adding the fields individually. You will have

.
to set the StartPos and Width manually.

Importing - Variable Format
Changing the importing dataport to deal with an external file in variable format is not
very difficult. Suppose the file looks like this:

The data is exactly the same as in the file with fixed format that we imported from
above, but here the fields are separated by commas. The only differences in creating
the dataport are:

1 Set the FileFormat property to Variable.

2 Set the FieldSeparator property to a comma.

3 Set the delimiters to <None>.

The properties of the dataport will look like this when you have finished:
360

17.4 Importing Data
These are the only differences between the fixed format dataport and variable format
dataport. The result of running this dataport will be the same as running the dataport
with a fixed format.

Hint If the order of the fields in the import file is different from the order of the fields in the
data item, you cannot use the same method to move the fields around as you would if
the file had a fixed format. Instead, you can change the order of the fields in the Field
Designer.

Suppose the import file had the following format instead:

Suppose the table has the following layout (same as before):

In this case, you can add the fields in the Field Designer in the order in which they
appear in the import file:

Note that because the fields have been added one-by-one from the Field Menu
(instead of all-at-once), StartPos and Width have not been calculated by the
361

Chapter 17. Dataports
designer. It does not matter, however, because these properties are not used in a
dataport with a variable format.

Importing or Exporting: A Dynamic Dataport
The final example is more advanced than the previous ones. We will create a dataport
than can be used to update prices in the Item table in an external program , Microsoft
Excel.

The dataport works as follows:

1 The user will be able to select whether to import or export from the request form,
and to set a filename.

2 When exporting, only records where the Gen. Prod. Posting Group is RETAIL will
be exported.

3 Only a subset of the fields will be exported – No., Description and Unit Price.

4 In addition, the text field (Description field) that corresponds to the Tariff No. field
will be retrieved from the Tariff Number table for each record in the Item data item.
The text will be written as a fourth field when each record is exported.

5 The user is supposed to change the Unit Price field in the external program – or is
at least able to do it. Therefore, we already know that this field in the external file
may be different from that in the database. This means that we want the Unit Price
fields from the external file to replace the values in the database when we import
the file again. That is, we want the records in the database to be updated when we
import the file.

Creating the Export Part

We will start by creating the export part of the dataport. The first task is to determine
what the format of the external file should be? We are going to edit the file in Microsoft
Excel, so we will select a format that suits that program well. A comma-delimited
format appears to be the best choice.

With this knowledge, we can start creating the dataport:

1 Create a new dataport as described above.

2 Set the properties of the dataport as follows:

Leave the other properties at their default settings.

Property Value

FileFormat Variable

FieldStartDelimiter " (quote)

FieldEndDelimiter " (quote)

FieldSeparator , (comma)
362

17.4 Importing Data
3 Create a data item based on the Item table.

4 Set the DataItemTableView property of the data item as follows. Do not use Table
Filter to select records even if we are going to select a subset of the records in the
Item table. The reason will become evident later.

5 Create a global variable of type Record, with the Tariff Number table as the
subtype.

6 Now, set up the dataport fields as follows:

7 To select those records where Gen. Prod. Posting Group is RETAIL, open the
C/AL editor, and enter these lines in the OnPreDataItem trigger:

IF NOT CurrDataport.IMPORT THEN

__Item.SETRANGE("Gen. Prod. Posting Group",'RETAIL');

About Filters The filter is set only if the dataport is used to export (remember that the user can
decide whether to import or export at runtime). The reason for using this
construction instead of setting a TableFilter in DataItemTableView is that we are
putting the filter on a field that we are not exporting. If we had used TableFilter the
filter would always be set, also during import. As the field is not in the import file, no
records will be selected for import. If the field had been exported and imported, you
could of course have used TableFilter instead.

8 To retrieve the text from the Tariff Number table and to export it, enter the following
in the OnBeforeExportRecord trigger of the data item:

IF "Tariff No." <> '' THEN

BEGIN

__"Tariff Number"."No." := "Tariff No.";

__"Tariff Number".FIND;

END
363

Chapter 17. Dataports
ELSE

__"Tariff Number".Description := 'NO TARIFF NUMBER';

This is sufficient for creating the part of the dataport that exports the records. Let’s try
it out. When it is run, the user will see a request form, and can fill it out as follows:

When you click OK, the dataport will run and the records that match the criteria we
have set up will be written to a file called prices.csv. It could look as follows in a text
editor:
364

17.4 Importing Data
This file can then be opened and processed in (for example) Microsoft Excel. We have
done that, and saved the result as a new comma separated file called newprices.csv
that looks as follows:

As you can see, some prices have been changed and some have not. Now, we will
create the part of the dataport that can import these new prices.

Creating the Import Part

This part is very easy to create. The user decides when the dataport is run whether it
should export or import, and can also select the file that it should write to or read from.

To specify that the records that are imported must update the existing records with the
new prices, do the following:

1 Set the AutoSave property of the data item to Yes.

2 Set the AutoUpdate property of the data item to Yes.

The net effect of these settings is to update the existing records with the data that is
different in the imported records, in this case, the Unit Price.

Before the dataport is used to import the converted data, the records look this:
365

Chapter 17. Dataports
To use the dataport to import data, fill out the request form as follows:

Remember that the records are not actually imported if you run the dataport from
inside the Dataport Designer. You must run it from, for example, the Object Designer.

After the records have been imported, the records in the Item table look like this:

Further Work

As it is now, this dataport has some drawbacks. For example, the Unit Price is used
to calculate the Profit % field in the Item table when the Unit Price field is validated.
We have not used the CallFieldValidate property to force that evaluation, but have
left it at the default setting of No.

Getting the validation to work as intended is not so easy, because the code that is
triggered uses values from other fields, fields that are not part of this dataport. At the
time of the validation, these fields do not have values because the updating takes
place later. One way to solve this problem could be to export all fields, after all (thus
making the field more difficult to handle in Excel). This problem shows that you have
to give careful consideration to interdependent data when you update a table from a
dataport. The solution to the problem will, however, be different for each table and for
each set of fields that are imported.
366

Part 6
Multilanguage Functionality

Chapter 18
Multilanguage Functionality

This chapter explains certain aspects of the multilanguage
functionality of Navision.

The chapter contains information about the following
subjects:

· Multilanguage Functionality

· Developing Multilanguage-Enabled Applications

· Learning the Code Base Language

· Number Ranges for Text Constants

Chapter 18. Multilanguage Functionality
18.1 MULTILANGUAGE FUNCTIONALITY

Everything to do with multilanguage functionality in C/SIDE in Navision runs
automatically. Note that in order to avail of this multilanguage functionality, you must
upgrade your application to the multilanguage-enabled Navision. For more
information, see the manual Upgrade Toolkit on the Navision product CD.

Defining the Current Application Language
C/SIDE executes the ApplicationLanguage function (trigger) on Codeunit 1 to
determine the current language of the application. This trigger must return an integer
(language ID). The trigger is not allowed to access the database. If the trigger does
not contain a language code, C/SIDE reads the value from the fin.stx file, which
contains general texts used by C/SIDE.

An algorithm has been built into C/SIDE to handle the hierarchy of languages that are
available. This algorithm defines which language to show if one or more text strings
are missing from the current application language. For more information, see the
section "Displaying Text" on page 374.

For more information about language ID, see the section "The Windows Language
Virtual Table" starting on page 372.

Selecting a Language from the User Interface
In a multilanguage-enabled database, if the user click Tools, Language, the code
generated by the SetGlobalLanguage trigger opens Form 534. In this Application
Languages window, users can select the language in which captions in windows, on
command buttons, and so on are displayed.

Text Constants
The C/AL Globals and C/AL Locals windows have a Text Constants tab with a
hidden column, ConstValueML, which displays all the languages for a text constant.

Text constants replace the use of hardcoded language dependent text strings.
370

18.1 Multilanguage Functionality
For more information about the multilanguage use of text constants, see page 376,
and for more information about creating text constants, see the section called
"Defining Variables, Text Constants and Functions in Codeunits" on page 221.

Language Modules
A language module contains the same information as the Translate Import/Export data
files. However, a language module contains text for only one language layer.
Language modules are binary files that you cannot modify with external tools.

You can import a language module by clicking Tools, Language Module, Import, and
you can export one by clicking Tools, Language Module, Export.

Installing *.STX, *.ETX, *.CHM and *.HH files for Multilanguage
You must install the *.stx, *.etx, *.chm and *.hh files for each language that the
users will have access to in subdirectories. The name of a subdirectory must be the
three-letter language code (Abbreviated Name) used by Windows for the particular
language. For more information, see the section called "The Windows Language
Virtual Table" on page 372.

If you create a subdirectory for a language and then install the *.stx, *.etx, *.chm
and *.hh files while Navision is running, the language will not be available until you
restart the program.

Adding a Language Layer
To let the user select a certain language from the Tools menu, that language must be
represented as a granule in the license file.

The application must also be translated to that language, so that you can import it into
the database using the Translate, Import item on the Tools menu. You can either
export all text strings and translate them in a translation tool, such as the Navision
Localization Workbench, or you can enter the translation of the text strings directly to
the Multilanguage Editor.

You access the Multilanguage Editor window by opening an object from the Object
Designer, opening the Properties window and clicking the AssistButton in the
CaptionML property. In the Multilanguage Editor window, you can click the
AssistButton in the Language column and choose your language from the list that is
shown. You can also simply enter the three-letter code and move the cursor to the
Value field. The system then replaces the abbreviation with the full language
description. In the Value field, enter the correct term for this object in this language. To
save your entry, you must click OK when leaving the window.

In order for the new language layer to work with the application, you must place the
relevant fin.stx file in the subdirectory for that language.
371

Chapter 18. Multilanguage Functionality
In other words, to allow the user to select a specific language from the Tools menu,
the following must be true:

· The application must have the correctly named subfolder.

· The subfolder must contain the correct fin.stx file.

· The text strings in the database are marked with the correct language ID.

· The license file contains the correct granule.

The Language Subfolder

Each language that the user will have access to must be represented by a subfolder in
the Navision directory structure.

Each language subfolder must contain the following:

· fin.stx file

· fin.etx file

· online Help files (*.chm and *.hh).

.
Note

If you are installing a Swiss add-on to the application, and there is online Help for the
add-on in German (Swiss) only, it must be installed in the DES subfolder. All Help files,

.
such as *.hh, *.chm and*.hlp files, are placed in language-specific subfolders.

Deleting a Language Layer

Once a language has been introduced to a database, there is only one way to delete it
again.

Click Tools, Language Module, Export. Select the language that will no longer be used
in this database, place a check mark in the Delete language field and click OK.

The Windows Language Virtual Table
The virtual, read-only Windows Language table displays the languages that
Windows supports. You can view its contents by designing a tabular-type form based
on the table.

The Windows Language virtual table contains the following fields:

Field Name Description

Language ID This field is the primary key. It displays the standard Windows
language ID for a specific language.

C/AL supports the setting of language using the
GLOBALLANGUAGE, WINDOWSLANGUAGE and object.
LANGUAGE properties. The values of these properties are taken
from this field.
372

18.1 Multilanguage Functionality
Tab Controls
If you create a tab control without setting the PageNames property, C/SIDE will use
the names 0, 1, 2, and so on as names for pages containing visible controls. Pages
that do not contain controls or that do not contain visible controls are not displayed.

Maintaining SQL Views
In the SQL Server Option for Navision, you can set the option Maintain SQL Views.
This setting determines whether SQL Server will create and maintain a view for each
language ID that is added to a table or field in Navision.

If you select this option, external tools are able to use the views to gain access to the
Caption ML property of the object in the required languages rather than the name

Primary Language ID Windows languages are grouped. A group consists of a primary
language and zero or more secondary languages. The Primary
Language ID field contains the Windows Ianguage ID of the
primary language.

Name This field contains the standard Windows name for the language.

Abbreviated Name This field is a secondary key. It contains the standard Windows
three-letter code for the language.

Enabled A check mark indicates that the language is either globally
enabled, form enabled, report enabled or dataport enabled. Your
license file determines how a specific language can be used.

Globally Enabled A check mark indicates that the license file allows you to set the
language in question as the global language for the whole
application.

Form Enabled A check mark indicates that the license file allows forms to be
shown in a language other than the global language.

Report Enabled A check mark indicates that the license file allows reports to be
printed in a language other than the global language.

Dataport Enabled A check mark indicates that the license file allows dataports to be
shown in a language other than the global language.

Primary Code Page The code page for a language defines the character set available
for that language. If you mix text by using multiple code pages, you
may not obtain the expected result.

STX File A check mark indicates that an *.stx file is installed for the
language in question. An *.stx file contains general texts used
by C/SIDE, for example, menu labels and system table names.

ETX File A check mark indicates that an *.etx file is installed for the
language in question. An *.etx file contains error messages.

Help File A check mark indicates that an *.hlp or a *.chm file is installed
for the language in question.

Field Name Description
373

Chapter 18. Multilanguage Functionality
supplied in the table. For more information, see the section "Accessing Navision
Tables with External Tools" on page 36.

C/ODBC
C/ODBC is multilanguage enabled. A C/ODBC user can retrieve the application data
from Navision in different languages independent of the current Navision application
language.

C/ODBC covers the following multilanguage features:

· Table name

· Field name

· OptionString value

· Date Formula

For more information, see the manual C/ODBC Guide.

Displaying Text
Whenever C/SIDE needs to display a text, it searches in the current language. If
C/SIDE cannot find the text, it searches for the text in another language.

If, for example, the user wants to use German (Swiss) and the user wants to see a
form that contains strings that do not exist with the language ID for German (Swiss),
the algorithm will tell the system to look for a string with the language ID for German
(Standard). This is because German (Standard) is the primary language for German
(Swiss).

The algorithm telling C/SIDE how to search for the right text uses the following order:

1 The object language

2 The primary language of the object language

3 The global language selected by the user

4 The primary language of the global language selected by the user

5 The application language

6 The primary language of the application language

Multiple Document Languages
You could run multiple document languages before you had a multilanguage-enabled
database. But the multiple document languages functionality benefits from
multilanguage because you will get the languages automatically.

If the user has documents that he wants to be printed in the language of the recipient
rather than in his own working language, you may add a single line of code in the
374

18.1 Multilanguage Functionality
document to handle this. This functionality is already enabled for most printing reports
in the standard Navision database. Then the document is printed in the language that
is specified in the Language Code field in the Customer Card window.

In reports that need the multiple document languages functionality, you must insert the
following C/AL line as the first line in OnAfterGet Record():

CurrReport.LANGUAGE := Language.GetLanguageID("Language Code")

Secondly, for each of these reports, you must create a new variable, Language, with
the data type Record pointing to the Language table (table 8).

When you have compiled the object, it will no longer print in the user’s working
application language if another language has been specified in the Customer Card
window.
375

Chapter 18. Multilanguage Functionality
18.2 DEVELOPING MULTILANGUAGE-ENABLED APPLICATIONS

When you develop in a multilanguage-enabled environment, it is important to
remember the following three rules of thumb:

· Everything has a Name property in English (United States).

· Text constants replace text strings such as error messages.

· Everything that the user will see must have a Caption property.

Before you start working in a multilanguage-enabled database, you should set the
application language as English (United States). You do this by clicking Tools,
Languages and selecting English (United States).

Name Property
In Navision, the code base is English (United States). This means that the Name
property of, for example, an object must always be English (United States).

The code base in English (United States) includes, among other things, the following:

· Object names

· Field names

· Function and variable names

· Comments

· Option strings

· Control names

Text Constants
Error messages and other text strings must be entered as text constants so that they
can be easily translated.

Text constants will automatically be assigned unique IDs by C/SIDE. You can see the
ID for a text constant by opening the C/AL GLobals window, selecting a text constant
and opening its Properties window.

In a single-language database, you can code error messages as text strings directly in
the code. In the new multilanguage-enabled database, this must now be entered as:

IF FileName = '' THEN

__ERROR(Text000);

In the example, Text000 is an available name for a text constant in that object. The
text constants must then be created as such in the C/AL Globals window. For more
information about creating text constants, see the section called "Defining Variables,
Text Constants and Functions in Codeunits" on page 221.
376

18.2 Developing Multilanguage-Enabled Applications
When you add new text constants to existing objects, you can name them according
to your needs. C/SIDE assigns unique IDs according to the number ranges listed in
section 18.4 which makes it easier for you to upgrade customized objects.

When you are working in the C/AL Editor and place the cursor on a text constant, the
content of the text constant will be shown in the message line in the language you
have chosen as the application language. For more information, see the section called
"C/AL Scanner" on page 382.

Caption Property
Everything that is displayed to the user must have a Caption property. The Name
property is always English (United States), so the Caption property is used to show the
user the name in their own language.

For example, if you want to call on a field from the code in connection with an error
message, you will call it by its Name property but make sure that the Caption property
is displayed:

VATPostingSetup.FIELDCAPTION("VAT Calculation Type")

where VATPostingSetup is the Name property in English (United States), and
FIELDCAPTION makes sure that the Caption property in the relevant language is used
rather than the Name property.

When you are programming, you should always have in mind the difference between
the Name property and the Caption property to ensure that you get the expected
result when running the code.

C/SIDE can help you in a number of ways as described in the section "Learning the
Code Base Language" on page 380.

CaptionML Property
The CaptionML property is what makes it possible to change languages. Everything
must have a CaptionML property where the value is set to the correct term in English
(United States). This value is followed by whatever translations there may be of that
object or field. The Caption property copies the value for the current application
language from the CaptionML property.

EXAMPLE

Table 37, Field 1 has the following CaptionML values:

ENU=Document Type;FRC=Type document

In the CaptionML Value field, you can either enter the value for English (United
States) directly, or you can click the AssistButton to open the Multilanguage Editor and
enter the value there.

Note that if you are creating a new field, you must enter the value for English (United
States) in the Name field in order to get started.
377

Chapter 18. Multilanguage Functionality
Note also that you must click OK to save the information when you exit the
Multilanguage Editor window.

.
Note

In a form, if you have created a new field, the content of the Caption property will not
be shown on the form until the form has been compiled. If you have copied another
field on that form and modified the properties, the content of the Caption property will
be shown on the form even in the Form Designer. This rule includes request forms for
reports.
But if you enter the caption directly in the Value field, you will not have to compile the

.
form to see the Caption property.

Creating Captions
If your application does not have Caption properties for everything that is translated,
you must insert these properties. You can do this manually or use the make-ml tool.
For more information about this tool, see the manual Upgrade Toolkit for Navision.

You should pay special attention to the following:

· Option buttons

· Option strings

· Option variables

Option Buttons

For options buttons, you must make sure that the CaptionML property is correct.

.
Note

The value in the OptionValue field will always be in English, because this value is
used by the corresponding global variable, and code must always be in English
(United States).
You must make sure that the value for English (United States) in the CaptionML field

.
is the same as in the OptionValue field.

Option Strings

For option strings, for example, a control in a request form, you must make sure that
the OptionsCaptionML property is correct.

.
Note

.
The Name property must remain the number of the control, for example, Control 9.
378

18.2 Developing Multilanguage-Enabled Applications
Option Variables

For options variables, for example, in a source expression for a FORMAT, STRSUBSTNO,
ERROR, MESSAGE, or CONFIRM, you must insert a SELECTSTR string to select an option
from a text constant. You should then let the text constant contain the options from the
option string.

Date Formulas
When you are creating a field in a table and you want this field to contain a date
formula, you must apply the data type DateFormula to the field. This new data type is
non-language dependent and provides multilanguage capabilities to the CALCDATE
function.

You achieve a similar result if you apply the data type CODE or TEXT to the field and
then set the DATEFORMULA property to Yes. But this solution makes the data
language-dependent, which means that users with different application languages
cannot use the same data.

Usage in C/AL Code

When you use the CALCDATE function to calculate dates, you must enter the date
formula in English (United States) but with angle brackets (< >) around the date
formula. Date formulas are translated but if you place angle brackets around them, the
code will be valid regardless of the application language. In this way, the calculation
will be the same no matter which application language the user has selected.

EXAMPLE

EndOfMonth := CALCDATE('<CM>',TODAY);
379

Chapter 18. Multilanguage Functionality
18.3 LEARNING THE CODE BASE LANGUAGE

If you are not used to working with English as the code base language, C/SIDE can
help you get used to working in the new environment in a number of ways.

Generating a Dictionary
You may want to generate a translation of variables so that you can compare the
English name for the variable to the name in your local language.

You can use the Navision Localization Workbench (NLW) to generate this translation.
Use NLW to create a project based on the translation your local Microsoft Certified
Business Solutions Partner created for the previous version of Navision, and export
the relevant fields to a comma-separated file. You can then open this file in, for
example, Microsoft Excel and use it as a dictionary.

The relevant fields are:

· Source Text

· Target Text

· SourceResourceID.

.
Note

.
You must first set a filter to only show variables before you export the file from NLW.

For more information about the Navision Localization Workbench, see the manual
Navision Localization Workbench User’s Guide, which is included in the NLW.cab file.

How to See Both Captions and Names
In a number of different C/SIDE windows, you can see both the Name property and
the Caption property of the selected item, as described in the following sections.

Zoom Functionality

When you use the Zoom functionality on an object, you can choose to see both the
local language and English (United States) for the fields.

To see both the local language and English (United States), follow this procedure:

1 Open the object, for example, a purchase order, and place the cursor in the
relevant field.

2 Click CTRL, F8 to zoom in.

3 In the Zoom window, right-click one of the column headers and select Show
Columns from the list.
380

18.3 Learning the Code Base Language
4 In the Show Columns window, place a check mark next to Field Name and click
OK.

The Field column will show the caption values for the current application language
and the Field Name column will show the name properties.

Table List, Form List, Field List, Object List and Field Menu

In the Object Designer, Table List, Form List, Field List, Object List and Field
Menu windows, you can see both the Name property and the Caption property for the
items on the list as shown in the following picture:

The first column from the left contains the object number, the second column contains
the Name property, and the third column contains the Caption property in the current
application language.

In the Object Designer and Field Menu windows, you can hide the Caption column
by right-clicking the Caption column header and selecting Hide Column from the list.

You can show the column again by following the procedure described in the section
"Zoom Functionality".

For more information about the use of captions, see page 377.
381

Chapter 18. Multilanguage Functionality
C/AL Scanner
In the C/AL Editor, a scanner can show you captions for objects, fields and text
constants. Since the code base should be in English, the scanner can help you read
the code correctly.

When you place the cursor on an object, field or text constant, the C/AL scanner will
look for the caption property in the current application language for the object, field or
text constant. The scanner then displays this information in the status bar at the
bottom of the Navision window.

C/AL Symbol Menu
A new subcategory has been added to the C/AL Symbol Menu window:
FieldCaption. You can see this when you have selected a variable that relates to a
table record:

If you have selected a field name, you can see the caption for that field in the current
application language in the bottom left-hand corner of the window. In other words, in
the third column in the C/AL Symbol Menu window, you can see the Name property,
and in the bottom left-hand corner of the window, you can see the Caption property. In
the picture, the current application language is English (United States) so the two
properties are the same.

If you have selected a caption, you can see the corresponding field name for that
caption in English (United States) in the bottom left-hand corner of the window. In
other words, in the third column, you can see the Caption property, and in the bottom
left-hand corner of the window, you can see the Name property.

For more information about the C/AL Symbol Menu window, see the section called
"Using the C/AL Symbol Menu" on page 226.

This is the Caption property of the field
whose Name property you have selected
382

18.4 Number Ranges for Text Constants
18.4 NUMBER RANGES FOR TEXT CONSTANTS

C/SIDE assigns unique IDs to text constants according to the following table of
number ranges:

Developer From To

Microsoft Business Solutions HQ 000 9,999

Microsoft Business Solutions
Netherlands

1,000,000 1,009,999

Microsoft Business Solutions
Belgium

1,010,000 1,019,999

Microsoft Business Solutions
USA

1,020,000 1,029,999

Microsoft Business Solutions
Canada

1,030,000 1,039,999

Microsoft Business Solutions
United Kingdom

1,040,000 1,049,999

Microsoft Business Solutions
Iceland

1,050,000 1,059,999

Microsoft Business Solutions
Denmark

1,060,000 1,069,999

Microsoft Business Solutions
Sweden

1,070,000 1,079,999

Microsoft Business Solutions
Norway

1,080,000 1,089,999

Microsoft Business Solutions
Finland

1,090,000 1,099,999

Microsoft Business Solutions
Spain

1,100,000 1,109,999

Microsoft Business Solutions
Portugal

1,110,000 1,119,999

Microsoft Business Solutions
France

1,120,000 1,129,999

Microsoft Business Solutions Italy 1,130,000 1,139,999

Microsoft Business Solutions
Germany

1,140,000 1,149,999

Microsoft Business Solutions
Switzerland

1,150,000 1,159,999

Microsoft Business Solutions
Austria

1,160,000 1,169,999

Microsoft Business Solutions
Poland

1,170,000 1,179,999
383

Chapter 18. Multilanguage Functionality
Microsoft Business Solutions
Lithuania

1,180,000 1,189,999

Microsoft Business Solutions
Latvia

1,190,000 1,199,999

Microsoft Business Solutions
Estonia

1,200,000 1,209,999

Microsoft Business Solutions
Russia

1,210,000 1,219,999

Microsoft Business Solutions
Czech Republic

1,220,000 1,229,999

Microsoft Business Solutions
Slovenia

1,230,000 1,239,999

Microsoft Business Solutions
Australia

1,240,000 1,249,999

Microsoft Business Solutions
New Zealand

1,250,000 1,259,999

Microsoft Business Solutions
Singapore

1,260,000 1,269,999

Microsoft Business Solutions
South Africa

1,270,000 1,279,999

Microsoft Business Solutions
India

1,280,000 1,289,999

Microsoft Business Solutions
Argentina

1,290,000 1,299,999

Microsoft Business Solutions
Brazil

1,300,000 1,309,999

Microsoft Business Solutions
Mexico

1,310,000 1,319,999

Microsoft Business Solutions
Croatia

1,320,000 1,329,999

Microsoft Business Solutions
North Africa/Middle East

1,330,000 1,339,999

Microsoft Business Solutions
Thailand

1,340,000 1,349,999

Microsoft Business Solutions
Malaysia

1,350,000 1,359,999

Microsoft Business Solutions
Hungary

1,360,000 1,369,999

Microsoft Business Solutions
Ireland

1,370,000 1,379,999

General customer modifications 1,000,000,000 1,000,999,999

Developer From To
384

18.4 Number Ranges for Text Constants
If you are converting an object with general customer modifications using the conv-ml
tool, specify a random number between 1,000,000,000 and 1,000,999,999 as the start
number of the number range.

Add-on 1,100,000,000 1,199,999,999

Developer From To
385

Chapter 18. Multilanguage Functionality
386

Part 7
Beyond the Basics

Chapter 19
Type Conversion

This appendix describes all possible type conversions in
C/AL expressions. The appendix is divided into the
following sections:

· Type Conversion in Expressions

· Type Conversion Mechanisms

Chapter 19. Type Conversion
19.1 TYPE CONVERSION IN EXPRESSIONS

Consider the following statements:

CharVar := 15; // A char variable

integerVar := 56000; // An integer variable

Sum := CharVar + integerVar;

The last statement involves one or two type conversions. The right-hand side of the
statement involves the evaluation of the expression CharVar + integerVar (char +
integer). In order to evaluate this expression, the first operand (CharVar) will have to
be converted from char to integer. The addition operator will then return an integer
result. But if the type of the left-hand side variable has been declared as, for example,
decimal, the result must be converted from integer to decimal before its value can be
assigned to Sum (this kind of conversion is discussed in Assignment and Type
Conversion on page 246.)

This appendix describes the type conversions which sometimes take place when
expressions are evaluated. First, some general rules:

· When asked to evaluate an expression of mixed data types, the system will (if
possible) always convert at least one of the operands to a more general data type.

· The data types in the two main groups, numbers and strings, can be ranked from
"most general" to "least general", as defined below.

· The most general data types include all possible values from the less general data
types: a decimal is more general than an integer, which again is more general than
a char.

· Type conversion can take place in some cases even though two operands have the
same type.

Strings

code

text

Numbers

integer, option

char

decimal

decimal is the most
general numeric
data type

char is the least
general numeric
data type

The text data type is
more general than
the code data type.
390

19.1 Type Conversion in Expressions
These rules can be illustrated by some examples.

EXAMPLE 1

Evaluation of a numeric expression:

integer + decimal

This expression contains two sub-expressions of different type. In order to add these, the system
will convert the left-hand side sub-expression to decimal:

decimal + decimal

When the left-hand side sub-expression has been converted, the expression can be evaluated,
and the resulting data type will be decimal:

decimal + decimal ⇒ decimal

EXAMPLE 2

Evaluation of a string expression:

text + code

This expression contains two sub-expressions to be concatenated. To do this, the system will
convert the sub-expression of the least general data type (code) to the most general data type
(text).

text + text

When the right-hand side argument has been converted, the expression can be evaluated, and the
resulting data type will be text.

text + text ⇒ text
391

Chapter 19. Type Conversion
19.2 TYPE CONVERSION MECHANISMS

This section discusses the type conversion mechanisms for the C/AL operators in
more depth. The starting point is to divide the operators into some main categories:

· Relational operators

· Logical operators

· Arithmetic operators

The following subsections discuss the properties of operators in C/AL: for each
category of operators, there are descriptions of the valid data types for the arguments
and the data types that result when expressions are evaluated.

The relational operators will be treated first, as they are common to most of the C/AL
data types.

Relational Operators
The relational operators are used to compare expressions. The table below defines
the evaluation rules for relational operators. The rules assume that the data types of
the expressions can be compared. Refer to Valid Uses of Relational Operators below
for a complete overview of comparable data types.

.
Note

When using relational operators, upper and lower case letters in strings are
significant. Furthermore, the comparison is based on the built-in character comparison

.
table of the system, that is, not by comparing "true" ASCII characters.

Valid Uses of Relational Operators

The following table describes the valid uses of the relational operators and the data
types that result when expressions are evaluated. The invalid combinations of types
for relational operators are indicated by a dash. All relational operators are binary infix
operators; that is, they take a left and a right argument and are placed between the
arguments.

Operator Operator Name Expression Resulting Data Type

> Greater than Expr > Expr boolean

< Less than Expr < Expr boolean

<= Less than or equal Expr >= Expr boolean

<> Not equal to Expr <> Expr boolean

= Equal to Expr = Expr boolean

IN In range Expr IN [Valueset] boolean
392

19.2 Type Conversion Mechanisms
The rows in the table show the type of the left argument and the columns show the
type of the right argument. The cells show the resulting data type.

From the table you can see that a valid use of the relational operators is, for example,
text compared with text or code, while boolean cannot be compared with anything else
than boolean, and so forth.

Boolean (Logical) Operators
The logical operators can only be used with arguments that can be evaluated to
boolean.

As the above shows, the NOT operator is a unary prefix operator. This means that it
takes only one argument and is placed in front of the argument. The AND, OR and
XOR operators, on the other hand, are binary infix operators; that is, they take two
arguments and are placed between the corresponding arguments.

Arithmetic Operators
Here are some examples of how to use the type conversion rules for arithmetic
operators. The examples illustrate how the operators are supposed to be used and
the effect of the type conversion made automatically by the C/AL compiler. The
examples have been divided into groups corresponding to the data types in C/AL.

Relational
Operators

bo
ol

ch
ar

op
tio

n

in
te

ge
r

de
ci

m
al

da
te

tim
e

te
xt

co
de

bool bool - - - - - - - -

char - bool bool bool bool - - - -

option - bool bool bool bool - - - -

integer - bool bool bool bool - - - -

decimal - bool bool bool bool - - - -

date - - - - - bool - - -

time - - - - - - bool - -

text - - - - - - - bool bool

code - - - - - - - bool bool

Operator Name Expression Resulting Data Type

NOT Logical negation NOT bool bool

AND Logical and bool AND bool bool

OR Logical or bool OR bool bool

XOR Exclusive logical or bool XOR bool bool
393

Chapter 19. Type Conversion
For a full description of the type conversion rules in C/AL, refer to the tables in the
section Complete Overview of Type Conversion Rules on page 395, which provide a
full description of all possible uses of C/AL operators and the resulting data types.

EXAMPLE

The table below illustrates type conversion in integer operator expressions

Note that the same rules apply to option operator expressions as well.

EXAMPLE

This table illustrates type conversion in decimal operator expressions:

EXAMPLE

This table illustrates type conversion in date operator expressions:

Operator Name Expression Resulting Data Type

+ Unary plus + integer integer

- Unary minus - integer integer

+ Addition integer + integer integer

- Subtraction integer - integer integer

* Multiplication integer * integer integer

/ Division integer / integer decimal

DIV Integer division integer DIV integer integer

MOD Modulus integer MOD integer integer

Operator Name Expression Resulting Data Type

+ Unary plus + decimal decimal

- Unary minus - decimal decimal

+ Addition decimal + decimal decimal

- Subtraction decimal - decimal decimal

* Multiplication decimal * decimal decimal

/ Division decimal / decimal decimal

DIV Integer Division decimal DIV decimal decimal

MOD Modulus decimal MOD decimal decimal

Operator Name Expression Resulting Data Type

+ date addition date + Number date

- date subtraction date - Number date

- date difference date - date integer
394

19.2 Type Conversion Mechanisms
In the "date addition" and "date subtraction" examples above, a runtime error will occur if date is a
closing date or if date is undefined (0D).

EXAMPLE

This table illustrates type conversion in time operator expressions:

The time unit is milliseconds. If time is undefined (0T), a runtime error will occur.

EXAMPLE

This table illustrates type conversion in text and code (String) operator expressions:

Complete Overview of Type Conversion Rules
The following tables provide a complete overview of type conversion rules for the
arithmetic operators.

The Unary Arithmetic Operators

The unary arithmetic operators in C/AL are so-called prefix operators, whose syntax
is:

PrefixExpression = PrefixOperator Expression

This table shows the data types for which the unary operators in C/AL are defined, and
the resulting data types.

Operator Name Expression Resulting Data Type

+ time addition time + integer time

- time difference time - time integer

Operator Name Expression Resulting Data Type

+ Concatenation text + text text

+ Concatenation text + code text

+ Concatenation code + text text

+ Concatenation code + code code

Unary Operator option integer decimal

+ integer integer decimal

- integer integer decimal
395

Chapter 19. Type Conversion
The Binary Arithmetic Operators

This table shows the data types for which the binary arithmetic operators are defined.
The binary arithmetic operators in C/AL are all infix operators, that is:
InfixExpression = LeftExpression InfixOperator RightExpression

c YES, THE OPERATOR CAN TAKE AT LEAST ONE OPERAND (LEFT, RIGHT OR BOTH) OF THE GIVEN TYPE.
j NO, THE OPERATOR CANNOT BE USED WITH THE GIVEN TYPE.

The following tables define the valid uses of the binary arithmetic operators, and the
resulting data types.

boolean char option integer decimal date time text code

Operator

+ j c c c c c c c c

- j c c c c c c j j

* j c c c c j j j j

/ j c c c c j j j j

DIV j c c c c j j j j

MOD j c c c c j j j j
396

19.2 Type Conversion Mechanisms
Definition of Type Conversion Rules for the "+" Operator

(A) THE OPERATION IS NOT DEFINED FOR THE DATE 0D.

(B) THE OPERATION IS NOT DEFINED FOR THE TIME 0T

(C) OVERFLOW MAY OCCUR

(D) THE OPERATION IS NOT DEFINED IF DECIMAL HAS A FRACTIONAL PART.

The "+"
operator

bo
ol

ea
n

ch
ar

op
tio

n

in
te

ge
r

de
ci

m
al

da
te

tim
e

te
xt

co
de

boolean - - - - - - - - -

char - integer integer (C) integer
(C)

decimal (C) - - - -

option - integer (C) integer (C) integer
(C)

decimal (C) - - - -

integer - integer (C) integer (C) integer
(C)

decimal (C) - - - -

decimal - decimal
(C)

decimal
(C)

decimal
(C)

decimal (C) - - - -

date - date(A) (C) date (A)

(C)
date(A) (C) date(A) (C) (D) - - - -

time - time(B) (C) time(B) (C) time(B) (C) time(B) (C) (D) - - - -

text - - - - - - - text text

code - - - - - - - text code
397

Chapter 19. Type Conversion
Definition of Type Conversion Rules for the "-" Operator

(A) THE OPERATION IS NOT DEFINED FOR THE DATE 0D.

(B) THE OPERATION IS NOT DEFINED FOR THE TIME 0T.

(C) OVERFLOW MAY OCCUR.

(D) THE OPERATION IS NOT DEFINED IF DECIMAL HAS A FRACTIONAL PART.

Definition of Type Conversion Rules for the "*" Operator

(C) OVERFLOW MAY OCCUR.

Definition of Type Conversion Rules for the "/" Operator

NOTE THAT OVERFLOW MAY OCCUR IN ALL CASES IN THE ABOVE TABLE.

A RUNTIME ERROR WILL OCCUR IF THE RIGHT OPERAND IS EQUAL TO ZERO (0).

The "-"
operator

bo
ol

ea
n

ch
ar

op
tio

n

in
te

ge
r

de
ci

m
al

da
te

tim
e

te
xt

, c
od

e

boolean - - - - - - - -

char - integer integer(C) integer(C) decimal(C) - - -

option - integer(C) integer integer decimal(C) - - -

integer - integer(C) integer integer decimal(C) - - -

decimal - decimal(C) decimal(C) decimal(C) decimal(C) - - -

date - date(A)(C) date(A)(C) date(A)(C) date(A)(C)(D) integer(A) - -

time - time(B)(C) time(B)(C) time(B)(C) time(B)(C)(D) - integer(B) -

text - - - - - - - -

code - - - - - - - -

* char option integer decimal

char integer (C) integer (C) integer (C) decimal (C)

option integer (C) integer (C) integer (C) decimal (C)

integer integer (C) integer (C) integer (C) decimal (C)

decimal decimal (C) decimal (C) decimal (C) decimal (C)

/ char option integer decimal

char decimal decimal decimal decimal

option decimal decimal decimal decimal

integer decimal decimal decimal decimal

decimal decimal decimal decimal decimal
398

19.2 Type Conversion Mechanisms
Definition of Type Conversion Rules for the 'MOD' and 'DIV' Operators

A RUNTIME ERROR WILL OCCUR IF THE RIGHT OPERAND IS EQUAL TO ZERO (0).

MOD and
DIV

char option integer decimal

char integer integer integer decimal

option integer integer integer decimal

integer integer integer integer decimal

decimal decimal decimal decimal decimal
399

Chapter 19. Type Conversion
400

Chapter 20
SumIndexFields

This chapter describes SumIndexFields™, which are the
basis for the FlowFields in a C/SIDE application. This
chapter describes how SIFT™ works on Navision Database
Server as well as some details of the way that SIFT is
implemented in the SQL Server Option for Navision. This
information will help programmers develop efficient
applications that use SumIndexField Technology.

· SumIndexFields

· SIFT and the SQL Server Option for Navision

Chapter 20. SumIndexFields
20.1 SUMINDEXFIELDS

SumIndexField Technology (SIFT™) has been designed to improve performance
when carrying out such activities as calculating customer balances. In traditional
database systems this involves performing a series of database calls and calculations
before arriving at a result. The power and efficiency of SIFT on Navision Database
Server makes calculating sums for numeric columns in tables extremely fast, even in
tables that contain thousands of records. This powerful feature is used throughout the
Navision application and has also been implemented in the SQL Server Option.

SIFT and Navision Database Server
A SumIndexField is a fundamental feature which is the basis of FlowFields. A
SumIndexField is associated with a key; each key can have at most 20
SumIndexFields. During database design, a field of the decimal type can be
associated with a key as a SumIndexField. This tells the DBMS to create and maintain
a structure which contains the accumulated sum of values in a column. When a new
current key is selected, any SumIndexField associated with it becomes accessible.

The figure below illustrates a table where the Amount field (column) is defined as a
SumIndexField in the Account No + Date key. This enables the DBMS to automatically
maintain the accumulated sum of the column. Every time a change is made to a field
in the column, the accumulated values are updated.

To the right of the table is shown an area in the database where the accumulated
sums for the Amount column are kept. In the above figure, the third field in the
column, holding the accumulated sum, contains the value 600 because the first three
Amount values are 100, 200 and 300, respectively – a total of 600. The fourth virtual
field contains 1000, the total of the first four values in the Amount column, and so on.

50040

50020

50000

50000

50020

Account No. Text Amount

100

200

300

400

500

(SumIndexField)

60

210

300

90

Date

100

300

1000

1500

600

Accumulated
Sum

02-01-96

01-25-96

01-02-96

01-01-96

01-04-96

=50020

400

600

1000

300

01-25-96

01-04-96

300

50020

50020

1000 - 300 = 700

A table sorted by
Account No. +
Date

A FlowFilter is
used in the
calculation of the
FlowField

Sum of the
Amount column
when the filter is
applied

The same table
when the
FlowFilter is
applied
402

20.1 SumIndexFields
If the table contained a second SumIndexField, its values would be accumulated in the
same way.

What advantages do SumIndexFields offer? Sums (of columns) can be quickly
calculated and the result displayed in FlowFields. Let us say you want the sum of all
the values in the Amount fields. In a conventional system, the DBMS is forced to
access every record and add each value in the Amount field, a very time-consuming
operation in a database with thousands of records. Here, you would create a
FlowField, define the calculation formula of this FlowField to sum the Amount field,
and the DBMS only needs retrieve the value from the SumIndexField.

Operations with SumIndexFields are as fast when FlowFilter fields are applied. The
second table in the above figure shows a group of records selected by a FlowFilter
field in the Account No. field. Two records fulfil the conditions of the calculation filter.
Only two accesses are needed to sum the Amount for these records: one access to
get the accumulated sum associated with the last record before the specified range,
and one access to get the accumulated sum associated with the last record in the
specified range.

The value 300 is subtracted from the value 1000 to produce the correct sum (700). No
matter how many records there are in the selected range, the system will always need
to perform only two accesses in order to compute the sum.

SIFT has been built into the index structure used on Navision Database Server and
the more SumIndexFields that are added the larger the index becomes. However, the
time used to maintain the accumulated sum for SumIndexFields is negligible due to a
special index structure used in the DBMS.
403

Chapter 20. SumIndexFields
20.2 SIFT AND THE SQL SERVER OPTION FOR NAVISION

As mentioned earlier, SIFT has also been implemented in the SQL Server Option for
Navision. This section describes in some detail the way that SIFT is implemented in
the SQL Server Option.

SIFT Components
A SumIndexField is always associated with a key and each key can have a maximum
of 20 SumIndexFields associated with it. In this document we will refer to a key that
has at least one SumIndexField associated with it as a SIFT key.

When you set the MaintainSIFTIndex property of a key to Yes Navision will regard this
key as a SIFT key and create all the SIFT structures that are needed to support it.
However, disabling the SIFT key by setting the MaintainSIFTIndex property to No can
improve performance in certain circumstances. Setting this property to No means that
the SIFT functionality is implemented by calculating the totals online instead of using
the precalculated sums that are maintained by SIFT.

Any field of the Decimal data type can be associated with a key as a SumIndexField.
Navision then creates and maintains a structure that stores the calculated totals that
are required for the fast calculation of aggregated totals.

In the SQL Server Option for Navision this maintained structure is a normal table (a
SIFT table). The layout of a SIFT table is described later in this article. As soon as the
first SIFT table is created for a base table, a dedicated SQL Server trigger is also
created and is then automatically maintained by Navision. This is known as a SIFT
trigger. A base table is a standard Navision table, as opposed to an extra SQL Server
table that is created to support Navision functionality.

One SIFT trigger is created for each base table that contains SumIndexFields. This
dedicated SQL Server trigger supports all the SIFT tables that are created to support
this base table. The purpose of the SIFT trigger is to implement all the modifications
that are made on the base table in every SIFT table that is affected. This means that
the SIFT trigger automatically updates the information in all the existing SIFT tables
after every modification of the records in the base table.

SIFT and Cache

If you ask Navision to calculate a total (CALCSUMS), SIFT will calculate all the totals for
all the SumIndexFields that are related to that key in the base table. You will receive
the total you requested and all the aggregations will be stored in cache. These totals
can be reread from the cache to answer any subsequent requests provided that the
cache is still valid. SIFT will do this without issuing any statement to SQL Server.

Naming Conventions
This section describes the naming conventions that are used when generating the
SIFT components on the SQL Server Option for Navision.
404

20.2 SIFT and the SQL Server Option for Navision
SIFT Triggers

The body of the SIFT trigger is generated by Navision and is maintained automatically
so that it reflects every change that is made to the design of the base table as well as
its fields, keys and SumIndexFields.

The name of the SIFT trigger has the following format:

<base Table Name>_TG.

For example, the SIFT trigger for table 17, G/L Entry is named:

CRONUS International Ltd_$G/L Entry_TG.

SIFT Tables

A SIFT table is a SQL Server table that is created and maintained automatically by
Navision and used to store precalculated totals based on values that are stored in
SumIndexFields in base tables. A SIFT table is created for every base table key that
has at least one SumIndexField associated with it. No matter how many
SumIndexFields are associated with a key, only one SIFT table is created for that key.

The name of the SIFT table has the following format:

<Company Name>$<base Table ID>$<Key Index>.

For example, one of the SIFT tables created for table 17, G/L Entry is named:

CRONUS International Ltd_$17$0.

The Key Index is a calculated integer value starting from 0. This means that the first
SIFT key in the base table is given the value 0, the next is 1 and so on. These values
are updated if any changes are made to the base table.

For example, table 17, G/L Entry has the following key layout:

Enabled Key SumIndexFields MaintainSIFTIndex

YES Entry No. YES

YES G/L Account No., Posting
Date

Amount, Debit Amount,
Credit Amount, Additional-
Currency Amount, Add.-
Currency Debit Amount,
Add.-Currency Credit
Amount

YES

YES G/L Account No., Business
Unit Code, Global Dimension
1 Code, Global Dimension 2
Code, Close Income
Statement Dim. ID, Posting
Date

Amount, Debit Amount,
Credit Amount, Additional-
Currency Amount, Add.-
Currency Debit Amount,
Add.-Currency Credit
Amount

YES

YES Document No., Posting Date YES

YES Transaction No. YES
405

Chapter 20. SumIndexFields
This table has two SIFT keys because only two keys have SumIndexFields associated
with them.

The SIFT key that is composed of the G/L Account No., Posting Date fields has the
Key Index value 0. Therefore, the SIFT table with the name CRONUS International
Ltd_$17$0 is created for it on SQL Server.

The SIFT key that is composed of the G/L Account No., Business Unit Code,
Global Dimension 1 Code, Global Dimension 2 Code, Close Income Statement
Dim. ID, Posting Date fields has the Key Index value 1. Therefore, the SIFT table
with the name CRONUS International Ltd_$17$1 is created for it on SQL Server.

The column layout of the SIFT tables is based on the layout of the SIFT key along with
the SumIndexFields that are associated with this SIFT key. But the first column in
every SIFT table is always named "bucket" and contains the value of the bucket or
SIFT level for the precalculated sums that are stored in the table. Buckets are
discussed in the following section.

After the bucket column, comes a set of columns with names that start with the letter
"f". These are also known as f- or key-columns. Each of these columns represents one
field of the SIFT key. The name of these columns has the following format: f<Field
No.>, where Field No. is the integer value of the Field No. property of the represented
SIFT key field. For example, column f3 in CRONUS International Ltd_$17$1
represents the G/L Account No. field (it is field number 3 in the base table G/L Entry)
of the SIFT key with Key Index = 1 (see the example above).

And finally, there is a group of columns with names that start with the letter "s"
followed by numbers. These are also known as s-columns. These columns represent
every SumIndexField that is associated with the SIFT key. The name of these
columns has the following format: s<Field No.>. Field No. is the integer value of the
Field No. property of the represented SumIndexField. The precalculated totals of
values for the corresponding SumIndexFields are stored in these fields of the SIFT
table. For example, the first s-column in CRONUS International Ltd_$17$1 is s17.
This column represents the Amount SumIndexField (it is field number 17 in the G/L
Entry table) because the Amount field is associated with the SIFT key.

Buckets and SIFT Levels
Understanding the relationship between buckets and SIFT levels is crucial to
understanding the way that SIFT is implemented in the SQL Server Option for
Navision. The precalculated totals or sums for each SumIndexField column are stored
in buckets in SIFT tables. The buckets correspond to the SIFT levels that are
maintained and each SIFT level can generate many records that are stored with the
same bucket number in the SIFT tables on SQL Server. The higher the bucket number
the more detailed the SIFT level. The buckets and their corresponding SIFT levels can

YES Close Income Statement
Dim. ID

YES

Enabled Key SumIndexFields MaintainSIFTIndex
406

20.2 SIFT and the SQL Server Option for Navision
also be seen from within Navision, even though they only exist in the SQL Server
tables that are created to support SIFT:

The precalculated totals from the different buckets are retrieved and aggregated to
generate the sums or totals that are stored in the SumIndexFields. For information
about how to open this window, see Configuring the SIFT Levels on page 418.

What are SIFT Levels?

As mentioned earlier, every row in a SIFT table stores precalculated totals in s-fields.
These totals are based on the values in the corresponding SumIndexField column in
the base table. The f-fields in each record in a SIFT table contain the conditions which
are constant for every row in the base table, and which contribute to the value of the
total that is stored in that record in the SIFT table. In other words, a SIFT level is the
set of values that are stored in the key fields that are used to generate the stored total
of the SumIndexField values. A SIFT level or bucket can be regarded as a hash value
or a key value that uniquely specifies the totals that are stored in it. A bucket is similar
to the concept of a cube that is used in OLAP systems.

Every bucket in a SIFT table has a bucket number that corresponds to its SIFT level.
The SIFT level’s bucket number is stored in the bucket field of each record in the SIFT
table. Also, records in SIFT tables are sorted according to their bucket numbers
(because the bucket field is part of the primary clustered index of every SIFT table).

.
Note

The records that store the grand totals of SumIndexFields have bucket number 0
corresponding to SIFT level 0. Although only one record with SIFT level 0 can exist
(because only one grand total value can exist for each SumIndexField), this SIFT level
is not maintained as a default. However, you can activate this SIFT level if you want to.
It is important to remember that this grand total must be updated every time that a
record is added or altered in the base table. This can have a bad affect on
performance because each user must wait until the grand total has been updated by
the previous operation before their update can be performed.

Furthermore, the most detailed bucket level is not maintained as a default value. This
bucket level can also be activated. For information about maintaining bucket levels,

.
see SIFT and Performance on page 420.
407

Chapter 20. SumIndexFields
SIFT level 1 means that only one field (the first one) from the SIFT key makes up the
buckets at this level. In other words, the number of records in the SIFT table that have
SIFT level 1 is equal to the number of different values that are stored in the first field in
the SIFT key in the base table. The number of records in the SIFT table that have
SIFT level 2 is defined by the number of different combinations of values that are
stored in the first and second fields of the SIFT key in the base table, and so on.

Here is a simple example:

Base Table:

Base Table Keys:

This table has one SIFT key that has two SumIndexFields associated with it.

According to the data stored in the base table the following buckets and predefined
sums will be calculated and stored in the SIFT Table:

SIFT Table:

Rec. No. Item No. Location Code Amount Qty.

1 ITM001 BLUE 100 10

2 ITM002 BLUE 400 20

3 ITM001 YELLOW 450 30

4 ITM003 YELLOW 1200 40

5 ITM001 RED 1000 50

Enabled Fields SumIndexFields MaintainSIFTIndex

YES Rec. No. YES

YES Item No., Location Code Amount, Qty. YES

bucket f2 f3 s4 s5

1 ITM001 1550 90 SIFT level 0 is not maintained as a
default.
The number of records at SIFT level 1
depends on the number of different
values that are stored in the Item No.
column (alias f2) of the base table.

1 ITM002 400 20

1 ITM003 1200 40

2 ITM001 BLUE 100 10 The number of records at SIFT level 2
depends on the number of different
possible combinations that can be
composed from the values stored in the
Item No. (alias f2) and Location Code
(alias f3) columns of the base table.

2 ITM001 RED 1000 50

2 ITM001 YELLOW 450 30

2 ITM002 BLUE 400 20

2 ITM003 YELLOW 1200 40
408

20.2 SIFT and the SQL Server Option for Navision
As you can see, the highest bucket number in this SIFT table is 2 (in the example it is
the number of fields, included in the SIFT key) and there are therefore only 2 SIFT
levels maintained in this table. The number of records at each SIFT level is
determined by the data stored in the base table. On each SIFT level this number can
be calculated as the number of possible combinations that can be made from the
values in the key columns that compose this bucket. Finally, the s-fields of every
record contain the precalculated sums of the values stored in the SumIndexFields
Amount and Qty. The corresponding fields in the SIFT table are s4 and s5. These
sums are calculated according to the SIFT level that they belong to.

Therefore, the s4 and s5 fields of the record with SIFT level 1 where f2 (Item No.) is
ITM001 contain the totals of the values stored in the Amount and Qty. fields in the
base table where the Item No. is ITM001.

Base Table:

SIFT Table:

These precalculated totals will be used to produce the sums that are requested in the
following C/AL code:

SETCURRENTKEY("Item No.");

SETRANGE("Item No.",'ITM001');

CALCSUMS("Amount","Qty.");

SIFT Levels and Fields of the Date Data Type
From the example shown above it might be assumed that the maximum value of a
SIFT level is always defined by the number of fields included in the SIFT key.
However, this is not always the case. If one or more fields of the Date data type are

Rec. No. Item No. Location
Code

Amount Qty.

1 ITM001 BLUE 100 10 The records from the base table that
contribute to the sums stored for
SIFT level 1 in the SIFT table. This
record in the SIFT table has bucket
number 1 and Item No. ITM001.

3 ITM001 YELLOW 450 30

5 ITM001 RED 1000 50

bucket f2 f3 s4 s5

1 ITM001 1550 90 The record in the SIFT table that stores
precalculated sums for this SIFT level.
This SIFT level is composed of a single
column f2 (Item No.).
(1550 = 100 + 450 + 1000, 90 = 10 + 30
+ 50)
409

Chapter 20. SumIndexFields
included in the SIFT key, the number of SIFT levels increases. This is because each
field of the Date data type in the SIFT key causes not one but three SIFT levels to be
created. The system was designed this way to answer requests for totals that are
based on dates.

Instead of having one SIFT level per date, there is one per year, one per month of the
year and one per day of the month of the year. This allows us to calculate totals that
are based on dates more efficiently.

In the following example, the base table contains a new column of the Date data type,
called Invoice Date. This field is included in the SIFT key Item No., Location Code,
Invoice Date and two SumIndexFields Amount and Qty. are associated with this
key. Let's take a look at the SIFT table and analyze the bucket structure that is created
for this SIFT key.

Base Table:

Base Table Keys:

SIFT Table:

Rec. No. Item No. Location Code Invoice Date Amount Qty.

1 ITM001 BLUE 12 Jan 2000 100 10

2 ITM002 BLUE 23 Feb 2001 400 20

3 ITM001 YELLOW 17 Mar 2001 450 30

4 ITM003 YELLOW 19 Mar 2001 1200 40

5 ITM001 RED 28 Mar 2001 1000 50

Enabled Fields SumIndexFields MaintainSIFTIndex

YES Rec. No. YES

YES Item No., Location Code, Invoice
Date

Amount, Qty. YES

Bucket f2 f3 f4 s5 s6

1 ITM001 01 Jan 1753 1550 90 SIFT level 0 is not
supported as a
default.

The date 01 Jan
1753 is interpreted as
an undefined date
(’0D’) on SQL Server.

1 ITM002 01 Jan 1753 400 20

1 ITM003 01 Jan 1753 1200 40

2 ITM001 BLUE 01 Jan 1753 100 10

2 ITM001 RED 01 Jan 1753 1000 50

2 ITM001 YELLOW 01 Jan 1753 450 30

2 ITM002 BLUE 01 Jan 1753 400 20
410

20.2 SIFT and the SQL Server Option for Navision
As you can see, the number of records in the SIFT table has increased dramatically.
The upper part of the SIFT table that contains the records at SIFT levels 1 and 2 has
exactly the same layout as it had in the first example (if you don't count the new
column – f4). All the changes are visible at the bottom of the SIFT table. Three more
bucket numbers corresponding to 3 more SIFT levels have been created – 3, 4 and 5.

To generate the records at SIFT level 3 in the SIFT table, all the values stored in the
Invoice Date column of the base table are converted to the "first-day-of-year" date.
This date has the format: 01 Jan XXXX, where XXXX is the year of the date that is
converted. For example, 17 Mar 2001 is converted to 01 Jan 2001 and 12 Jan 2000 is
converted to 01 Jan 2000. After this conversion the records at SIFT level 3 are
generated. They contain totals for the SumIndexFields for all the possible
combinations of Item No., Location Code and the converted dates from the Invoice
Date column. In other words, SIFT level 3 represents the Item No., Location Code,
Invoice YEAR(Date) buckets.

To generate the records at SIFT level 4 in the SIFT table, all the values stored in the
Invoice Date column of the base table are converted to the "first-day-of-month-of-
year" date. This date has the format: 01 Mmm XXXX, where Mmm is the month and
XXXX is the year of the date that is converted. 17 Mar 2001 is converted to 01 Mar
2001 and 12 Jan 2000 is converted to 01 Jan 2000. After this conversion the records

2 ITM003 YELLOW 01 Jan 1753 1200 40

3 ITM001 BLUE 01 Jan 2000 100 10

3 ITM001 RED 01 Jan 2001 1000 50

3 ITM001 YELLOW 01 Jan 2001 450 30

3 ITM002 BLUE 01 Jan 2001 400 20

3 ITM003 YELLOW 01 Jan 2001 1200 40

4 ITM001 BLUE 01 Jan 2000 100 10

4 ITM001 RED 01 Mar 2001 1000 50

4 ITM001 YELLOW 01 Mar 2001 450 30

4 ITM002 BLUE 01 Feb 2001 400 20

4 ITM003 YELLOW 01 Mar 2001 1200 40

5 ITM001 BLUE 12 Jan 2000 100 10

5 ITM001 RED 28 Mar 2001 1000 50

5 ITM001 YELLOW 17 Mar 2001 450 30

5 ITM002 BLUE 23 Feb 2001 400 20

5 ITM003 YELLOW 19 Mar 2001 1200 40

Bucket f2 f3 f4 s5 s6
411

Chapter 20. SumIndexFields
at SIFT level 4 are generated. They contain totals for the SumIndexFields for all the
possible combinations of Item No., Location Code and the converted dates from the
Invoice Date column. In other words, SIFT level 4 represents the Item No., Location
Code, Invoice MONTH-OF-YEAR(Date) buckets.

Finally, to generate the records at SIFT level 5 in the SIFT table, all the values stored
in the Invoice Date column of the base table are used as they are, without any
conversions. The records at SIFT level 5 contain totals for the SumIndexFields for all
the possible combinations of Item No., Location Code and the dates stored in Invoice
Date column. In the other words, SIFT level 5 represents the Item No., Location Code,
Invoice DATE(Date) buckets.

This configuration of SIFT levels makes calculating totals based on dates faster. If you
want to calculate the total amount of the item ITM001 that are stored in the BLUE
location and have been invoiced during the year 2000, this sum is precalculated and
stored in the s5 field of the following record in the SIFT table:

These precalculated totals will be used to produce the sums that are requested in the
following C/AL code:

SETCURRENTKEY("Item No.","Location Code","Invoice Date");

SETRANGE("Item No.",'ITM001');

SETRANGE("Location Code",'BLUE');

SETRANGE("Invoice Date",010100D,CLOSINGDATE(311200D));

CALCSUMS("Amount","Qty");

A more advanced request wants to calculate the total amount of the item ITM001 that
is stored in the BLUE location and were invoiced between 07 Mar 1998 and 14 Jun
2001. The algorithm used to make this calculation is more complicated and includes
several steps. However, the sum will still be calculated more efficiently in this way than
by directly searching the base table for the relevant records and aggregating them,
especially when the number of records is greater than it is in this simple example.

Generally, calculating sums using SIFT tables gets more efficient the greater the
amount of records that fall within the parameters specified in the filter.

SIFT Levels and Fields of the DateTime Data Type

SIFT keys can also contain fields of the DateTime data type. Fields of DateTime data
type can generate up to seven SIFT levels; one to support each level of detail that is
contained in a datetime field: year, month, day, hour, minute, second and millisecond.

However, Navision only supports three of these levels by default: year, month and day.

Furthermore, we recommend that if a SIFT key contains a field of the DateTime data
type, this is the last field in the SIFT key. If another field comes after a datetime field in

Bucket f2 f3 f4 s5 s6

3 ITM001 BLUE 01 Jan 2000 100 10
412

20.2 SIFT and the SQL Server Option for Navision
a SIFT key, the most detailed SIFT level of the datetime field is automatically
maintained as part of the SIFT level that is created for the last field in the SIFT key.
The most detailed level is milliseconds, and this means that the SIFT table will contain
a bucket for each millisecond. The SIFT table will therefore contain as many buckets
as there are records in the base table because it is almost impossible to enter two
records into the base table at the same millisecond. There is therefore no point in
maintaining this SIFT level as no performance benefit can be gained from calculating
sums based on a SIFT table that contains as many buckets as there are records in the
base table.

.
Important

If a field SIFT key contains a field of the DateTime data type, this field must be the last

.
field in the SIFT key.

SIFT Tables

Indexes It is important to know that each SIFT table has its own primary clustered index. This
index is composed of the bucket column and all the f-columns in the SIFT table. The
name of this index has the following format: <SIFT Table Name>_idx.

For example, one of the SIFT tables supported by table 17, G/L Entry is CRONUS
International Ltd_$17$1 and its primary clustered index is called CRONUS
International Ltd$17$1_idx. The fields, included in this index are: bucket, f3, f45, f23,
f24, f71 and f4.

Sometimes you can improve performance by creating non-clustered secondary index
for a SIFT table. The name of this index has the following format:<SIFT Table
Name>_hlp_idx. A non-clustered secondary index always consists of a single field.

For example, the SIFT table CRONUS International Ltd$17$1 has the non-clustered
secondary index called CRONUS International Ltd$17$1_hlp_idx and this index
consists of field f4.

Layout Estimation Before you create a SIFT key, you might want to estimate the layout of the SIFT table
that will be created and maintained to support this key. This will help you understand
the amount of support that the new SIFT key will require.

Extended Key However, before you can estimate the layout of a SIFT table you must understand the
concept of the extended key. It is a standard feature of database design to add all the
fields in the primary key to the secondary keys to facilitate sorting. This extended key
is not visible in Navision but can be seen in SQL Server:

Index Clustered Index_Keys

Cronus International
Ltd_$G/L Entry$0

Entry No.

$1 No G/L Account No., Posting Date, Entry No.
413

Chapter 20. SumIndexFields
As you can see from this table, the field in the primary key has been added to all the
secondary keys – compare it to the table on page 405. Furthermore, the fields in the
primary key are only added to the secondary keys if they are not already part of the
secondary key.

The following rules will help you calculate the number of columns and SIFT levels that
will be supported by SIFT during the SIFT key design phase:

1 The first column in a SIFT table is always the bucket column. This is where the
bucket number is stored.

2 The f-columns are next. To estimate the number of f-columns, use the following
formula:

If the last field in the SIFT key is of the Date data type, the number of f-columns in
the SIFT table is equal to the number of fields in the SIFT key.

If the last field of the SIFT key is of any other data type, the number of f-columns in
the SIFT table is equal to the number of fields in the SIFT key minus 1 (the f-field
representing the last field in this kind of SIFT key will not appear in the SIFT table).

A SIFT key based on a non-primary key in the Base table has a composite layout.
This means that after the user has included the fields in the key, all the fields in the
primary key that are still not a part of this SIFT key are also included in it. Here is an
example:

Table 17, G/L Entry - Keys (fragment):

These are the first two keys in the G/L Entry table. The first key is the primary key
and consists of a single field: Entry No. The second key is one of the secondary
keys in this table and it has SumIndexFields associated with it. This secondary key
consists of two fields: G/L Account No., Posting Date.

$2 No G/L Account No., Business Unit Code, Global
Dimension 1 Code, Global Dimension 2 Code, Close
Income Statement Dim. ID, Posting Date, Entry No.

$3 No Document No., Posting Date, Entry No.

$4 No Transaction No., Entry No.

$5 No Close Income Statement Dim. ID, Entry No.

Enabled Key SumIndexFields

YES Entry No.

YES G/L Account No.,
Posting Date

Amount, Debit Amount, Credit Amount, Additional-Currency
Amount, Add.-Currency Debit Amount, Add.-Currency
Credit Amount

Index Clustered Index_Keys
414

20.2 SIFT and the SQL Server Option for Navision
Entry No. is the field in the primary key and is added at the end of every secondary
key if the user hasn't already added it to this key. In other words, all the fields in the
primary key are always included in the SIFT key. So the extended secondary key
consists of three fields: G/L Account No., Posting Date and Entry No.

Therefore, the extended SIFT key also consists of three fields: G/L Account No.,
Posting Date and Entry No. As stated previously – all the fields in the primary key
are always included in the SIFT key.

The last field in this SIFT Key is not of the Date data type (and the corresponding f-
columns are not included in the SIFT table). That is why the number of f-columns in
the SIFT table in this example is equal to the number of fields in the SIFT key minus
1. The SIFT Table CRONUS International Ltd_$17$0 has two f-columns f3 and f4,
corresponding to the G/L Account No. and Posting Date fields in the base table,
respectively.

3 Finally, in every SIFT table there are the s-columns or sum-columns. The number of
s-columns is always equal to the number of SumIndexFields, associated with the
SIFT key. In this example six SumIndexFields are associated with the SIFT key:
Amount, Debit Amount, Credit Amount, Additional-Currency Amount, Add.-
Currency Debit Amount and Add.-Currency Credit Amount. Therefore, the
SIFT table contains six s-columns named s17, s53, s54, s68, s69 and s70 after
each of the SumIndexFields.

The number of SIFT levels that are supported can be calculated by analyzing the data
types of the fields that are included in the SIFT key:

· Every field of the Date and DateTime data types generate three SIFT levels.

· Key fields of any other data type generate only one SIFT level each.

· To optimize performance, SIFT level 0 (grand total sums) and the last SIFT level
(the so-called most detailed bucket level) are not included in SIFT tables.

· All the fields in the primary key that are not specified as part of the SIFT key are
also included in the SIFT key.

Therefore, the number of SIFT levels that are supported can be calculated as:

· the number of fields of the Date and DateTime data type that exist in SIFT key
multiplied by three, plus the number of fields of any other data type in the SIFT Key
minus one.

Furthermore, if the first field in the SIFT key is a field of the Boolean or Option data
type, this field does not generate a SIFT level. Therefore, the calculated number of
SIFT levels should be reduced by 1. In this case the first SIFT level in the table will be
2 (because SIFT level 0 is not used and the first SIFT level is ignored because the first
field in the SIFT key is Boolean). Therefore, all the records belonging to the first SIFT
level in the SIFT table will have value 2 in the bucket field. If any of the other fields in
the SIFT key is a field of the Boolean data type, it does produce a SIFT level.
415

Chapter 20. SumIndexFields
Let's take another look at our example:

It has a SIFT key that is composed of three fields: G/L Account No., Posting Date
and Entry No. There is one field of the Date data type in this key and there are two
other fields. Therefore, the number of different SIFT levels in the SIFT table CRONUS
International Ltd_$17$0 is:

1x3+2-1=4.

In this table, the first SIFT level is 1 because the first field in the key is of the Code
data type (neither Option nor Boolean). You can easily check these calculations by
using tools like SQL Query Analyzer or SQL Server Enterprise Manager to inspect the
CRONUS International Ltd_$17$0 table in your database.

Updating the Base Table

Every time you insert, delete or update data in a base table that can change the
precalculated sums that are stored in the SIFT tables for this particular base table, all
of the affected SIFT tables must also be updated. The SIFT trigger manages this
procedure automatically. However, the important thing to understand is that every
single record that is inserted into a base table can cause hundreds of records to be
updated in the SIFT tables.

The following example illustrates how this works. The base table contains the
following records:

If you, for example, insert the following record into the base table:

The SIFT trigger will update the following rows in the SIFT table:

At SIFT level 1, one record is updated:

Rec. No. Item No. Location Code Invoice Date Amount Qty.

1 ITM001 BLUE 12 Jan 2000 100 10

2 ITM002 BLUE 23 Feb 2001 400 20

3 ITM001 YELLOW 17 Mar 2001 450 30

4 ITM003 YELLOW 19 Mar 2001 1200 40

5 ITM001 RED 28 Mar 2001 1000 50

6 ITM002 BLUE 12 Feb 2001 2000 80

bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002
are affected by adding the
new record.

1 ITM002 2400 100

Updated values: (400) (20)
416

20.2 SIFT and the SQL Server Option for Navision
At SIFT level 2, one record is updated:

At SIFT level 3, one record is updated:

At SIFT level 4, one record is updated:

At SIFT level 5, one new record is inserted:

bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002 in
the BLUE location are
affected by adding the new
record.

2 ITM002 BLUE 2400 100

Updated values: (400) (20)

Bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002 in
the BLUE location, posted in
the year 2001 are affected by
adding the new record.

3 ITM002 BLUE 01 Jan
2001

2400 100

Updated values: (400) (20)

Bucket f2 f3 f4 s5 s6

The totals for the Amount
and Qty. fields for ITM002 in
the BLUE location, posted in
February 2001 are affected
by adding the new record.

4 ITM002 BLUE 01 Feb
2001

2400 100

Updated values: (400) (20)

Bucket f2 f3 f4 s5 s6

5 ITM001 YELLOW 17 Mar
2001

2400 30

5 ITM002 YELLOW 12 Feb
2001

2000 80 This record is inserted at
SIFT level 5.

5 ITM002 BLUE 23 Feb
2001

400 20

5 ITM003 YELLOW 19 Mar
2001

1200 40
417

Chapter 20. SumIndexFields
The SIFT trigger automatically performs all these modifications when the record is
inserted into the base table. As you can see, inserting this single record in the base
table causes modifications to be made to multiple records in the SIFT table. In this
example only a few records were affected by the changes to the base table.

Some of the tables in Navision contain many large SIFT keys. This means that
updating the SIFT tables can take a long time. This decrease in performance when
updating the base tables is the price that must be paid if the system is to contain
SumIndexFields that facilitate rapid calculations. That is why it is crucial that you
choose the right configuration of table keys when you are designing a table.

Keeping your keys as short and as selective as possible can dramatically reduce the
complexity of the layout of the SIFT tables and reduce the time required by the SIFT
trigger to update the SIFT tables. Keeping the primary key of the table as short as
possible is particularly important because all of the fields in the primary key are always
included in every SIFT key that you create in that table.

Deleting Records from the Base Table

When you delete a record from a base table, the SIFT table is updated in the normal
way and all of the aggregated totals are updated. However, the record is not deleted
from the SIFT table; its corresponding totals in the SIFT table are set to zero. The
entries in the SIFT table are not removed because there is a performance benefit to
be gained for future updates by keeping them.

Configuring the SIFT Levels
As stated earlier, both SIFT level 0 (the Grand Total) and the most detailed SIFT level
are not maintained as a default. However, you can decide to maintain these SIFT
levels if you need them. Furthermore, you can also decide not to maintain any of the
other SIFT levels if you do not need them.

In the following example the MaintainSIFTIndex property of the key is set to Yes,
indicating that SIFT structures necessary for maintaining the SumIndexFields
associated with this key have been created on SQL Server.

If you no longer want to maintain these SIFT structures, you must set the
MaintainSIFTIndex property for this key to No. For more information about the factors
that must be taken into consideration before deciding whether or not to maintain these
structures, see page 420.

To change the SIFT levels that are maintained:

1 Open the Object Designer and click Table.

2 Select the table that contains the SIFT indexes that you want to modify and click
Design. In this example we are using table 17, G/L Entry.
418

20.2 SIFT and the SQL Server Option for Navision
3 Click View, Keys to open the Keys window for this table:

4 Select the key that you want to modify and click View, Properties. The Key –
Properties window for this key appears:

5 In the Value field of the SIFTLevelsToMaintain property, use the AssistButton k to
open the SIFT Level List window.

This window lists all the SIFT levels and their components that have been created
to support the SumIndexFields associated with this key.

6 Enter or remove a check mark from the Maintain field to specify whether or not you
want to maintain a particular SIFT level.
419

Chapter 20. SumIndexFields
.
Important

Adding or removing a SIFT level will mean that parts of the corresponding SIFT table

.
will have to be rebuilt. This could be time-consuming.

7 If the SIFT Level field contains so much information that it cannot be displayed in
the window, use the AssistButtonp in the SIFT Level field to open the SIFT Level
Viewer window.

This window lists all of the components that make up this SIFT level.

SIFT and Performance
As explained earlier, every time you update a key or a SumIndexField in a base table
all of the SIFT tables that are associated with the base table must also be updated.
This means that the number of SIFT tables that you create, as well as the number of
SIFT levels that you maintain, affects performance.

If you have a very dynamic base table that constantly has records inserted, modified
and deleted, the SIFT tables that are associated with it will constantly have to be
updated.

The SIFT tables can get very large, both because of the new records that are entered
and because the records that are deleted from the base table are not removed from
the SIFT tables. This can also badly affect performance, particularly when the SIFT
tables are queried to calculate sums.

Factors to Consider The factors that you must take into consideration when you deal with any performance
problems that arise include:

· Have you designed your SIFT indexes optimally?

Supporting too many SIFT indexes will affect performance.

Having unnecessary date fields in the SIFT indexes of the base table will affect
performance because they create three times as many entries as an ordinary field.

Supporting too many fields in the SIFT indexes will also affect performance.
420

20.2 SIFT and the SQL Server Option for Navision
The fields in the SIFT index that are used most regularly in queries must be
positioned to the left in the SIFT index. As a general rule, the field that contains the
greatest number of unique values must be placed on the left with the field that
contains the second greatest number of unique values on its right and so on.
Integer fields generally contain the greatest number of unique values and Option
fields contain a relatively small number of values.

· Are there too many SIFT levels?

Maintaining the Grand Total (SIFT level 0) can affect multiuser performance and
lead to concurrency problems because this total must be updated every time a
record is entered or modified in the base table.

Maintaining the most detailed SIFT level is not recommended because you will not
need totals that are this detailed often enough to justify the cost to performance.

You must regularly use the totals generated by the SIFT levels that are maintained
for a particular SIFT index to justify the cost in performance of maintaining these
SIFT levels. If the filtered set of records that the totals are based on is large, it is
generally worthwhile maintaining the SIFT structures. If the filtered set of records
that the totals are based on is small, do not maintain the SIFT structures.

Consider the costs and the benefits of maintaining SIFT tables and SIFT levels:

These graphs illustrate some of the factors that must be taken into consideration
before deciding to maintain the SIFT structures and determining how many SIFT
levels to maintain.

· You can prevent the SIFT tables from being updated by setting the
MaintainSIFTIndex property of the index in the base table to No. This means that
you no longer benefit from SIFT's ability to calculate sums quickly. However, the
SIFT functionality is still available.

Cost Benefit

Updates to the SIFT tables Fast calculation of sums

Potential locking conflicts

No. of records No. of
updates toin filter
SIFT tables

Maintain

Benefit

Benefit

SIFT structures

when
calculating sums

Maintain
SIFT structures
421

Chapter 20. SumIndexFields
· You can reduce the cost of updating the SIFT table by not maintaining all of the
SIFT levels that are generated by a particular index. This means that some totals
are not readily available and will have to be calculated when you need them.

· You can reduce the cost of updating and limit the size of the SIFT table by
optimizing it and removing the records that contain zero values in all the
SumIndexFields.

· If the base table doesn’t grow or only grows slowly, there is no need to set the
MaintainSIFTIndex property of any indexes that contain SumIndexFields to Yes. If
the base table does grow, you ought to set the MaintainSIFTIndex property of any
indexes that contain SumIndexFields to Yes.

.
Important

It is important that you remember to carry out some tests every time you make any
changes to the SIFT structures in Navision. You must make sure that the changes that
you have made do not cause problems in any other areas of the application. You must

.
also ensure that your changes do not have a negative affect on performance.

.
Note

If you set the MaintainSIFTIndex property to No, you should not set the

.
MaintainSQLIndex to No.

Optimizing SIFT Tables

If one of your SIFT tables becomes very large you might want to determine whether or
not it should be optimized.

Run a SQL query on the SIFT table to find out how many records there are with zero
values in all the sum fields in the table. If there are a large number of these records,
you can initiate the optimization process in Navision and remove them.

The optimization process removes any entries that contain zero values in all numeric
fields from each SIFT table. The removal of these redundant entries frees up space
and makes updating and summing SIFT information more efficient.

To initiate the optimization process click File, Database, Information, Tables, Optimize.

For more information about optimizing SIFT tables, see the chapter "Working with
Databases" in the manual Installation & System Management: Microsoft Business
Solutions–Navision SQL Server Option.
422

Chapter 21
Numbering in Navision

This chapter explains how items, such as documents, are
numbered in Navision. The information is helpful if you use
or are planning to use the SQL Server Option for Navision.
We also recommend that you read this chapter if you use
Navision Database Server and want Navision to sort
numbers correctly when you view data with external
programs.

This chapter contains the following section:

· How Does Number Sorting Work?

Chapter 21. Numbering in Navision
21.1 HOW DOES NUMBER SORTING WORK?

Code fields in Navision can contain both numerical values and text strings. Navision
ensures that numbers kept in code fields on Navision Database Server are sorted in
the correct numerical order. However, this does not necessarily happen when you use
external programs to access the same data. External programs may view and sort
these numbers as text. This means that when Navision sorts the data, comparisons
are made character by character, and not by comparing the numeric content of the
strings.

Numbers that you keep in code fields on SQL Server using the Varchar SQL data type
are not sorted in the correct numerical order. The SQL Server Option for Navision
sorts the numbers as if they were text strings. The following table illustrates the
differences that occur:

To avoid this problem, we recommend that you use a numerical series that has a fixed
length. You can do this in three ways:

· Define a numerical series as consisting of a predefined number of digits that start
with a digit other than zero, for example, 100-399 (300 numbers). If this numerical
series is too short for your requirements, you can start a new numerical series, for
example, 40,000-69,999 (30,000 numbers). If this numerical series is too short, you
can start a new one such as 7,000,000-9,999,999 (3,000,000 numbers). Users will
quickly get used to entering numbers that have a fixed length, and the numbers will
be sorted correctly.

This is the solution that we recommend because you can now define the SQL data
type as being either Varchar or Integer and the sorting will still be correct.

Numerical Sorting Text Sorting

1 1

2 10

3 100

4 2

10 3

100 4

1001

1002

1003

.

.

9999
424

21.1 How Does Number Sorting Work?
· Define a numerical series that consists of a predefined number of digits and that
starts with a letter, such as A001-A999. This series will be sorted correctly. When
the series is complete, you can define a new series by starting with a different letter.
The users will quickly get used to entering numbers that have a fixed length, and
the numbers will be sorted correctly.

· Define a numerical series as consisting of a predefined number of digits that start
with zeros, for example, 001-999.

We do not recommend this solution because there are several inherent drawbacks.
Firstly, users tend to ignore the zeros and to refer to the first number as 1. Users
may, therefore, omit the zeros when entering numbers. Secondly, the numerical
series feature in Navision does not permit numbers that start with zero.
Furthermore, the SQL Server Option for Navision will not allow you to save
numbers that are defined according to this system as the Integer SQL data type.

.
Important

As a general rule, data types used in fields that are related to each other must be
compatible. Therefore, when you use a SQL data type in a field, you will normally have
to change the SQL data type settings of related fields in other tables. For example, in
the General Ledger application area, if you change the SQL data type of the No. field
in the G/L Account table from Varchar to Integer (or if you change the data type from
Code to Text), you must change the data type of the G/L Account No. fields in the
G/L Entry and G/L Budget Entry tables to the corresponding data type. Failure to do
so results in the display of incorrect totals, based on these tables, in the chart of

.
accounts and elsewhere.

Numbering Principles
To ensure that numbers kept in code or text fields are sorted correctly, irrespective of
which database server you are using, you must use the following principles:

· Always use a numerical series that has a fixed length, for example, 100-399.

· Never use a numerical series such as 1-999 in code or text fields.

· Never use a numerical series such as 001-999 in code or text fields.

A001

A002

A003

.

.

A999
425

Chapter 21. Numbering in Navision
Filters
If you do not follow the numbering principles, problems will arise when you apply filters
that involve numbers in Navision. Here is an example:

· If you have not used a numerical series that has a fixed length, when you apply a
filter, for example, 10..20, the result will be 10,100......20.

When you follow the numbering principles, you must remember to use these for filters
that you apply. Here are two examples:

· If you do not follow the numbering principles when you apply a filter, for example,
2..10, the result will contain no records. This is because 2 comes after 10.

· You have followed the numbering principles and are using three-digit numbers. If
you forget to follow the same principles when you apply a filter, for example, 10..20,
the result will be 100,101,102......199.
426

Chapter 22
C/SIDE in Multiuser Environments

This chapter explains how the DBMS handles data integrity
in a multiuser environment. It describes how the C/SIDE
system handles situations where more than one user or
process try to change the same object.

This chapter contains the following section:

· Ensuring Data Integrity in a Multiuser Environment

· Locking in Navision – a Comparison of the two Server
Options

Chapter 22. C/SIDE in Multiuser Environments
22.1 ENSURING DATA INTEGRITY IN A MULTIUSER ENVIRONMENT

Data integrity deals with the reliability of the data stored in the database, that is, the
requirement that the database must describe the real world as accurately as possible.
All access to the data in your database goes through the DBMS (Database
Management System) as illustrated in the figure below:

The DBMS controls the interaction of the user with the database to ensure that a
number of data integrity constraints are observed. By observing these constraints, the
DBMS protects your data from damage or corruption. The DBMS is a very complex
unit in your database system, but the means to obtain data integrity are centered
around a few basic concepts:

· write transactions and recovery

· read consistency and concurrency

· table locking

· deadlock detection

· committing updates

These concepts are discussed and explained in the following sections.

Write Transactions and Recovery
A write transaction in C/SIDE is defined as an atomic unit of work on the database
which is completed either entirely or not at all. In other words, a transaction is a way to
encapsulate a sequence of read and write operations on the database in order to
ensure that either all or none of the operations is performed. The concept of write
transactions is a general C/SIDE facility that is used both in single- and multiuser
environments.

When a transaction has been submitted to the C/SIDE DBMS, the system is
responsible for making sure that:

· all the transaction operations are completed successfully and their effect is
recorded permanently in the database, or

· the transaction has no effect at all on the database.

Logical Database

The DBMS
includes
mechanisms to
ensure the integrity
of your data

Interface

DBMS
428

22.1 Ensuring Data Integrity in a Multiuser Environment
The DBMS must prevent the following situation from occurring: some transaction
operations are applied to the database while other operations in the same transaction
are not applied. A situation like this could occur if a transaction fails while executing.

Some typical reasons for a transaction to fail are:

· The user decides to abort the transaction.

· Missing information makes it impossible to complete the transaction.

· The system crashes, due to hardware or software errors.

· There are operation errors, such as overflow or division by zero.

If the transaction is aborted, all tables are restored to the state they had before the
transaction started.

A typical example of a write transaction is illustrated by a banking system where $100
must be transferred from one account to another. This involves two operations in a
single database:

1 Subtract $100 from account A.

2 Add $100 to account B.

If a power failure or some other fatal error interrupts the program after the first
operation, the database is not in a consistent state, because the second operation has
not been completed. By bundling both operations into a single transaction, either none
or both of the operations are executed and the data will always be consistent.

More on Write Transactions

The previous section explained that the database in C/SIDE will be consistent whether
a transaction is committed or aborted. The way C/SIDE handles write transactions and
keeps the database consistent is different from traditional approaches. Traditionally,
database systems contain a facility that automatically maintains a log file which
records all changes to the database. This log file contains images of a record before it
is modified and after it is modified, "before" and "after" images. The changes recorded
in the log file can be used to recover the database from failures.

Assume that an application program aborts because of power failure or is aborted by
the operator. The database is now in an inconsistent state, and all modifications
already made to the database must be cancelled. In common database systems this is
achieved by so-called rollback recovery, that is, by backing out the updates of the
application program. This rollback is performed by reading the log file backwards and
undoing the recorded changes to the database, until the point where the application
program started. This restores the modified records to their original contents.

The C/SIDE DBMS does not need to use a log file because the C/SIDE database is
data-version oriented. This means that each time a transaction is committed, a new
version of the database is created. While you enter new data in the database your
changes are private; not until you commit the changes, does the new data become
public and establish the newest version. The DBMS allows different applications to
access and modify the database concurrently by letting them work on individual
429

Chapter 22. C/SIDE in Multiuser Environments
versions that are snapshots of the database taken at the point in time where the
applications start to access the database. The advantages of the data version
approach will become clear as you read through the following sections.

Read Consistency and Concurrency
C/SIDE is data-version oriented, meaning that each time a write transaction is
performed, a new version of the data in the database is created. The figure below
shows three applications accessing the same database. Imagine that the first access
is made by a report. The second access is made by a user who inserts new entries in
the database, and the third access is made by a backup procedure.

In this example, the generation of a report is a time-consuming process, and while the
report is generated, another user enters or modifies records in the database. As each
entry is committed, a new version of the database is created, but as the report started,
a snapshot of the database was made and the report continues to work on version A
of the database. A third user starts a backup procedure. When the backup starts, a
snapshot of the current (most recent) version of the database, B, is made, and the
backup works on this version, uninfluenced by new data that the second user
continues to enter in the system. Working with data versions makes it possible for
many users to access the database without interfering with each other.

The implications of the data-version approach are many; most important is that
different applications may be reading different versions of the same database. These
versions are snapshots of the database at the time when the application started to
access the database. In this way the DBMS allows for concurrency while still
maintaining read consistency. If the accesses involve only data retrieval and no
changes, then the newest version will persist for all applications. There will be no new
version until a write transaction is performed.

When you update the database, your modifications are private. Only when you commit
your updates do your modifications become public. Your newly-committed updates
plus the part of the database which was not modified make up the newest version.

Time

Report

Backup

Entry

Version A B C D

(A)

(B)

Three applications
accessing different
versions of the
database
430

22.1 Ensuring Data Integrity in a Multiuser Environment
What is a Data Version?

The data in the C/SIDE database is stored in a well known data structure that
resembles a tree. A tree data structure is formed of nodes. Each node in the tree,
except for a special node called the root, has one parent node and one or more child
nodes. The root node has no parent. A node that has no child node is called a leaf; a
non-leaf node is called an internal node. The level of a node is defined as one more
than the level of its parent, with the level of the root node being zero.

The data structure used in the C/SIDE database is called a B+ tree. This means that
the tree structure is balanced and that the data (records) are stored only in the leaf
nodes, not in the internal nodes. A balanced tree has the advantage that it always
contains the minimum number of levels necessary to contain the nodes, so all search
paths will be the shortest possible. A B+ tree structure is an efficient data structure
that enables fast searches to be performed.

EXAMPLE

Imagine that the tree structure in your database contains a branch with customers A, B and C.
Furthermore there are two free database blocks available.

Assume that you need to modify customer A and C. When you update the records, the DBMS
makes a copy of the original. As illustrated in the figure below, the copies will use two free
database blocks. You will then modify the copies, and the system will create a new internal node.

If an error occurs during the transaction, or the user decides to abort the changes, the database
blocks occupied by the copied branch will be freed and be available for new database updates.

If the transaction is committed, this new internal node will replace the old node, and the database
blocks used by the old versions of customer A and C will now be available as free database blocks
that can be used by database updates.

The database contains a number of historical versions. Gradually, as the free area in
the database is consumed by succeeding historical versions, new versions begin to
replace the oldest versions.

B C

B C

A1

C1

A

A

Free

Free

Free database blocks

Database
Version 1

Database
Version 2
431

Chapter 22. C/SIDE in Multiuser Environments
Slow operations can run into trouble in this environment. Suppose Application A is
reading data from the latest version, while generating a very time-consuming report. In
the meantime, Application B begins performing write transactions which consist of
order entries.

As order entries are added to the database, newer versions of the database are
created. The maximum number of historical versions in your database depends upon
the space in the database that currently is not used by the newest version, that is:

At some point the data version accessed by A becomes the oldest complete data
version. But B needs a database block from this version to complete its modifications.

This conflict is solved by the DBMS by giving priority to the write transaction and
ejecting application A. A runtime error message is sent to A on its next read
operation–"Data version is no longer valid" – and it is forced to restart the process with
the newest version. But as long as B continues and the space in the database
available for historical versions remains the same, there is little hope that A will be
able to generate the report. (Enlarging the database could solve the problem.)

What is Table Locking?

In multiuser environments, the DBMS ensures the integrity of the data by setting write
locks on all the tables you are updating. This prevents other users from making
changes to the same tables.

While write operations automatically lock a table during updates, you can explicitly
lock a table, even if you are not certain a write operation will be performed. By locking
a table immediately before accessing a record, you are assured that the data you
might change in the record conforms to the data you have read, even if some time has
elapsed. A write lock does not influence data retrieval. This means that locking a table
does not prevent other users from gaining read access to the records in the table.

The maximum defined size of the database
– The amount of space currently used to hold the newest version

Space available for historical versions
432

22.1 Ensuring Data Integrity in a Multiuser Environment
With Navision Database Server, a write lock is active until the write transaction is
either aborted or committed. This figure uses pseudo-language syntax to illustrate the
scope of write locks.

This illustrates both an explicit lock and an automatic lock. Line (1) in the write
transaction explicitly locks table A. If this explicit lock were not set on table A, the
DBMS would automatically lock this table when a record is inserted (3). Table B is not
locked explicitly, but is locked automatically by the DBMS when a record is inserted
(4). Both locks are active until the EndWriteTransaction command is executed in
line (5).

What Is Deadlock Detection?

The correct functioning of a multiuser system will depend on the coordination of the
activities. If transaction processes require write access to several tables at once, care
must be taken to avoid the situation where one transaction process can obtain access
to some of the necessary tables and another can obtain others of them, but neither of
them can proceed without the other having finished. This causes each transaction
process to wait for the other to finish. As a result both processes will have to wait
forever. Such a situation is known as a Deadlock (or as Deadly Embrace).

In order to avoid deadlock situations, the DBMS has been provided with an automatic
deadlock detection mechanism, which detects these situations and ejects one of the
write transactions. The next figure illustrates how a deadlock situation can arise.

.

.
BeginWriteTransaction;
 LockTable(TableA) (1)
 FindRec(TableA, ...); (2)
 .
 .
 InsertRec(TableA, ...) (3)
 .
 InsertRec(TableB, ...); (4)
 .
 .
 .
 .
 .
EndWriteTransaction (5)
.
.

Ta
bl

e
A

lo
ck

ed

Ta
bl

e
B

 lo
ck

ed

The scope of
write locks
433

Chapter 22. C/SIDE in Multiuser Environments
The DBMS will always eject the application which causes the deadlock to occur–as in
the example above. This rule applies for any number of applications involved in a
deadlock.

Are There Any Differences between Commit in C/AL and C?

Although the concept of committing an update is the same whether you are using
C/AL code or C/FRONT (the toolkit that makes it possible to develop applications in
the C programming language that access a C/SIDE database), there are some minor
differences. This subsection explains these differences in detail.

When you want to perform an update using C/FRONT, the first thing you must do is to
tell the system explicitly that you want to perform a write transaction (use DBL_BWT,
BeginWriteTransaction.) Likewise you must use DBL_EWT
(EndWriteTransaction) to explicitly tell the system when your write transaction
ends.

When you use C/AL code to perform updates to a C/SIDE database, these
BeginWriteTransaction and EndWriteTransaction statements are handled
implicitly by the system. That is, the system automatically executes these commands
before the C/AL code is entered and after the C/AL code has been executed. This
means that if you only need to perform a single write transaction you do not have to
commit your update explicitly: it is done automatically by the system. If, however, you

Application 1 Application 2

Ti
m

e

LockTable(A)

Table A now Locked
LockTable(B)

Table B now locked
LockTable(B)

Wait for table B to
be unlocked LockTable(A)

Wait for table A to
be unlocked

The DBMS detects a deadlock situation, and
ejects application 2.

Table B locked

Application 2 ejected
and transaction aborted.
Lock attempt on Table A
cancelled and Table B
automatically unlocked

The automatic deadlock
detection ejects one of
the applications
434

22.1 Ensuring Data Integrity in a Multiuser Environment
need to perform more than one write transaction, you have to use COMMIT() in order
to separate the transactions.

The next figure illustrates these differences.

The C/AL code contains two write transactions. As the execution of the C/AL code
begins, write transactions are automatically enabled. By issuing the command
COMMIT(), you tell the system that the first write transaction has ended, and you
prepare the system for the second. As the execution of the C/AL code has been
completed, the system automatically ends the second write transaction. When you
use C code to perform the same transactions, each transaction must explicitly be
encapsulated by DBL_BWT() and DBL_EWT() commands.

BeginWriteTransaction

C/AL Module

C/AL Statements

Commit(...)

C/AL code C code

DBL_BWT();

C code

DBL_EWT();

DBL_BWT();

DBL_EWT();

C code

}
}

}
}

1. Trans.

2. Trans.
2. Trans.

1. Trans.

EndWriteTransaction

C/AL Statements

Differences in
committing
updates in C/AL
and C code
435

Chapter 22. C/SIDE in Multiuser Environments
22.2 LOCKING IN NAVISION – A COMPARISON OF THE TWO SERVER OPTIONS

This section explains the differences and similarities in the way that locking is carried
out in the two database options for Navision: Navision Database Server and the SQL
Server Option.

.
Important

The following information only covers the default transaction type UpdateNoLocks for
the SQL Server Option for Navision. For information about the other transaction types,

.
see the online C/SIDE Reference Guide.

Both Server Options

Locking In the beginning of a transaction, the data that you read will not be locked. This means
that reading data will not conflict with transactions that modify the same data. If you
want to ensure that you are reading the latest data from a table, you must lock the
table before you read it.

Locking Single
Records

Normally, you must not lock a record before you read it even though you may want to
modify or delete it afterwards. When you try to modify or delete the record, you will get
an error message if another transaction has modified or deleted the record in the
meantime. You receive this error message because C/SIDE checks the timestamp
that it keeps on all of the records in a database and detects that the timestamp on the
copy you have read is different from the timestamp on the modified record in the
database.

Locking Record Sets Normally, you lock a table before reading a set of records in that table if you want to
read these records again later to modify or delete them. You must lock the table to
ensure that another transaction does not modify these records in the meantime.

You will not receive an error message if you do not lock the table even though the
records have been modified as a result of other transactions being carried out while
you were reading them.

Minimizing Deadlocks

To minimize the amount of deadlocks that occur, you must lock records and tables in
the same order for all transactions. You can also try to locate areas where you lock
more records and tables than you actually need, and then diminish the extent of these
locks or remove them completely. This can prevent conflicts on these records and
tables.

If this does not prevent deadlocks, you can, as a last resort, lock more records and
tables to prevent transactions from running concurrently.

If you cannot prevent the occurrence of deadlocks by programming, you must run the
deadlocking transactions separately.
436

22.2 Locking in Navision – a Comparison of the two Server Options
Locking in Navision Database Server
Data that is not locked will be read from the same snapshot (version) of the database.

If you call or a modifying function (for example, INSERT, MODIFY or DELETE), on a
table, the whole table will be locked.

Locking Record Sets As mentioned previously, you will normally lock a table before reading a set of records
in that table if you want to read these records again later to modify or delete them.
With Navision Database Server, you can choose to lock the table with
LOCKTABLE(TRUE,TRUE) after reading the records for the first time instead of locking
with LOCKTABLE before reading the records for the first time.

When you try to modify or delete the records, you will receive an error message if
another transaction has modified the records in the meantime.

You will also receive an error message if another transaction has inserted a record
into the record set in the meantime. However, if another transaction has deleted a
record from the record set in the meantime, you will not be able to notice this change.
The purpose of locking with LOCKTABLE(TRUE,TRUE) after reading the records for the
first time is to postpone the table lock that Navision Database Server puts on the table.
This improves concurrency.

Locking in SQL Server
When data is read without locking, you will get the latest (possibly uncommitted) data
from the database.

If you call Rec.LOCKTABLE, nothing will happen right away. However, when data is
read from the table after LOCKTABLE has been called, the data will be locked.

If you call INSERT, MODIFY or DELETE, the specified record will be locked immediately.
This means that two transactions, which either insert, modify or delete separate
records in the same table will not conflict. Furthermore, locks will also be placed
whenever data is read from the table after the modifying function has been called.

When you call INSERT, MODIFY or DELETE, only one record is locked when no
SumIndexFields are maintained in the table or when calling INSERT, MODIFY or
DELETE doesn’t require any SumIndexFields to be updated. If you place a lock on a
sum, you prevent other transactions from updating that sum.

It is also important to note that even though SQL Server initially puts locks on single
records, it can also choose to escalate a single record lock to a table lock. It will do so
if it determines that the overall performance will be improved by not having to set locks
on individual records. The improvement in performance must outweigh the loss in
concurrency that this excessive locking causes.

If you specify what record to read, for example, by calling Rec.GET, that record will be
locked. This means that two transactions, which read specific, but separate, records in
a table will not cause conflicts.
437

Chapter 22. C/SIDE in Multiuser Environments
If you browse a record set (that is, read sequentially through a set of records), for
example, by calling Rec.FIND('-') or Rec.NEXT, the record set (including the empty
space) will be locked as you browse through it. However, the locking implementation
used in SQL Server will also cause the record before and the record after this record
set to be locked. This means that two transactions, which just read separate sets of
records in a table will cause a conflict if there are no records between these two record
sets. When locks are placed on a record set, other transactions cannot put locks on
any record within the set.

Note that C/SIDE decides how many records to retrieve from the server when you ask
for the first or the next record within a set. C/SIDE then handles subsequent reads
with no additional effort, and fewer calls to the server will give better performance. In
addition to improving performance, this means that you cannot precisely predict when
locks are set when you browse.

The SQL Server Option for Navision only supports the default values for the
parameters of the LOCKTABLE function – LOCKTABLE(TRUE,FALSE).

.
Note

Navision tables that have keys defined for SumIndexFields cause additional tables to
be created in SQL Server to support SIFT functionality. One table is created for each
key that contains SumIndexFields. When you modify a Navision table that has keys
defined for SumIndexFields, modifications can be made to these SQL Server tables.
When this happens, there is no guarantee that two transactions can modify different

.
records in the Navision table without causing conflicts.

Locking Differences in the Code
A typical use of LOCKTABLE(TRUE,TRUE) in Navision Database Server is shown in the
first column of the table below. The equivalent code for the SQL Server Option is
shown in the second column. The code that works on both servers is shown in the
third column. The RECORDLEVELLOCKING property is used to detect whether record
level locking is being used. If this is the case, then you are using the SQL Server
Option for Navision. This is currently the only server that supports record level locking.

Navision Database Server SQL Server

IF Rec.FIND('-') THEN Rec.LOCKTABLE;

 REPEAT IF Rec.FIND('-') THEN

 UNTIL Rec.NEXT = 0; REPEAT

Rec.LOCKTABLE(TRUE,TRUE); UNTIL Rec.NEXT = 0;

IF Rec.FIND('-') THEN IF Rec.FIND('-') THEN

 REPEAT REPEAT

 Rec.MODIFY; Rec.MODIFY;

 UNTIL Rec.NEXT = 0; UNTIL Rec.NEXT = 0;
438

22.2 Locking in Navision – a Comparison of the two Server Options
Both Server Types

IF Rec.RECORDLEVELLOCKING THEN

 Rec.LOCKTABLE;

IF Rec.FIND('-') THEN

 REPEAT

 UNTIL Rec.NEXT = 0;

IF NOT Rec.RECORDLEVELLOCKING THEN

 Rec.LOCKTABLE(TRUE,TRUE);

IF Rec.FIND('-') THEN

 REPEAT

 Rec.MODIFY;

 UNTIL Rec.NEXT = 0;
439

Chapter 22. C/SIDE in Multiuser Environments
440

Chapter 23
Caption Class Functionality

This chapter describes the caption class functionality and
explains how the CaptionClassTranslate function trigger (ID
15) in Codeunit 1 deals with it.

The chapter covers the following subjects:

· Syntax

· Function Code

Chapter 23. Caption Class Functionality
23.1 SYNTAX

If the CaptionClass property of a field or a control is defined, the function trigger
CaptionClassTranslate (ID 15) in Codeunit 1 (ApplicationManagement) is called upon
by the system every time the field or control is to be shown. The purpose of this
function is to replace the caption, as defined in the design of the field or control, with
another string.

The syntax of this procedure is:

CaptionClassTranslate (<LANGUAGE>;<CAPTIONEXPR>)

LANGUAGE

____<DataType> := [Integer]

____<DataValue> := ……

CAPTIONEXPR

____<DataType> := [String]

____<Length> <= 80

____<DataValue> := <CAPTIONAREA>,<CAPTIONREF>

As you can see, two parameters will be passed to this function when called upon:

· LANGUAGE

· CAPTIONEXPR

LANGUAGE The LANGUAGE parameter is automatically mentioned by the system and is the
Windows Language ID of the active language in Navision.

EXAMPLE

If the active language in Navision is English (United States), LANGUAGE will hold the value 1033.

CAPTIONEXPR The CAPTIONEXPR parameter will hold the content of the CaptionClass property of
the field or control.
442

23.1 Syntax
EXAMPLE

In Table 13 (Salesperson/Purchaser), the field Global Dimension 1 Code (5050) has the string
'1,1,1' as its CaptionClass. If we open the Salespeople/Purchasers form, activate the debugger
and type Ctrl + F8 (to open the Zoom window), the CaptionClassTranslate function trigger will pop
up.

In the C/AL Locals window, we can see that the CaptionExpr parameter holds the string '1,1,1'.

.
Note

In the Zoom window, we will not find the field Global Dimension 1 Code. Instead we
see the field name Department Code – as a result of the CaptionClass property and

.
the CaptionClassTranslate function trigger.

Function Code
In a way we could say that the function trigger CaptionClassTranslate (ID 15) is a
system trigger. Here a programmer can intervene every time the CaptionClass
property – if defined – is evaluated by the system.

If, in a standard CRONUS database, we take a look at this trigger, we see that there
already has been written code in it:

CaptionClassTranslate(Language : Integer;CaptionExpr : Text[80]) :

Text[80]

CommaPosition := STRPOS(CaptionExpr,',');

IF (CommaPosition > 0) THEN BEGIN

__CaptionArea := COPYSTR(CaptionExpr,1,

CommaPosition - 1);
443

Chapter 23. Caption Class Functionality
__CaptionRef := COPYSTR(CaptionExpr,CommaPosition + 1);

__CASE CaptionArea OF

____'1' : EXIT(DimCaptionClassTranslate(Language, CaptionRef));

____'2' : EXIT(VATCaptionClassTranslate(Language, CaptionRef));

__END;

END;

EXIT(");

This standard code analyzes and unravels the CaptionExpr parameter. As we saw
above, this parameter has the syntax:

CAPTIONEXPR := <CAPTIONAREA>,<CAPTIONREF>

Depending upon the value of the CAPTIONAREA, different procedures will be called
upon. Look at the CASE … OF statement, either:

DimCaptionClassTranslate(Language, CaptionRef)

or

VATCaptionClassTranslate(Language, CaptionRef)

In the following, there is a detailed description of these functions.

CAPTIONAREA So the first part of the CaptionExpr parameter, up to the first comma, is the
CAPTIONAREA, with the syntax:

CAPTIONAREA

__<DataType> := [SubString]

__<Length> <= 10

__<DataValue> := 1..9999999999

__// 1 for Dimension Area

__// 2 for VAT

.
Note

In the standard functionality, only two CAPTIONAREA values are defined: 1 for

.
Dimension Area and 2 for VAT.

CAPTIONREF So the second part of the CaptionExpr parameter, after the first comma, is the
CAPTIONREF, with the syntax:

CAPTIONREF

<DataType> := [SubString]

<Length> <= 10

<DataValue> :=

IF (<CAPTIONAREA> = 1)

__<DIMCAPTIONTYPE>,<DIMCAPTIONREF>

IF (<CAPTIONAREA> = 2)

__<VATCAPTIONTYPE>,<VATCAPTIONREF>
444

23.1 Syntax
As you can see, depending upon the value of the CAPTIONAREA, CAPTIONREF can
consist of either one (VATCAPTIONTYPE) or two references
(VATCAPTIONTYPE,VATCAPTIONREF or DIMCAPTIONTYPE,DIMCAPTIONREF -
and even more than two as we will see in the following).

.
Note

This is the way the standard functionality in Navision deals with the CaptionClass
property. Every field or control with a defined CaptionClass has a string in this property
with syntax as described above. For new functionality, a programmer could define
other syntaxes and add code to the function trigger CaptionClassTranslate (ID 15) to

.
handle these syntaxes.

Syntax for CAPTIONREF

As described above, the CAPTIONREF part of the CaptionExpr parameter can have
the following syntax:

CAPTIONREF := < DIMCAPTIONTYPE >,< DIMCAPTIONREF >

if CAPTIONAREA equals 1, or

CAPTIONREF := < VATCAPTIONTYPE >,< VATCAPTIONREF >

if CAPTIONAREA equals 2. Below we find the syntax for these different sub
references.
445

Chapter 23. Caption Class Functionality
Dimension Area
If the CAPTIONAREA equals 1, the caption of the field or control should be retrieved
from the dimensions information.

DIMCAPTIONTYPE This reference determines where the main part of the new caption should be retrieved
from. The syntax is:

DIMCAPTIONTYPE

__<DataType> := [SubString]

__<Length> <= 10

<DataValue> := 1..6

// 1 to retrieve Code Caption of Global Dimension

// 2 to retrieve Code Caption of Shortcut Dimension

// 3 to retrieve Filter Caption of Global Dimension

// 4 to retrieve Filter Caption of Shortcut Dimension

// 5 to retrieve Code Caption of any kind of Dimensions

// 6 to retrieve Filter Caption of any kind of Dimensions

DIMCAPTIONREF DIMCAPTIONREF consists of a number of sub references:

DIMCAPTIONREF:= < number >,< DIMOPTIONALPARAM1>,

< DIMOPTIONALPARAM2 >

The syntax below describes what < number > can be and what
<DIMOPTIONALPARAM1>, and <DIMOPTIONALPARAM2> are:

DIMCAPTIONREF

__<DataType> := [SubString]

__<Length> <= 10

<DataValue> :=

IF (<DIMCAPTIONTYPE> = 1)

__1..2,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 2)

__1..8,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 3)

__1..2,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 4)

__1..8,<DIMOPTIONALPARAM1>,<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 5)

__[Table]Dimension.[Field]Code, <DIMOPTIONALPARAM1>,

__<DIMOPTIONALPARAM2>

IF (<DIMCAPTIONTYPE> = 6)

__[Table]Dimension.[Field]Code, <DIMOPTIONALPARAM1>,

__<DIMOPTIONALPARAM2>
446

23.1 Syntax
DIMOPTIONALPARAM1

DIMOPTIONALPARAM1

__<DataType> := [SubString]

__<Length> <= 30

<DataValue> := [String]

// a string added before the dimension name

DIMOPTIONALPARAM2

DIMOPTIONALPARAM2

__<DataType> := [SubString]

__<Length> <= 30

<DataValue> := [String]

// a string added after the dimension name

VAT
If the CAPTIONAREA equals 2, the caption of the field or control should be replaced
by its original caption plus an extra string. This string should state either 'Excl. VAT' or
'Incl. VAT'. The syntax is:

VATCAPTIONTYPE

VATCAPTIONTYPE

<DataType> := [SubString]

<Length> := 1

<DataValue> := '0' -> <field caption + 'Excl. VAT'>

'1' -> <field caption + 'Incl. VAT'>

VATCAPTIONREF

VATCAPTIONREF contains the caption of the field or control:

VATCAPTIONREF

__<DataType> := [SubString]

__<Length> <= 30

<DataValue> := field caption
447

Chapter 23. Caption Class Functionality
23.2 FUNCTION CODE

DimCaptionClassTranslate (ID 7)
After CaptionClassTranslate has sifted the contents of the CaptionClass property
(passed in the CaptionExpr parameter) in a CAPTIONAREA and a CAPTIONREF,
DimCaptionClassTranslate will be called (if CAPTIONAREA equals 1). It will pass the
Language ID and the CAPTIONREF part of the CaptionClass property.

This function can be split up into three main parts:

1 Collect the G/L Setup data, if not done yet.

2 Sift out the comma separated subparts of the CAPTIONREF (see the previous
description of the CAPTIONREF syntax.)

3 Determine what the caption should be, depending on the DIMCAPTIONTYPE and
DIMCAPTIONREF.

Code

DimCaptionClassTranslate(Language : Integer;CaptionExpr : Text[80]) : Text[80]

Begin (1) IF NOT GLSetupRead THEN BEGIN

IF NOT GLSetup.GET THEN

 EXIT(");

 GLSetupRead := TRUE;

End (1) END;

Begin (2) CommaPosition := STRPOS(CaptionExpr,',');

IF (CommaPosition > 0) THEN BEGIN

 DimCaptionType := COPYSTR(CaptionExpr,1,CommaPosition - 1);

 DimCaptionRef := COPYSTR(CaptionExpr,CommaPosition + 1);

 CommaPosition := STRPOS(DimCaptionRef,',');

 IF (CommaPosition > 0) THEN BEGIN

 DimOptionalParam1 := COPYSTR(DimCaptionRef,CommaPosition + 1);

 DimCaptionRef := COPYSTR(DimCaptionRef,1,CommaPosition - 1);

 CommaPosition := STRPOS(DimOptionalParam1,',');

 IF (CommaPosition > 0) THEN BEGIN

 DimOptionalParam2 := COPYSTR(DimOptionalParam1,CommaPosition + 1);

 DimOptionalParam1 := COPYSTR(DimOptionalParam1,1,CommaPosition - 1);
448

23.2 Function Code
 END ELSE BEGIN

 DimOptionalParam2 := ";

 END;

 END ELSE BEGIN

 DimOptionalParam1 := ";

 DimOptionalParam2 := ";

End (2) END;

 CASE DimCaptionType OF

Begin (3) '1': // Code Caption - Global Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Global Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLCodeCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Global Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Global Dimension 2 Code")

 END;

 END;

 END;

 '2': // Code Caption - Shortcut Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN
449

Chapter 23. Caption Class Functionality
 IF Dim.GET(GLSetup."Shortcut Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLCodeCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Shortcut Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Shortcut Dimension 2 Code")

 END;

 '3':

 BEGIN

(same as case '1' for field "Shortcut Dimension 3 Code")

 END;

 '4':

 BEGIN

(same as case '1' for field "Shortcut Dimension 4 Code")

 END;

 '5':

 BEGIN

(same as case '1' for field "Shortcut Dimension 5 Code")

 END;

 '6':

 BEGIN

(same as case '1' for field "Shortcut Dimension 6 Code")

 END;

 '7':

 BEGIN

(same as case '1' for field "Shortcut Dimension 7 Code")

 END;

 '8':
450

23.2 Function Code
 BEGIN

(same as case '1' for field "Shortcut Dimension 8 Code")

 END;

 END;

 END;

 '3': // Filter Caption - Global Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Global Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLFilterCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(

 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Global Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Global Dimension 2 Code")

 END;

 END;

 END;

 '4': // Filter Caption - Shortcut Dimension using No. as Reference

 BEGIN

 CASE DimCaptionRef OF

 '1':

 BEGIN

 IF Dim.GET(GLSetup."Shortcut Dimension 1 Code") THEN

 EXIT(DimOptionalParam1 + Dim.GetMLFilterCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(
451

Chapter 23. Caption Class Functionality
 DimOptionalParam1 +

 GLSetup.FIELDCAPTION("Shortcut Dimension 1 Code") +

 DimOptionalParam2);

 END;

 '2':

 BEGIN

(same as case '1' for field "Shortcut Dimension 2 Code")

 END;

 '3':

 BEGIN

(same as case '1' for field "Shortcut Dimension 3 Code")

 END;

 '4':

 BEGIN

(same as case '1' for field "Shortcut Dimension 4 Code")

 END;

 '5':

 BEGIN

(same as case '1' for field "Shortcut Dimension 5 Code")

 END;

 '6':

 BEGIN

(same as case '1' for field "Shortcut Dimension 6 Code")

 END;

 '7':

 BEGIN

(same as case '1' for field "Shortcut Dimension 7 Code")

 END;

 '8':

 BEGIN

(same as case '1' for field "Shortcut Dimension 8 Code")

 END;

 END;
452

23.2 Function Code
 END;

 '5': // Code Caption - using Dimension Code as Reference

 BEGIN

 IF Dim.GET(DimCaptionRef) THEN

 EXIT(DimOptionalParam1 + Dim.GetMLCodeCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(DimOptionalParam1);

 END;

 '6': // Filter Caption - using Dimension Code as Reference

 BEGIN

 IF Dim.GET(DimCaptionRef) THEN

 EXIT(DimOptionalParam1 + Dim.GetMLFilterCaption(Language) + DimOptionalParam2)

 ELSE

 EXIT(DimOptionalParam1);

 END;

End (3) END;

END;

EXIT(");

VATCaptionClassTranslate (ID 9)
If CAPTIONAREA equals 2, CaptionClassTranslate passes the CaptionExpr
parameter CAPTIONREF, which is actually the VATCAPTIONTYPE, and calls
VATCaptionClassTranslate. VATCaptionClassTranslate also passes the Language ID
and the CAPTIONREF part of the CaptionClass property.

This function can be split up into two main parts:

1 Sift out the comma separated subparts of the CAPTIONREF (see the previous
description of the CAPTIONREF syntax.)

2 Determine what the caption should be, depending on the VATCAPTIONTYPE. In
either case, the original caption is replaced by its original caption plus the string:

· 'Excl. VAT' if VATCAPTIONTYPE equals 1.

· 'Incl. VAT' if VATCAPTIONTYPE equals 2.
453

Chapter 23. Caption Class Functionality
Code

VATCaptionClassTranslate(Language : Integer;CaptionExpr : Text[80]) : Text[30]

Begin (1) CommaPosition := STRPOS(CaptionExpr,',');

IF (CommaPosition > 0) THEN BEGIN

 VATCaptionType := COPYSTR(CaptionExpr,1,CommaPosition - 1);

End (1) VATCaptionRef := COPYSTR(CaptionExpr,CommaPosition + 1);

Begin (2) CASE VATCaptionType OF

 '0' : EXIT(COPYSTR(STRSUBSTNO('%1 %2',VATCaptionRef,Text016),1,30));

 '1' : EXIT(COPYSTR(STRSUBSTNO('%1 %2',VATCaptionRef,Text017),1,30));

End (2) END;

END;

EXIT(");
454

Chapter 24
Supporting Record Level Security

This chapter outlines some factors that must be taken into
consideration when programming for the SQL Server
Option for Navision.

· Record Level Security

Chapter 24. Supporting Record Level Security
24.1 RECORD LEVEL SECURITY

The SQL Server Option for Navision allows you to limit the access that users have to
the information stored in the database by specifying that they can only see specific
records. This is called record level security and this section describes how to support
record level security in the code, that is, the specific "extras" you must have in the
code in order to support record level security.

Navision automatically applies record level security filters in most situations once they
have been set up. This means that the users will only receive an error message if they
manually attempt to access data that is outside the range of the security filters that
have been defined for them.

When a form is opened from a command button or menu item, C/SIDE automatically
applies record level security filters to the main record variable used in the form,
provided that the command button or menu item in question uses properties to run the
form, and not code.

Similarly, when a report or dataport is opened from a command button or menu item,
C/SIDE automatically applies record level security filters to all the record variables
used in request filter tabs, provided that the command button or menu item in question
uses properties to run the report or dataport, and not code.

C/SIDE does not apply record level security filters to user defined global and local
variables. So to help users to stay within the defined security filters you must include
the appropriate statements in the code that applies the filters. Security filters are
applied on a record variable by using the SETPERMISSIONFILTER function that is
available for the record variable.

.
Note

Record level security filters affect performance in the same way as any other filters
that are applied by the user. It is important that the record level security filters have
matching keys in tables that contain a large number of records, and that these keys
are used. C/SIDE does not automatically select the most effective key to use. If, for
example, a security filter specifies that a user is only allowed to see records that he
created himself by using a filter on a field called User ID, the matching key must start
with User ID. Furthermore, to ensure the best performance, the user must select the
User ID key when opening the form for the first time. In some situations you can
choose to change the default sorting in the form, or in the command buttons, menu

.
items and code that opens the form.
456

Chapter 25
Performance

This chapter covers features built into C/SIDE to increase
performance, such as the DBMS cache, the commit cache
and the command buffer. It also contains a section on how
keys and queries can affect performance.

· The DBMS Cache

· The Commit Cache

· The Command Buffer

· Keys, Queries and Performance

· C/AL Database Functions and Performance on SQL
Server

· Configuration Parameters

· Bulk Inserts

Chapter 25. Performance
25.1 THE DBMS CACHE

The Database Management System (DBMS) is a memory buffer that stores copies of
portions of the database that the DBMS is currently using. Reading from memory is
much faster than reading from the disk. The DBMS therefore returns a record more
quickly if it is already stored in cache. As long as the required data is stored in cache,
the data appears to be immediately available. When the required data is not stored in
cache, it must be copied from the disk and then stored in cache.

The DBMS cache is transparent to the user. For example, when a client or user
requests data, the data is automatically copied into the cache and stored there. If the
data is modified, it is automatically copied back to the physical disk(s). These data
transfers take place automatically. The user does not need to know about the cache.

The following figure illustrates clients that send requests to the DBMS. When, for
example, Client 2 sends a request to read data from the database, the request handler
determines whether the desired data can be fetched directly from the cache or
whether it must be fetched from a disk.

At the same time, another client may be modifying a record in a table in the database.
The modified data will be written to the DBMS cache, and not to the disk. When this
client completes the write transaction (that is, commits the changes), the data in the
cache that was modified during the transaction will be written to the disk. The cache is
then said to be flushed.

The DBMS cache always contains the most recently used data. The cache is
continually updated with the relevant data from the database.

Client 1 Client 2 Client 3

DBMS

Network

Database

DB Request Handler

Cache

: Data flow

The DBMS
458

25.1 The DBMS Cache
The size of the cache greatly affects performance. When you set the size of the cache,
you must remember two simple rules:

· The more memory you assign to the cache, the more efficient it will be. (Of course,
there is no reason to assign more memory to the cache than the total size of your
database.)

· The size of the cache must not exceed the amount of physical memory available on
your system. This is because it may cause the operating system to swap the cache
memory in and out from the disk. This will considerably slow down the overall
speed of the C/SIDE system.

.
Note

You must remember to specify the commitcache=yes server parameter in the
command line to enable the caching of write transactions. See The Commit Cache on

.
page 460 for more information.

See C/SIDE Specifications on page 475 for information about the maximum cache
size.
459

Chapter 25. Performance
25.2 THE COMMIT CACHE

The commit cache is a special write buffer for the disk(s) in the system. The commit
cache has been designed to:

· quickly absorb committed transactions from the DBMS. This frees the DBMS to
perform other tasks.

· enable asynchronous disk writes.

· enable parallel disk read and write operations when multiple disks are used.

· guarantee that the disk file is always consistent.

The commit cache is placed between the DBMS and the database. It absorbs
committed transactions from the DBMS. When the commit cache receives a
committed transaction, it writes the data to the disk(s). Thus the DBMS can perform
other tasks while the commit cache writes to the disk. The data is said to be written
asynchronously to the disk. This is because the disk write does not occur at the same
time as the DBMS commits the transaction.

As described in the section The Physical and the Logical Database on page 8, the
logical database can be stored in several distinct disk files (which can be stored on
separate disks). When more than one disk is used to store the database, each of
these disks is controlled by separate commit cache processes, which are linked
together to both enable and control (asynchronous) parallel read and write operations.

The commit cache ensures that the database file is consistent even if a power failure
occurs during a write operation to the disk. However, if a power failure occurs, you
lose all committed transactions currently contained in the commit cache.

.
Note

You should not use advanced disk caches with delayed write back (sometimes called
lazy write). The use of such cache systems may cause corruption of your database

.
file(s).

The following figure illustrates a database that is stored on three physical disks. Each
disk is controlled by its own commit cache process. These processes are connected
to enable parallel reading and writing.
460

25.2 The Commit Cache
DBMS

c: d: f:

Separate
Process

Separate
Process

Separate

Commit cache

Database

 Process

The commit cache
enables
asynchronous
parallel reading
and writing to the
disks in your
system.
461

Chapter 25. Performance
25.3 THE COMMAND BUFFER

The command buffer only applies to Navision Database Server, and is placed as a link
between your application and the DBMS in the C/SIDE system. It is a temporary place
of storage that can hold requests (C/AL database commands) sent from your
application to the DBMS. The command buffer has been designed to reduce the
number of network transfers when using C/SIDE in local area network (LAN)
environments.

When an application performs a write transaction, some requests such as inserting a
record in a table (using record.INSERT()) need not be sent to the DBMS at once.
They can be temporarily stored in a command buffer. In general, commands that do
not have to return a value for the execution of the C/AL code to continue, do not have
to be sent immediately to the DBMS.

.
Note

The contents of the command buffer are sent to the DBMS when the buffer is full or

.
when a command requires an immediate response from the DBMS.

The advantage of assembling DBMS commands into packages is that the number of
network transfers is reduced (that is, the load on the LAN is reduced). This is because
the time required to send one DBMS request is comparable to the time used to send
an entire package.

The following C/AL code sample illustrates how the command buffer affects the
number of network transfers.

WHILE Record.FIND('-') DO

Record.DELETE();

Two commands are executed for each record in the table. However, each record
causes only one request to be sent to the DBMS. This is because the DELETE
command is stored in the command buffer until the FIND command is executed.

Debugging The system automatically turns off the command buffer when you activate the C/AL
debugger. This can lead to some confusion if you are not aware of this fact.

The statements below, supposed to be the complete contents of a codeunit, illustrate
the difference between running code with and without the debugger:

Customer."No." := '12';

Customer.DELETE();

First := 7;

Second := 0;

Ratio := First / Second;

Now, suppose that there is no Customer with the number 12. A runtime error will occur
irrespective of whether the debugger is active or not. However, the error that occurs
462

25.3 The Command Buffer
will not be the same. There are two errors here: since the Customer cannot be found,
the DELETE will fail. Further, the last statement is a division by zero.

When the debugger is inactive, the DELETE command is absorbed by the command
buffer for execution at a later time. Therefore, a runtime error will occur when the last
statement tries to divide by zero.

When the debugger is active, the DELETE command is executed immediately. This
causes a runtime error when the Customer record cannot be found.
463

Chapter 25. Performance
25.4 KEYS, QUERIES AND PERFORMANCE

When you write a query that searches through a subset of the records in a table, you
should always carefully define the keys both in the table and in the query so that
Navision can quickly identify this subset. For example, the entries for a specific
customer will normally be a small subset of a table containing entries for all the
customers.

If Navision can locate and read the subset efficiently, the time it will take to complete
the query will only depend on the size of the subset. If Navision cannot locate and
read the subset efficiently, performance will deteriorate. In the worst case scenario,
Navision will read through the entire table and not just the relevant subset. In a table
containing 100,000 records, this could mean taking a few milliseconds or several
seconds to answer the query.

To maximize performance, you must define the keys in the table so that they facilitate
the queries that you will have to run. These keys must then be specified correctly in
the queries.

For example, you would like to retrieve the entries for a specific customer. To do this,
you apply a filter to the Customer No. field in the Cust. Ledger Entry table. In order
to run the query efficiently on SQL Server, you must have defined a key in the table
that has Customer No. as the first field. You must also specify this key in the query.

The table could have these keys:

Entry No.

Customer No.,Posting Date

The query could look like this:

SETCURRENTKEY("Customer No.");

SETRANGE("Customer No.",'1000');

IF FIND('-') THEN

 REPEAT

 UNTIL NEXT = 0;

You should define keys and queries in the same way when you are using Navision
Database Server. However, Navision Database Server can run the same query almost
as efficiently if Customer No. is not the first field in the key. For example, if you have
defined a key that contains Country Code as the first field and Customer No. as the
second field and if there are only a few different country codes used in the entries, it
will only take a little longer to run the query.

The table could have these keys:

Entry No.

Country Code, Customer No.,Posting Date

The query could look like this:

SETCURRENTKEY("Country Code","Customer No.");

SETRANGE("Customer No.",'1000');
464

25.4 Keys, Queries and Performance
IF FIND('-') THEN

 REPEAT

 UNTIL NEXT = 0;

But SQL Server will not be able to answer this query efficiently and will read through
the entire table.

In conclusion, SQL Server makes stricter demands than Navision Database Server on
the way that keys are defined in tables and on the way they are used in queries.
465

Chapter 25. Performance
25.5 C/AL DATABASE FUNCTIONS AND PERFORMANCE ON SQL SERVER

The fastest SQL statement that Navision sends to SQL Server runs slower than most
database functions on Navision Database Server. However, one SQL statement can
sometimes cover several database server calls. The following section describes the
relationship between some basic database functions in C/AL and SQL statements.

Each GET (or FIND('=')) requires a separate SQL statement, unless the client has
already retrieved the record during a recent operation. This means that if the client
reads the same record several times, SQL Server will only be called the first time that
the client needs to read the record.

Each FIND('-/+') requires a separate SQL statement, unless the client has
executed the same query (filters etc.) in a recent operation.

Each NEXT (or FIND('>/<')) requires at least one, but often several, SQL
statements. However, when NEXT is used together with FIND('-/+') to read a set, as
shown below, one SQL statement can cover the needs of all the NEXT function calls in
the loop:

IF FIND('-') THEN

 REPEAT

 UNTIL NEXT = 0;

Reading the set backwards with FIND('+')/NEXT(-1) or using "ASCENDING :=
FALSE" is equally efficient. You should not read record sets by using "WHILE FIND('-
/+') DO" or any similar constructions.

Each CALCFIELD/CALCSUMS that calculates a sum requires a separate SQL
statement, unless the client has calculated the same sum or another sum that uses
the same SumIndex, filters etc., in a recent operation. In other words, totals for all the
SumIndexFields in a SumIndex are calculated when a sum is required for one of
them, and all the sums are stored in the client's cache.

Each INSERT/MODIFY/DELETE requires a separate SQL statement. If the table that
you modify contains SumIndexes, the operations will be considerably slower. As a
test, select a table that contains SumIndexes and execute a hundred of these
INSERT/MODIFY/DELETE operations to measure how long it takes to maintain the
table and all its SumIndexes.

LOCKTABLE does not require any separate SQL statements. It only causes any
subsequent reading from the table to lock the table or parts of it.

Database Administration, Object Design and Performance on SQL Server

It is much slower to create tables and companies on SQL Server than on Navision
Database Server. Similarly, translating and renaming tables and fields are slower on
SQL Server.
466

25.6 Configuration Parameters
25.6 CONFIGURATION PARAMETERS

You can configure a Navision database by creating a SQL Server table configuration
parameter table and entering parameters into the table that will determine some of the
behavior of Navision when it is using this database.

In the database create a table, owned by dbo:

CREATE TABLE [ndodbconfig] (config VARCHAR(512) N0T NULL)

(You can add additional columns to this table, if necessary. The length of the config
column should be large enough to contain the necessary configuration values, as
explained below, but need not be 512.)

There is one record in this table for each parameter that is required.

The following sections describe the parameters that you can enter into this table.

Index Hinting
It is possible to force SQL Server to use a particular index when executing queries for
FIND('-'), FIND('+'), FIND('=') and GET statements. This can be used as a
workaround when SQL Server's Query Optimizer picks the wrong index for a query.

Index hinting can help avoid situations where SQL Server’s Query Optimizer chooses
an index access method that requires many page reads and generates long-running
queries with response times that vary from seconds to several minutes. Selecting an
alternative index can give instant 'correct' query executions with response times of
milliseconds. This problem usually occurs only for particular tables and indexes that
contain certain data spreads and index statistics.

In the rare situations where it is necessary, you can direct Navision to use index
hinting for such problematic queries. When you use index hinting, Navision adds
commands to the SQL queries that are sent to the server. These commands bypass
the normal decision making of SQL Server's Query Optimizer and force the server to
choose a particular index access method.

.
Note

This feature should only be used after all the other possibilities have been exhausted,
for example, updating statistics, optimizing indexes or re-organizing column order in

.
indexes.

The index hint syntax is:

IndexHint=<Yes,No>;Company=<company name>;Table=<table

name>;Key=<keyfield1,keyfield2,...>; Search Method=<search method

list>;Index=<index id>

Each parameter keyword can be localized in the "Driver configuration parameters"
section of the .stx file.
467

Chapter 25. Performance
The guidelines for interpreting the index hint are:

· If IndexHint=No, the entry is ignored.

· All the keywords must be present or the entry is ignored.

· If a given keyword value cannot be matched the entry is ignored.

· The values for the company, table, key fields and search method must be
surrounded by double-quotes to delimit names that contain spaces, commas etc.

· The table name corresponds to the name supplied in the Object Designer (not the
Caption name).

· The key must contain all the key fields that match the required key in the Keys
window in the Table Designer.

· The search method contains a list of search methods used in FIND statements, that
must be one of '-', '+', '=', or '!' (for the C/AL GET function).

· The index ID corresponds to a SQL Server index for the table: 0 represents the
primary key; all other IDs follow the number included in the index name for all the
secondary keys. Use the SQL Server command sp_helpindex to get information
about the index ID associated with indexes on a given table. In this example we are
looking for index information about the Item Ledger Entry table:

sp_helpindex 'CRONUS International Ltd_$Item Ledger Entry'

When Navision executes a query, it checks whether or not the query is for the
company, table, current key and search method listed in one of the IndexHint entries.
If it is, it will hint the index for the supplied index ID in that entry.

Note that:

· If the company is not supplied, the entry will match all the companies.

· If the search method is not supplied, the entry will match all the search methods.

· If the index ID is not supplied, the index hinted is the one that corresponds to the
supplied key. This is probably the desired behavior in most cases.

· If the company/table/fields are renamed or the table's keys redesigned, the
IndexHint entries must be modified manually.

Here are a few examples that illustrate how to add an index hint to the table by
executing a statement in Query Analyzer:

EXAMPLE 1

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company="CRONUS International Ltd.";Table="Item

Ledger Entry";Key="Item No.","Variant Code";Search Method="-

+";Index=3')

This will hint the use of the $3 index of the CRONUS International Ltd_$Item Ledger Entry table for
FIND('-') and FIND('+') statements when the Item No.,Variant Code key is set as the
current key for the Item Ledger Entry table in the CRONUS International Ltd. company.
468

25.6 Configuration Parameters
EXAMPLE 2

INSERT INTO [ndodbconfig] VALUES

('IndexHint=No;Company="CRONUS International Ltd.";Table="Item

Ledger Entry";Key="Item No.","Variant Code";Search Method="-

+";Index=3')

The index hint entry is disabled.

EXAMPLE 3

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company="CRONUS International Ltd.";Table="Item

Ledger Entry";Key="Item No.","Variant Code";Search Method="-

+";Index=')

This will hint the use of the Item No.,Variant Code index of the CRONUS International Ltd_$Item
Ledger Entry table for FIND('-') and FIND('+') statements when the Item No.,Variant Code
key is set as the current key for the Item Ledger Entry table in the CRONUS International Ltd.
company.

This is probably the way that the index-hinting feature is most commonly used.

EXAMPLE 4

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company=;Table="Item Ledger Entry";Key="Item

No.","Variant Code";Search Method="-+";Index=3')

This will hint the use of the $3 index of the CRONUS International Ltd_$Item Ledger Entry table for
FIND('-') and FIND('+') statements when the Item No.,Variant Code key is set as the
current key for the Item Ledger Entry table for all the companies (including a non-company table
with this name) in the database.

EXAMPLE 5

INSERT INTO [ndodbconfig] VALUES

('IndexHint=Yes;Company="CRONUS International Ltd.";Table="Item

Ledger Entry";Key="Item No.","Variant Code";Search Method=;Index=3')

This will hint the use of the $3 index of the CRONUS International Ltd_$Item Ledger Entry table for
every search method when the Item No.,Variant Code key is set as the current key for the Item
Ledger Entry table in the CRONUS International Ltd. company.

Lock Granularity
When Navision is reading data from tables it places forced ROWLOCK hints, by default.
These rowlock hints prevent SQL Server from automatically determining the
granularity (row, page or table) of the locks that it places. This can lead to a high
locking overhead on the server, even though concurrency is optimum.

To allow SQL Server to determine the granularity of the locks that it places, the
DefaultLockGranularity parameter can be used in the database configuration
table.
469

Chapter 25. Performance
The syntax of the DefaultLockGranularity parameter is:

DefaultLockGranularity=<Yes,No>

When the parameter is Yes, SQL Server will choose the granularity of the locks that it
places. When the parameter is No, Navision will override SQL Server and place
ROWLOCKs.
470

25.7 Bulk Inserts
25.7 BULK INSERTS

The SQL Server Option for Navision uses bulk data insertion to improve performance.

After 5 records are inserted into a table, bulk insert mode begins on the table and
continues until the mode is cancelled. Inserts are buffered in memory on the client,
and sent to the server in batches. As each batch is sent, it is flushed from the buffer. If
the table contains SIFT keys, the batches are inserted into a temporary table and then
copied to the target table with an INSERT...SELECT statement in order to optimize the
execution of the SIFT trigger.

The requirements for beginning and continuing in bulk insert mode are:

· No other operations can be performed on the table that is receiving the inserts, but
any operation can be performed on other tables. For example, when records are
copied from table A to table B, the read operations being performed on table A will
not disturb the bulk insert mode of table B.

· A COMMIT or intervening operation will flush any buffered inserts but bulk insert
mode will continue on the table for a COMMIT.

The bulk inset mode is cancelled and disabled if you:

· Activate the C/AL debugger.

· Test the result of an INSERT with IF.

· Set either of the Dataport DataItem properties AutoUpdate or AutoReplace to Yes.
471

Chapter 25. Performance
472

Part 8
Appendixes

Appendix A
C/SIDE Specifications

This appendix provides the technical specifications of
C/SIDE. Use this information to get an overview of
maximum sizes and other limitations that may affect your
application design.

· Specifications for the DBMS

· Specifications for C/SIDE Application Objects

Appendix A. C/SIDE Specifications
A.1 SPECIFICATIONS FOR THE DBMS

These are the specifications for the C/SIDE DBMS (Database Management System).

Maximum number of physical disk files 16

Database file size 16 x 2 GB

Maximum number of objects in a database Infinite

Maximum number of characters in application object names 30

Maximum number of characters in a password 10

Maximum number of concurrent users
(the actual limit depends on your hardware and the workload)

500

Maximum cache size 1000 MB
476

A.2 Specifications for C/SIDE Application Objects
A.2 SPECIFICATIONS FOR C/SIDE APPLICATION OBJECTS

This section lists specifications for the five types of application objects in a C/SIDE
database.

Specifications for Tables

(A) ALL APPLICATION OBJECTS ARE IDENTIFIED BY AN ID NUMBER. THERE ARE RESTRICTIONS,
HOWEVER, ON THE NUMBERS YOU CAN USE WHEN YOU CREATE YOUR OWN APPLICATION OBJECTS.
PLEASE CONTACT YOUR NTR FOR MORE INFORMATION.

Range for table object ID numbers 1 -999,999,999 (A)

Maximum number of characters in a table name 30

Maximum table size Infinite

Maximum number of records in a table Infinite

Maximum record size 4KB (Navision Database Server), 8KB (SQL
Server)

Maximum number of fields in a record 500

Range for field numbers 1 - 999,999,999

Maximum number of keys for a table 40

Maximum number of distinct fields per key 20 for a primary key. The number of fields in the
primary key + the number of fields in a
secondary key which do not occur in the primary
key must always be less than or equal to 20.

Maximum number of SumIndexFields per key 20

Maximum number of characters in a text or
code field

250

Maximum size of a BLOB field 2 GB

Maximum number of characters in a field name 30
477

Appendix A. C/SIDE Specifications
Specifications for Forms and Reports

(A) ALL APPLICATION OBJECTS ARE IDENTIFIED BY AN ID NUMBER. THERE ARE RESTRICTIONS,
HOWEVER, ON THE NUMBERS YOU CAN USE WHEN YOU CREATE YOUR OWN APPLICATION OBJECTS.
PLEASE CONTACT YOUR NTR FOR MORE INFORMATION.

Specifications for Codeunits

(A) ALL APPLICATION OBJECTS ARE IDENTIFIED BY AN ID NUMBER. THERE ARE RESTRICTIONS,
HOWEVER, ON THE NUMBERS YOU CAN USE WHEN YOU CREATE YOUR OWN APPLICATION OBJECTS.
PLEASE CONTACT YOUR NTR FOR MORE INFORMATION.

Range for form or report object ID numbers 1 - 999,999,999 (A)

Maximum form width 100000 x 1/100 mm

Maximum form height 100000 x 1/100 mm

Maximum number of nested forms 1

Maximum number of controls on a form 32767

Maximum number of characters in a label 254

Maximum number of characters in a text box 250

Maximum bitmap size in bitmap property 32500 bytes

Maximum number of levels in drop-down menus 10

Range for table object ID numbers 1 - 999,999,999 (A)

Maximum number of characters in variable names 30

Maximum number of dimensions in array variables 10

Maximum number of elements in an array variable 1,000,000

Maximum physical size of a codeunit 2 GB

Lower bound of index in an array 1
478

Appendix B
Report Flow Charts

This appendix illustrates the flow of control for reports in
C/SIDE.

· Report Flow Charts

· Report.Run

· DataItem.Run

· Section.Run

· Header.Run

· Footer.Run

· TransHeader.Run

· TransFooter.Run

· GroupHeader.Run

· GroupFooter.Run

· Body.Run

· NewPage

· GetRecord

Appendix B. Report Flow Charts
B.1 REPORT FLOW CHARTS

The following sections contain flow charts that show the flow of control for reports in
C/SIDE.

As indicated by the legend below, some processes in one flow chart are "exploded" in
the following pages in order to show more details.

.
Legend

.

Entry point

Exit

Process

Process with subpages

BWT Begin Write Transacti

EWT End Write Transaction
480

B.2 Report.Run
B.2 REPORT.RUN

Report.Run

DataItem.Run

OK

No more

Call PreReport
Trigger

OK / Print / Preview

Get Next DataItem

Call PostReport
Trigger

ReqForm.Run

Cancel

Set DataItem
ReqFilters

Clear DataItem
Filters

BWT

EWT

PageNo=1

Call Init
Trigger

Set DataItem
TableViews
481

Appendix B. Report Flow Charts
B.3 DATAITEM.RUN

DataItem.Run

(OnlyFirst)

Header.Run

GroupHeader.Run

Body.Run

DataItem.Run

GroupFooter.Run

(OnlyLast)

Footer.Run

Set DataItem
TableView

TotalArray:
Append Group/
Grand totals

Set DataItem
ReqFilter

Call PreDataItem
Trigger

Call PostDataItem
Trigger

TotalArray:
Update Group/
Grand totals

GetRecord

Get next lower
DataItem

NextRec =
GetNextRec(Curr

Rec)

Clear DataItem

TotalArray:
Clear Totals

Property:
PrintOnlyIfDetail

CurrRec = OldRec

TotalArray:
SwapTotal
(GrandTotal)

Skip / Break
Property:

PrintOnlyIfDetail

NextRec = NULL
No more

OK

Break

No

False

No more

OK

False
Skip

Property:
NewPagePerRecord

NewPage

False

True

RollBackTrue

HoldTrue

Transfer DataItem
Link
482

B.4 Section.Run
B.4 SECTION.RUN

Enough

Not Enough

Section.Run (Transport)

(Param:
Transport)

NewPage

Calculate Space
Need

Call PreSection
Trigger

Call PostSection
Trigger

Print Section

Get Next Section

OK

No More
483

Appendix B. Report Flow Charts
B.5 HEADER.RUN

Header.Run (IncludeBack,UsePrintOnEveryPage,OnlyFirst)

(IncludeBack)

Back.Header.Run

Param:
IncludeBack

Param:
UsePrintOnEvery

Page

Property:
PrintOnEveryPage

Section.Run

True

False

True

False
True

OldRec
Param:

OnlyFirst
True

Not
NULL

False

False

Hold

NULL
484

B.6 Footer.Run
B.6 FOOTER.RUN

Section.Run

True

False

Footer.Run (IncludeBack,UsePrintOnEveryPage,OnlyLast)

Property:
PlaceInBottom

Move to Bottom

Param:
UsePrintOnEvery

Page

Property:
PrintPnEveryPage

Param:
IncludeBack

(IncludeBack)

Back.Footer.Run

True

True
False

True

False

TotalArray:
SwapTotal
(GrandTotal)

TotalArray:
SwapTotal
(GrandTotal)

Param:
OnlyLast

NextRecTrue

False
NULL

Not
NULL

Not
NULL

Param:
OnlyLast

NextRecTrue

RollBack

NULL

False

False
485

Appendix B. Report Flow Charts
B.7 TRANSHEADER.RUN

Param:
IncludeBack

(IncludeBack)

Back.Trans
Header.Run

True

Section.Run

False

TransHeader.Run (IncludeBack)

TotalArray:
SwapTotal
(LastGroup)

TotalArray:
SwapTotal
(LastGroup)

OldRec

Not NULL

NULL
486

B.8 TransFooter.Run
B.8 TRANSFOOTER.RUN

Section.Run

Param:
IncludeBack

(IncludeBack)

Back.Trans
Footer.Run

False

True

TransFooter.Run (IncludeBack)

TotalArray:
SwapTotal
(LastGroup)

TotalArray:
SwapTotal
(LastGroup)

OldRec

Not NULL

NULL
487

Appendix B. Report Flow Charts
B.9 GROUPHEADER.RUN

Section.Run

OK

Changed

Not
Changed

GroupHeader.Run

No more
Get next

GroupTotalField
(forward in key)

Check
GroupTotalField
(OldRec-CurrRec)

TotalArray:
SwapTotal
(LastGroup)

TotalArray:
SwapTotal
(LastGroup)

OldRec
Property:
NewPagePer

Group

NewPage

Not
NULL

True

NULL False

Hold
488

B.10 GroupFooter.Run
B.10 GROUPFOOTER.RUN

(Transport)

Section.Run

Changed

No
more

Not
Changed

OK

GroupFooter.Run

Get next
GroupTotalField
(backward in key)

Check
GroupTotalField
(CurrRec-NextRec)

TotalArray:
SwapTotal
(GroupTotal)

TotalArray:
SwapTotal
(GroupTotal)

TotalArray:
GroupChange

RollBack
489

Appendix B. Report Flow Charts
B.11 BODY.RUN

(Transport)

Section.Run

Body.Run

Property:
PrintOnlyIfDetail

True

Commit

False
490

B.12 NewPage
B.12 NEWPAGE

(IncludeBack)

TransFooter.Run

(IncludeBack)

TransHeader.Run

(IncludeBack)
(UsePrintOnEvery

Page)

Footer.Run

(IncludeBack)
(UsePrintPn
EveryPage)

Header.Run

NewPage (Transport)

PageBreak

Increment PageNo

Param:
Transport

True

False

Param:
Transport

True

False
491

Appendix B. Report Flow Charts
B.13 GETRECORD

OldRec = CurrRec

CurrRec =
GetNextRec
(CurrRec)

Auto Calculate
FlowFields

Call
AfterGetRecord

Trigger

OK

No
more

No
more

OK

GetRecord

Break

Yes

No

Skip = No
Break = No

TotalArray:
ClearTotalVars
492

Appendix C
Dataport Flow Charts

This appendix illustrates the flow of control for dataports in
C/SIDE.

· Dataport Flow charts

· Dataport.Import/Export

· DataItem.Export

· VariableRecord.Export

· FixedRecord.Export

· DataItem.Import

· VariableRecord.Import

· FixedRecord.Import

Appendix C. Dataport Flow Charts
C.1 DATAPORT FLOW CHARTS

The following sections contain flow charts that show the flow of control for dataports in
C/SIDE.

As indicated by the legend below, some processes in one flow chart are "exploded" in
the following pages in order to show more details.

Legend

Entry point

Exit

Process

Process with subpages

BWT Begin Write Transacti

EWT End Write Transaction
494

C.2 Dataport.Import/Export
C.2 DATAPORT.IMPORT/EXPORT
495

Appendix C. Dataport Flow Charts
C.3 DATAITEM.EXPORT
496

C.4 VariableRecord.Export
C.4 VARIABLERECORD.EXPORT

GetNextField Format

Call
AfterFormatField

Trigger

Out BeginField
Delimiter

Out Field

Out EndField
Delimiter

Out Record
Separator
(Not first)

No more

OK

Break Skip

VariableRecord.Export

Out Field
Separator
(Not first)
497

Appendix C. Dataport Flow Charts
C.5 FIXEDRECORD.EXPORT

Clear LineBuffer

Out Record
Separator
(not first)

Get Next Field Format

Call
AfterFormatField

Trigger

Put Field in
LineBuffer

Out LineBuffer

No more

OK

SkipBreak

FixedRecord.Export
498

C.6 DataItem.Import
C.6 DATAITEM.IMPORT
499

Appendix C. Dataport Flow Charts
C.7 VARIABLERECORD.IMPORT

Get Next Field

In Record
Separator

(If not DataItem
separator or EOF)

Call
BeforeEvaluateFie

ld Trigger

In BeginField
Delimiter
(If any)

In Field

In EndField
Delimiter
(If any)

Evaluate Field

No more

OK

Skip

VariableRecord.Import

Break

In Field Separator
(If not Record

sep. or DataItem
sep. or EOF)

Validate Field
500

C.8 FixedRecord.Import
C.8 FIXEDRECORD.IMPORT

In Fixed Record to
LineBuffer

Get Next Field Get Filed from
LineBuffer

Call
BeforeEvaluateField

Trigger

Evaluate Field

Validate Field

In Record Separator
(If not DataItem

Separator or EOF)

No more

OK

Break Skip

FixedRecord.Import
501

Appendix C. Dataport Flow Charts
502

Appendix D
NDBCS – The Database Driver

This appendix describes some details of the way that the
database driver module (NDBCS) for the SQL Server
Option for Navision has been implemented. Although it is
not a guide for C/AL development, it can help you
understand the way Navision uses SQL Server. This
appendix also contains a brief history of the performance
improvements that have been implemented for the SQL
Server Option.

This appendix contains the following sections:

· NDBCS – the Database Driver

· A Brief History of Performance Improvements

Appendix D. NDBCS – The Database Driver
D.1 NDBCS – THE DATABASE DRIVER

The database driver maps internal database requests, that have been formulated for
the architecture used by Navision Database Server, to SQL-based requests to SQL
Server. This is done for all the types of requests that must communicate with the
database server, including:

· Connecting, setting connection properties and disconnecting from the server.

· Opening, creating and altering databases.

· Redesigning tables and managing linked objects such as views.

· Reading data for all the objects in the form, report, and dataport engines.

· C/AL functions such as FIND, MODIFY and so on.

· FlowFields.

· Statistics for databases, sessions and tables.

· Sort Order, Character Set and Code Page considerations (Collations).

Most of the SQL statements that are used to achieve this mapping are constructed in
a dynamic manner where everything but the basic syntax of the statement is unknown
until runtime. For example, the table name, field list, lock type, filter parameters and
the ordering are all dependent on the C/SIDE area or application area that is being
used. In some cases, such as database redesign, table redesign and SIFT queries,
the syntax itself varies considerably.

This is in contrast to the majority of SQL applications that use pre-defined business
logic in the form of query repertoires, statement batches and stored procedures.
Although these elements can be parameterized, they are essentially static in nature
and allow a great deal of optimization to be incorporated, both at the time they are
designed - by fully exploiting the power of the SQL language - and at the time they are
executed - by allowing the server to pre-build internal structures such as compilation
plans, execution plans, intermediate working tables and buffers for caching.

The Navision Client Monitor can be used to display the SQL statement that is used for
the current database operation, regardless of its origin. The SQL statement could
originate from, for example, a C/AL function or a form. The Client Monitor displays the
SQL statement in a slightly more readable layout than that used internally. When the
driver issues more than one statement for an operation, only the first statement is
displayed in the Client Monitor. However, this is not very common.

The SQL Profiler can also be used to display the SQL statements being received by
the server in more detail. Although the SQL Profiler gives you more information, it is
not easy to track the statements back to database behavior in Navision, and in many
cases internal stored procedures, and other mechanisms, are being used (by both the
SQL Server ODBC driver and the server itself) in place of the original SQL statements.

If you want to understand how SQL Server is being utilized by Navision, or why there
may be a functional or performance problem, you should use one of these tools to
analyze database activity.
504

D.1 NDBCS – the Database Driver
The following sections contain details about some of the more important areas of the
database driver. These areas are particularly concerned with performance and the
ability to use SQL Server as optimally as possible, given the nature of the C/AL
application language that must be used for both server platforms.

Database Driver Concepts
This section explains some of the most important database driver concepts and terms.

Command

In this context a command is a driver object that is used for executing any SQL
statement and has built in error handling and can use parameterization.

Direct and Prepared Execution

When a SQL statement is executed it can use either a direct execution or a prepare-
execute model.

The Prepare-Execute Model

The prepare-execute model is a general model that allows for the optimization of
statements that are frequently executed. The preparation stage is performed once,
and this establishes server-specific data structures – typically compilation or execution
plans. The execute stage is then performed repeatedly, using the created data
structures. For example, the preparation of an INSERT statement is followed by
multiple executions of the prepared statement, with different parameter values
(different records being inserted into the table).

The Direct Execution Model

Direct execution performs all the work necessary for preparing and executing on the
server, in one step. Therefore, it takes longer to issue the statement several times
because it must be prepared and executed each time. SQL Server has increased the
performance of direct execution by internally matching its data structures and re-using
them. However, it is still faster to use the prepare-execute model when you know that
a statement will be re-executed.

Result Set

A result set is the set of records returned from the server to a client application, such
as Navision, in response to a query. The query is usually a SQL SELECT statement or
a stored procedure. The set can include 0, 1 or more records. A default result set is
the fastest and most efficient way for the server to send the results. This is sometimes
referred to as a fire hose, taken from the analogy of water being sprayed at high power
onto the 'client'. A cursor can also be used for sending a result set, but is less efficient
because it supports additional features on top of the result set.

SQL Server places an important limitation on the use of default result sets:

· There can be only one default result set active on a given client connection, for
example, a single instance of Navision that has opened a database.
505

Appendix D. NDBCS – The Database Driver
This means that once the server starts sending a particular result set to a client, the
client must read the entire set to the end, close the set before reading to the end, or
cancel the request. The client cannot partially read from the set and then perform
another activity, such as request a new set for a different query or make modifications
to a table. This makes the use of default result sets quite limited for the database
driver because it must track many result sets for different clients at the same time, in
response to read requests for different record variables, for example. The database
driver uses cursors to do this. For queries that are known to produce 0 or 1 record only
(singleton queries) such as a GET or SIFT queries, the driver always uses a default
result set since it can be opened, the data read, and closed within the same Navision
database operation and does not remain active.

Cursor

In general, a cursor is a data structure that allows the result set of a query to be
navigated and manipulated, with some additional features other than that of merely
reading the results from beginning to end. The cursor can be viewed as an additional
layer on top of the result set. When a cursor is used to retrieve data, the result set is
no longer said to be a default result set. Cursors were designed primarily to allow
applications that deal with single record retrieval (such as Navision) to use result-
based SQL databases.

The most commonly used features are the ability to:

· Maintain a current record position in the results.

· Scroll backwards or jump around in the set.

· Modify or delete the record at the current position.

In the driver, it is essential to use cursors to overcome the limitation imposed by SQL
Server of having only one active default result set on a client connection (see Result
Set). Cursors allow many result sets to be active (in an open state) so that many read
requests on different tables, with various keys and filters, can be serviced efficiently
when running a codeunit, for example. Otherwise the driver does not need to make
use of the variety of features that cursors offer.

The following cursor types are available in SQL Server and are listed in order of their
reading efficiency (the fastest being the default result set, which is not classed as a
cursor):

Type Properties Basic Requirements

Fast Forward Read-only, forward-only, latest data
at fetch time

No locking, no BLOB columns

Dynamic Updateable, scrollable, latest data at
fetch time

An index must match ordering

Keyset Updateable, scrollable, snapshot at
creation time and partially latest data
at fetch time

A primary key

Static Updateable, scrollable, snapshot at
creation time

None
506

D.1 NDBCS – the Database Driver
There are several requirements that must be met when requesting a particular cursor
type (the driver requests the fastest possible cursor for the given inputs), in order for
the server to provide the cursor type. If the requested cursor type cannot be created,
an alternative type is offered that has less requirements but is often less efficient.

In some cases the driver does not know if a cursor type cannot be provided, because
it is too costly to determine if all the requirements can be met, such as the existence of
the correct indexes. In other situations it knows in advance that a particular cursor
type cannot be used. For example, the driver never requests a Fast Forward cursor for
a table that has been locked because this will never be provided. In this case, a
dynamic cursor is used instead. The server can always supply a dynamic cursor for
Navision (non-linked) tables, provided that the MaintainSQLIndex key property is set
to Yes and the indexes have not been modified outside of the program.

The driver never uses the scrollable or updateable properties of cursors. Only a
limited number of cursors can co-exist in the driver because they are a more
expensive client and server-side data structure in terms of memory-usage, and
sometimes disk-usage than default result sets.

Rowset

A rowset is an internal driver object that is used for data retrieval. A rowset is based on
a driver command object. It always encapsulates a result set and can also use a
cursor, depending on the database operation that caused the rowset to be created.

The rowset contains:

· The SQL SELECT statement to be executed.

· The table, output field list, filter, parameter values and ordering.

· The data for the records that are returned.

· The status of each record (normal, deleted, and so on).

· The current record position in the record buffers.

· The result set state (open, closed, read full set, performed a NEXT, and so on).

· Statistics about the usage of the rowset since it was created.

· The cursor type, locking, and other attributes.

· Caching information.

When a rowset is created, the following attributes are fixed:

· The table.

· The output field list.

· The ordering of the results (based on the current key).

· The filter fields and operators (but not the filter values).

· The search method being used for the database request.

· The locking status.

· The cursor type.
507

Appendix D. NDBCS – The Database Driver
· The number of initial result set record buffers allocated in memory (the number of
actual buffers can grow, and later shrink back to this initial size).

Rowsets are maintained both for every table and for every connection. When
searching for an existing rowset to be used for a request, only the rowsets for the table
involved are examined. When searching for rowsets that should be deleted because
they have expired or to allow new rowsets to be created, all the rowsets for the
connection are examined. When a table handle is closed by C/SIDE, for example,
because of error conditions or table re-designs, the rowsets it owns are also deleted.

Transaction Type

See the C/SIDE Reference Guide.

Reading Data: Rowset Usage
The database driver uses a rowset object to read data from the database. This
involves creating a new rowset object or utilizing an existing one. After it has been
created, the rowset object usually undergoes the following operations:

· The current filter parameter values are used and the data is converted from a
C/SIDE format to a SQL format.

· If the result set is open, it is closed.

· It is determined whether the rowset is caching data or not and if this cache can be
used instead of executing the statement.

· It is determined whether the filter will give an empty set or not.

· The SQL statement is executed. It might need to be prepared first.

· It is determined whether or not the result set field list is compatible with the C/SIDE
field list.

· A number of records are fetched from the network buffers or from the server (this
step is often performed as part of the execution phase) and placed in the record
buffers.

· If no records are found, this situation must be handled. Finding no records might be
the expected result of the database operation or it might be an error. The result set
is closed here.

· If records were found, the required record position based on the database operation
must be obtained. This may require more fetches.

· If the required record was not found with this rowset and there are more records
available in the logical set, a new rowset is used to continue the search and the
current rowset is deleted.

· If the required record is found, the data is converted from a SQL format to a C/SIDE
format.

· The status of the database operation, and the record data, is now available to the
C/SIDE database layer, and to the area of Navision that made the request.
508

D.1 NDBCS – the Database Driver
After a rowset has been created and executed in this way, it can be re-used for
subsequent operations. For example, a rowset created to satisfy a FIND('-') will be
used to satisfy the subsequent NEXT, provided that all the required rowset attributes
are compatible (for example, the table lock status for the FIND is the same as the table
lock status for the NEXT). The remaining records might have been fetched into
memory already, or further fetches might be required. If the current record in the
rowset matches the input record of the NEXT, the next record is provided as output,
and so on until no more records are found.

This mechanism of re-using rowsets is essential in the driver. It allows existing server
execution plans and statement handles to be used when re-executing a rowset
statement using prepared statements, and allows fetch operations on open result sets
to be used thereby avoiding having to re-execute statements. In many situations it
also allows cached data in the rowsets to be used without having to visit the server at
all. When a filter is used in a request, the filter is parameterized in the rowset and the
SQL statement so that different filter values can re-use the same rowset by re-
executing the same statement with the new values. If anything other than the filter
values are changed (for example, an operator is changed from = to >), the rowset
cannot be reused. Therefore, when a NEXT operation is being performed, the filter for
the rowset that is being re-used must match exactly the active filter for the NEXT
operation or the rowset cannot be reused.

Almost every rowset can be re-used to exploit the set-based behavior of SQL Server.
The Client Monitor can display additional SQL Status information that shows if a
rowset has been re-used for a particular operation and how many times it has been
used since it was created. For more information about the Client Monitor, see The
Monitor Virtual Table on page 82.

Executing even the simplest query in SQL Server to obtain a record is more expensive
than retrieving a single record in Navision Database Server. This is mainly due to the
power of the SQL Query Optimizer, which carries additional baggage when executing
simple queries because it is able to efficiently handle complex queries. Navision
generally executes simple queries. There is no SQL optimizer in Navision Database
Server because the server does not support the SQL language and therefore this
added overhead is not present. The performance section of this document presents
the mechanisms that are employed to reduce the expense of retrieving records on
SQL Server.

Modifying Data
When data is to be modified in the database, the appropriate SQL statement (INSERT,
DELETE or UPDATE) is issued using a driver command object. This means that either a
new object must be created or an existing object utilized, as is the case with a rowset.
The re-using of command objects for modifications allows the prepare-execute model
to be employed in a parameterized statement. The prepare-execute model is an
509

Appendix D. NDBCS – The Database Driver
optimal mechanism for issuing these statements. The driver creates and re-uses the
following commands (maintained within the table):

When modifications are performed on a table with SumIndexFields, the SIFT trigger
on the SQL table is fired to update the accompanying SIFT tables.

When performing a MODIFY, the record to be modified is first read from the database
table (or a client cache). This allows a comparison to be made between this record
and the record values that are being modified. Only those fields that have been
changed will be included in the SQL UPDATE statement thereby improving
performance.

The timestamp field in the table is used when an optimistic concurrency check must
be performed to determine if the record in the table has been changed since the driver
read it. Timestamp fields are assigned a unique value when a record is inserted into a
table in SQL Server, and the timestamps are updated automatically whenever the
record is changed. The driver always reads the timestamp value when it reads a
record. The driver reads the timestamp when performing a DELETE or MODIFY but this
check is not performed when performing DELETEALL or MODIFYALL. If the timestamp
is greater than it was when the driver read the record, a standard Navision error
message is displayed.

Transactions
C/SIDE tracks transactions at several levels and these can vary from the points at
which C/AL code may begin, commit or rollback transactions. Most of the additional
complexity in transactions has been implemented to optimize the point at which the
server really needs to begin or end a transaction boundary, and therefore avoid
creating unnecessary transactions.

The driver manages transactions in the following way:

· A SQL Server setting is enabled so that every SQL statement will begin a
transaction implicitly. This avoids having to send manual begin markers.

· Different C/SIDE Transaction Types use different transaction isolation levels. In
SQL Server, isolation levels determine the default locking behavior of all the data
accessed, but the driver sometimes overrides the locking behavior when executing
particular SQL statements.

C/AL Function SQL Statement Properties

INSERT INSERT 1 per table

DELETE DELETE per-connection limit

MODIFY UPDATE per-connection limit

DELETEALL DELETE with filter per-connection limit

MODIFYALL UPDATE with filter per-connection limit

INSERT (bulk) 1 per table, batched, used during bulk inserts
510

D.1 NDBCS – the Database Driver
· Isolation levels are not changed until it is necessary. For example, if there is no
locking in a transaction, no change in isolation level takes place.

· No commit or rollback is issued to the server if no locking has been performed in a
transaction.

· Cursors that have no locks placed (i.e. cursors belonging to tables that have not
been locked) are left open when a transaction is committed.

· C/SIDE makes use of outer and inner transactions. An outer transaction is the first
transaction that takes place when the Transaction Type is changed from Browse,
for example when running a report. Inner transactions are those that end with a
COMMIT, for example, within the report, before the end of the outer transaction. The
driver is given information about the outer and inner transactions in order to
determine when rowsets should be closed and when data caches should be
purged.

SIFT
SIFT stands for sum index field technology. SumIndexFields allow sums of numbers
that are stored in columns in tables to be calculated quickly – even when the table
contains several thousand records. Each time you change the contents of a field in a
column, the accumulated value is updated. The sum is updated continuously, so the
program does not need to add all the entries together – it can simply add the newest
figure to the sum that is already calculated. The updated sum can be seen every time
you open a window, which contains a FlowField or set a filter on a balance field.

FlowFields are used to display amounts and quantities that must always be up-to-
date. The calculation can be based on information that is stored in tables other than
the one that contains the FlowField. FlowFilters are used to determine how much
information the system will include when it calculates the contents of FlowFilters.

However, SIFT has been implemented very differently in the SQL Server Option for
Navision. This implementation involves creating a new table on SQL Server for every
SumIndexFields that exists in a Navision database table. The totals in the
SumIndexFields are therefore calculated in SQL Server tables. This means that there
are more tables that must be updated and more filters that must be applied.

This can in turn result in poor performance. Therefore you should not create any
FlowFields unless they are necessary and you should also give serious consideration
to the design of any indexes and filters that you are going to implement. For example,
you must give the SumIndexFields a unique name because SQL Server will create a
table that is named after this field. No two objects can have the same name in
Navision.

For more information, see the section SIFT and the SQL Server Option for Navision
on page 404.
511

Appendix D. NDBCS – The Database Driver
D.2 A BRIEF HISTORY OF PERFORMANCE IMPROVEMENTS

The database driver has become increasingly complex because of the continuing
need to improve performance.

The Features and The Versions
This section contains details of the features that have been introduced to optimize
performance, including the version of Navision in which the changes were introduced.

Parameterization (2.50)

C/SIDE filters are not parameterized because the auto-parameterization feature in
SQL Server 7.0 is believed to provide the necessary parameterization on the server.
The development effort that is required to achieve the parameterization is quite high.
All INSERT, UPDATE and DELETE statements are parameterized, along with some
rowsets for navigating cursors. Subsequent tests have shown that the auto-
parameterization feature in SQL Server 7.0 does not work – or at least works very
conservatively – and it would therefore be necessary to do this in the driver.

Prepared Statements (2.50)

Prepared statements are used for all modifications except for the DELETEALL and
MODIFYALL functions. Statements used for GET and FIND(‘=’) are also prepared.

Statement re-use (2.50)

Modification statements for INSERT, DELETE and MODIFY are re-used; however only
two versions of DELETE and MODIFY are persistent; one with and one without the
timestamp check. Cursor-based rowsets for all FINDs are re-used, along with those for
GET. SIFT query rowsets are not re-used due to the isolated nature of the SIFT
system.

Fetch Buffer Growth (2.50)

The buffering of rows for block rowsets is done by setting an initial buffer size based
on the width (in bytes) of the table and some threshold values. As records are read
from a rowset, the buffer grows steadily to reduce the number of fetches. This is not
done immediately because the reading pattern for a particular rowset is unknown.
Once the rowset is closed, the buffer is restored to its original size.

Paging in the User Interface (2.50)

When paging up or down in a regular table window, the form system makes requests
both forwards and backwards even though you are only paging in the same direction.
It also uses different records as reference points for requests for further records. This
disturbs the basic sequential reading from a cursor and causes several rowsets to be
executed when paging is being carried out. To avoid this, the rowset buffer layout has
been extended to give a scroll window that can be read backwards, like a history of
the current window. An additional anchor record is also maintained as well as the
usual current record, to cater for the dual reference points used in the form. This
512

D.2 A Brief History of Performance Improvements
allows a rowset to perform pure fetching when paging with the form system, utilizing
the history buffer and current records.

Preserving Rowsets during Modifications (2.50)

When modifying a record, for example, in a loop, it is best to allow as many cursors as
possible to remain open, including the cursor being used for the loop itself. This is
possible for fast-forward and dynamic cursors, provided that the modification is not to
a field in the current key, in which case the ordering of the record could change.
Although these cursor types retrieve fresh data at fetch time, they maintain a memory
buffer, which is not updated when the modification is performed. To allow
modifications and deletions of a record and to keep these cursors open, the buffer is
flagged for the record so that it cannot be visited again, but further records can be
read. If the modification is to a key field, the cursor must be closed.

Providing the ISEMPTY Alternative to FIND (2.50)

The new ISEMPTY function utilizes an existing driver function and allows a less
expensive, non-cursor, SQL statement to be used for determining whether or not a
filtered set is empty.

Client Caching (2.50)

Records are cached on the client for GET, FIND(‘=’), NEXT, SIFT queries and BLOB
data. This improves performance when re-reading these items but means that the
data is not necessarily the most recent.

Minimizing unnecessary Transactions (2.50)

Status information is maintained by the driver to minimize the amount of server calls
for transaction end blocks and isolation level changes. This significantly reduces the
number of server calls, which can otherwise be made many times by C/SIDE without
any logical necessity on the server.

Using optimal SIFT queries (2.50)

It was discovered that many SIFT queries that use the OR operator for bucket
comparisons are using fairly expensive execution plans on the server. Tests showed
that using the UNION ALL operator (with the necessary restructuring of the SQL
statement) gives a much faster execution plan.

Bulk Fetching during a Backup, and Batch Inserting during a Restore (2.50)

Two internal functions are implemented to improve backup and restore performance.
A bulk fetching function is built on the existing rowset functions to perform mass
record fetching. A batch insert function is created to utilize batch inserts in the SQL
Server ODBC driver, thereby reducing the number of server calls that must be made
when many inserts are performed.

Extended Parameterization (2.60.A)

C/SIDE filters are parameterized giving significant performance benefits throughout
the client. SIFT queries are also parameterized but they are still not re-used.
513

Appendix D. NDBCS – The Database Driver
Extended Preservation of Rowsets during Modifications (2.60.A)

Modifications are made to extend the cursor types that can remain open during
modifications.

A New Algorithm for Deleting Rowsets (2.60.A)

The LRU algorithm that is used for deleting rowsets that are using cursors, when new
rowsets are created, is replaced with a more complex algorithm. The new algorithm is
introduced to prevent reports that have several loops, from deleting rowsets and using
new rowsets to continue the looping. The problem is also related to having cursors
used for FIND(‘-‘) operations that only request one row. The new scheme looks at
the state and usage of the cursor to determine if it should be deleted. This improves
performance for reports that have several loops.

Using Single-row Rowsets for FIND (2.60.A)

When a FIND(‘-‘) is issued, the default of initially fetching several rows is changed
so that only a single row is fetched. This is useful if the FIND will not retrieve further
rows. If it does retrieve further rows, the fetch size is set to the normal initial size.

Modifying Fewer Fields (2.60.A)

For a MODIFY, the SQL statement is changed so that it only updates those fields that
have been changed. This means reading the modified record in advance, but gives a
more efficient update especially where SIFT is concerned.

Client Analysis of Filters (2.60.D, 3.00)

To avoid some specific problems with the SQL Server query optimizer, the C/SIDE
filter is examined to determine if it defines an empty set. This analysis is done only for
particular operators. As a result of this analysis, many such queries are not executed
on the server.

Extended Statement Re-use (3.00)

All modification statements including DELETEALL and MODIFYALL are now re-used.
Rowsets that implement the ISEMPTY function, BLOB retrieval and SIFT queries are
also re-used now.

Modified Threshold Values (3.00)

The thresholds for buffer sizes, and the numbers of command and rowsets are
adjusted after performance testing.

Client Caching of SIFT Queries on Base Tables (3.00)

Sums performed on base tables, where the MaintainSIFTIndex property is set to No,
are obtained and cached in a single server call.

Change to Prepared Statements (3.01)

Statements that are used in cursor rowsets when performing FIND(‘-/+‘) are now
prepared, depending on the cursor type used. A known bug in the SQL Server ODBC
driver means that preparing statements with certain cursor types, while using an auto-
514

D.2 A Brief History of Performance Improvements
fetch feature, returns incorrect information to the client application. Since the problem
does not occur with Fast Forward cursors, these can be prepared as long as the
cursor type does not change after the first execution. Additionally, the statements for
ISEMPTY, BLOB retrieval and SIFT queries are all prepared.

Change to Single-row Rowsets (3.01)

The rules for using single-row rowsets are modified by using table and rowset
statistics. If the table has recently experienced any modifications to key fields, or a
FIND(‘-/+‘) rowset has not experienced a NEXT operation, single-row fetching will
be used for the rowset instead of buffered fetching.

Change to Rowset Closure and Cache Purging in Transactions (3.01)

The information about outer and inner transactions that is maintained by the C/SIDE
database layer is now passed onto the driver at the end of the transaction. All caches
are purged at the beginning of the first inner transaction, for example when a code unit
is run.

The driver now allows non-locking cursors, which are used by tables that are not
locked, to remain open after a commit (but not a rollback). This improves batch job
performance when commits are issued during the batch job because cursors that are
used by looping tables that are not locked can continue to be used.

Utilizing Faster SQL Statements (3.01)

Rowsets continue to optimize for the situation where a result set is opened because of
a FIND(‘-/+’) and the set is fully read to the end. However, rowset statistics are
used to determine if a faster more efficient SQL statement can be used to satisfy the
request that a rowset is currently servicing. The following schemes have been
introduced for statements implementing FIND(‘-/+’), which replace the use of the
original cursor in the rowset:

· If a rowset is mainly producing empty results, a SQL statement that implements the
ISEMPTY function is used.

· If a rowset is mainly reading the first record only with no subsequent NEXT
operations, a single-row default result set is used.

· If a rowset is reading records to the end of a set and the set is small, a buffered
default result set is used.

Extended Client Caching (3.01)

The results for many rowsets are now cached, including the situation where no record
is found. Original cursor rowsets are not cached. They must be replaced by buffered
default result sets in order to be cached.

Change to Rowset Deletion (3.01)

The algorithm for deleting cursor rowsets is simplified to an LRU (least recently used)
system as for non-cursor types. Testing found this to be the best overall scheme and it
replaces the more complex system introduced in 2.6A. Since the number of rowset
515

Appendix D. NDBCS – The Database Driver
objects has significantly increased, the original problems seen in 2.6 will no longer
occur for most typical batch jobs.

Change to Firehose Rowsets (3.10)

The rules for using a firehose rowset are slightly modified. A single-row rowset is
never converted to a firehose rowset. Furthermore, when a key is modified, all the
existing firehose rowsets for the table are deleted so that they will not be re-used. As
before, a firehose rowset will not be created when the table is undergoing key
modifications.

Change to Rowset Closure Due to Modifications (3.10)

More use is made of single-row rowsets to allow them to remain open after
modifications are made to the table, and avoid having to create and execute new SQL
statements. A single-row rowset can now survive an INSERT, DELETEALL or
MODIFYALL operation. These operations are treated in the same way as key
modifications and deny the use of a firehose rowset.

Change to Rowset Memory Usage (3.10)

The number of rowsets and commands available for a connection is based on the
available physical memory as was the case in 3.01B, but now the number can change
dynamically as the program runs. If the amount of memory available is reduced to a
lower performance level than the current threshold, the command and rowset
resources are deleted to stay within the new limits. If more memory is available, the
performance level can increase to accommodate more resources. This memory
checking is performed within the usual resource expiry sweep – every 5 minutes.

Change to Rowset Expiry (3.10)

Rowsets are no longer checked for expiry prior to use. They can expire only within the
resource expiry sweep, but only after 30 minutes of inactivity. If the status of a rowset
is Open, it will never expire.

Change to Transaction End Markers in the User Interface (3.10)

The user interface often begins a transaction when performing a lookup. Sometimes
the transaction is ended with a rollback, and this closes all the active rowsets for this
connection. These rollbacks are now changed to commits in order to preserve the
open rowsets. The transaction itself has performed no work that needs to be
committed or rolled back, so the actually type of the transaction end is not important.

Non-locked Rowsets Persist Beyond a Transaction (3.10)

Rowsets that are created for a non-locked table (i.e. non-locked rowsets) can persist
beyond a transaction, even when the table was locked within the transaction.
Previously, once a table was locked, all its rowsets were closed on commit, including
non-locked rowsets that were opened before the table lock.
516

D.2 A Brief History of Performance Improvements
Automatic Bulk Inserts (3.10)

The driver automatically buffers record insertions and sends them in batches to the
server, in a similar manner as it does when restoring a database. Special operations
are performed for tables that contain SIFT keys to further optimize the use of the SIFT
triggers. There are various criteria that must be met before automatic bulk inserts are
available. These criteria are described on page 471.
517

Appendix D. NDBCS – The Database Driver
518

INDEX
A
ActiveX . 300
application

application object 5
design . 12
design (reference to books) 16
object . 3
the term . 5

Application Area Name (field) 372
array . 242
ascending order 39
automation 300, 306

using Microsoft Word 306
where to put code 307

AutoReplace . 347
AutoSave . 347
AutoUpdate . 347

B
bigint

SQL Server data type 33
BigInteger

C/AL data type 33
field data type 25

binary
C/AL data type 33, 34
SQL Server data type 34

binary (field data type) 24
bit

SQL Server data type 34
BLOB . 24

C/AL data type 33, 34, 240
field data type 24

boolean
C/AL data type 33, 34, 237
displaying . 132
field data type 24

bound control 101, 125
bound form . 101
breakpoints . 289

in the C/AL Editor 293
storage in XML file 294

Breakpoints virtual table 293
bugs . 280
bulk inserts . 471

C
C/AL

bugs . 280
comments . 258
constants . 243
control language 252
data types . 236
debugging . 280
defined . 6

dialogs . 274
editor . 4, 218
essential functions 266
expressions 235
function calls 250
Globals . 224
Locals . 225
operator hierarchy 250
operators . 248
program logic errors 287
repetitive statements 255
reusing code 263
run-time errors 282
statements 235
Symbol Menu 226, 382
syntax errors 281
where to place 262

C/AL functions
CALCDATE 379
CALCFIELDS 271
CALCSUMS 271
CLEAR . 230
CONFIRM . 276
DELETE . 270
DELETEALL 270
ERROR . 276
FIELDERROR 272
FIELDNAME 273
FIND . 266
GET . 266
GETRANGEMAX 269
GETRANGEMIN 268
INIT . 273
INSERT . 269
LOCKTABLE 271
MESSAGE 275
MODIFY . 269
MODIFYALL 270
NEXT . 267
OPEN . 275
overview . 266
SETCURRENTKEY 267
SETFILTER 268
SETRANGE 268
STRMENU 276
TESTFIELD 273
UPDATE . 275
VALIDATE . 273

cache
commit cache 460
DBMS cache 458

Index
CalcFormula (property) 44
calculation formula 44
CAPTIONAREA 444
CaptionClassTranslate trigger 443
CAPTIONREF 444

syntax . 445
card form . 102

creating . 103
CASE . 254
char

SQL Server data type 33
char (C/AL data type) 239
check box to display booleans 132
CLEARALL . 230
Client Monitor . 82

additional parameters for SQL Server 84
code

C/AL data type 33, 239
field data type 24

Code Coverage Tool 297
code examples

DimCaptionClassTranslate 448
VATCaptionClassTranslate 454

code fields . 34
codeunit

accessing functions 229
assigning a 230
compiling . 227
creating . 220
defined . 218
limitations . 231
running . 219
saving . 227
single instance 230
specifications 478
temporary tables 218

codeunit (C/AL data type) 241
Color tool . 124
column . 20
COM . 300

and C/SIDE 302
automation 306
CREATE . 312
custom controls 326
default members 313
enumerations 304
exceptions . 332
Microsoft Excel 315
OCX . 326
terminology 301
USERDEF . 304
using Microsoft Word 306

commit
in C . 434
in C/AL . 434

commit cache 460
COMMIT() . 435
company . 41
Company system table 77
complex data types 240
compound statement 252
concurrency . 430
conditional statements 252
configuration parameters

SQL Server Option 467
consistency . 430
constant . 243

text . 222, 243
container control 100, 119

frame . 133
control

adding . 121
aligning . 111
bitmaps . 136
bound 101, 125
branch . 100
changing caption 125
changing name 125
check box . 132
Color tool . 124
command button 120, 132
container 100, 119, 133
container control selection 110
control branch selection 110
data . 119
data types . 119
defined . 6
display properties 126
displaying numbers 126
Font tool . 124
formatting data 126
frame . 119, 133
image . 119
in reports . 161
indicator . 137
input . 127
label . 119
menu button 120, 150
menu item . 120
moving . 110
multiple selection 108
option button group 131
option drop-down 130
picture box 134, 136
properties of, in forms 125
properties of, in reports 177
shape 119, 134, 135
sizing . 111
static . 119
subform . 120
tab control 119, 138
table box 120, 138
text box 121, 123, 126, 129

Index
toolbox . 121
tools . 124
ToolTip . 128
types of . 119
unbound 101, 125

control types . 119
CREATE

automation variable 306, 312
custom control 300

developing . 333
using in C/SIDE 326

D
data . 23
data container 120
data controls . 119
data integrity 428, 432
data item 160, 161

data model 178, 186, 192
dataport . 338
defined . 7
properties . 176

data model . 13
dataport . 339

data type
BigInteger (field) 25
binary (field) 24
BLOB (C/AL) 240
BLOB (field) 24
boolean (C/AL) 237
boolean (field) 24
char (C/AL) 239
code (C/AL) 239
code (field) . 24
codeunit (C/AL) 241
complex (C/AL) 240
controls and data types 119
date (C/AL) 238
date (field) . 24
DateFormula 379
dateformula (field) 25
DateTime (field) 25
datetime (SQL) 24
decimal (C/AL) 238
decimal (field) 23
decimal (SQL) 23
descriptive (C/AL) 240
dialog (C/AL) 241
Duration (field) 25
field data type 25
file (C/AL) . 241
form (C/AL) 240
fundamental 237
GUID (field) . 25
image (SQL) 24
integer (C/AL) 237
integer (field) 23
integer (SQL) 23

mixing . 390
option (C/AL) 237
option (field) 23
record (C/AL) 240
report (C/AL) 241
RowID (field) 25
table fields . 23
text (C/AL) . 239
text (field) . 23
time (C/AL) 238
time (field) . 24
tinyint (SQL) 24
varbinary (SQL) 24
varchar (SQL) 23, 24

data version
defined . 429
historical . 431
storage of . 431

database
defined . 8
design . 12
design (reference to books) 16
logical . 8
physical . 8
the term . 5

Database File virtual table 88
Database Key Groups system table . . . 78
dataport

AutoReplace 347
AutoSave . 347
AutoUpdate 347
combining export and import 362
data item . 338
data item properties 346
data model 339
description . 338
designing . 344
dynamic dataport example 362
export examples 350
export, fixed format 350
export, variable format 355
external file 339
field . 338
field properties 348
FileFormat property 345
fixed format export 350
fixed format import 357
import examples 357
import, fixed format 357
import, variable format 360
logical design 339
property 339, 344
request form 338
running 340, 342
trigger 339, 349
variable format export 355
variable format import 360

Index
Dataport Designer 4
date

C/AL data type 33, 34, 238
field data type 24, 36

Date virtual table 80
DateFormula

C/AL data type 33
dateformula

field data type 25
DateTime

C/AL data type 33
field data type 25

datetime
SQL Server data type 33

DBL_BWT . 434
DBL_EWT . 434
DBMS . 428

cache . 458
specifications 476

deadlock detection 433
debugger

activating the 289
breakpoints stored in XML file 294
code coverage 297
interface . 290
menus . 290
overview of shortcut keys 295
running on Navision Application Server
290
setting breakpoints in the C/AL Editor 293
storage of information in the fin.zup file
295
the Breakpoints virtual table 293
toolbar . 291
windows . 292

decimal
C/AL data type 33, 34, 238
field data type 23
SQL Server data type 33

default members (COM) 313
delayed write back 460
deleting language 372
descending order 39
descriptive data types 240
Designer

Dataport . 4
Form . 4
Object . 3
Report . 4
Table . 4

dialog . 274
C/AL data type 241

DimCaptionClassTranslate 448
DIMCAPTIONREF 446
DIMCAPTIONTYPE 446
dimension area 446
document . 208
Documentation section 219
drill-down

form . 147
Drive virtual table 82
Duration

C/AL data type 33
field data type 25

E
editor

purpose . 4
using . 218

Entity-Relationship (ER) model 13
enumerations 304
Events

receiving . 322
EXIT . 257
expression

basic elements of 243
defined . 235
evaluation 236, 390

external tools
accessing table data with 36

F
field

dataport . 338
defined . 6
illustration . 20
property . 52
trigger . 58

Field Menu
in reports . 167

Field Virtual Table 90
Field virtual table 90
file (C/AL data type) 241
File virtual table 81
FileFormat property 345
filters

and number sorting 426
float

SQL Server data type 34
FlowField

calculation formula 44
table filter . 46

FlowFilter field 42
Font tool . 124
FOR TO/DOWNTO 255
Form . 373
form

bound . 101
card form 102, 103
closing . 113
compiling . 113

Index
creating 102, 103, 105, 106
description . 100
design 100, 141
drill-down . 147
Form Wizard 102
lookup . 145
main form . 140
running 114, 149
saving . 113
specifications 478
subform . 140
tabular form 102
test-compiling 113
unbound . 101

form (C/AL data type) 240
form design

Color tool . 124
Font tool . 124
toolbox . 121
tools . 124

Form Designer 4, 100
Form Wizard 102, 103

creating a card form 103
creating a tabular form 105

function
accessing in codeunit 229
C/AL . 218
creating . 221

fundamental data types 237

G
global variable 218
Globals . 224
graph

creating with Microsoft Excel 315
groups in reports 192
GUID

C/AL data type 33
field data type 25

I
ID number . 3
IDE . 2
IF THEN ELSE 253
image

SQL Server data type 33
index hinting

SQL Server Option 467
integer

C/AL data type 33, 34, 237
field data type 23
SQL Server data type 33, 34

Integer virtual table 81
integrity . 428

K
key

defined . 6
discussed . 26

groups . 78
in ER model 14
list . 26, 29, 31
performance 30
primary . 26
property . 55
secondary . 27
SumIndexFields 402

L
Language . 372
language

adding . 371
deleting . 372
multiple document 374

language ID . 372
language layer 371
lazy write . 460
limitations

event triggers 324
linked objects

description . 66
requirements 67

Locals . 225
lock granularity

SQL Server Option 469
locking

a comparison of Navision Database
Server and SQL Server 436
in Navision Database Server 437
in SQL Server 437

locks . 432
log file . 429
logical database 8
lookup . 143, 145

form . 145
table relation 144

looping (C/AL) 255

M
main form . 140

design . 141
Member Of system table 75
menu

design 150, 151
menu button 150
menu item . 150
menu line . 151
shortcut key 152

Microsoft Enterprise Manager 36
Microsoft Excel 315
Microsoft Word 306
money

SQL Server data type 34
Monitor virtual table 82
multilanguage 369

C/ODBC . 374
date formulas 379
multiple document languages 374

Index
SQL views . 37
text constants 370, 376

Multilanguage Editor 371

N
Navision Database Server

locking in . 437
number sorting 423
SIFT . 402

Navision debugger 289
nchar

SQL Server data type 34
nonprinting report 212
ntext

SQL Server data type 34
Number . 240
number sorting

a definition of 424
and filters . 426
differences between Navision Database
Server and SQL Server 424
principles . 425
recommendations 424

numbering principles 425
numeric

SQL Server data type 34
nvarchar

SQL Server data type 34

O
Object Designer 3
OCX . 300

developing . 333
registering . 326
using in C/SIDE 326

OLE . 300
OnRun section 219
operators

arithmetic (type conversion) 393
hierarchy . 250
logical (type conversion) 393
relational (type conversion) 392
using in C/AL 248

option
C/AL data type 33, 34, 237
field data type 23

option (C/AL data type) 33
order

ascending . 39
descending . 39

P
performance

C/AL functions and SQL Server 464, 466
command buffer 462
commit cache 460
DBMS cache 458
keys . 30
keys and queries 464

measuring . 82
Permission system table 76
physical database 8
program logic errors 287
property

CalcFormula 44
control 101, 116, 125, 126, 127
control, general properties 118
dataport 339, 344
defined . 6
fields . 52
form . 101, 116
inheriting . 116
key . 55
list of, in forms 117
list of, in reports 161
list of, in tables 50
parameterized 331
Property Sheet 101
report . 174, 175
TableRelation 60

Property Sheet 101

R
read consistency 430
real

SQL Server data type 34
record

C/AL data type 240
defined . 20

record level security
supporting on SQL Server option . . 456

registering an OCX 326
relationship . 60
REPEAT UNTIL 256
report

closing . 170
compiling . 170
control . 161
control properties 177
controlling output 205
data item 160, 161, 178, 186, 192
data item properties 176
data item triggers 198
data model 178, 186, 192
definition . 160
designing sections 181, 188, 195
documents 208
execution . 164
Field Menu 167
flow chart . 164
grouping . 192
nonprinting 212
properties 161, 174
property, description of 175
report description 160
Report Designer 167
report triggers 198

Index
request form 161
Request Options Form Designer . . 167,
168
running . 171
saving . 170
section 161, 162, 181
Section Designer 167
section properties 176
section triggers 198
specifications 478
totaling . 192
totals . 193
triggers 161, 198
virtual tables in reports 200

report (C/AL data type) 241
report description 160
Report Designer 4, 167
request form . 161

dataport . 338
Request Options Form Designer 167, 168
RequestForm 161

defined . 7
row . 20
RowID

C/AL data type 33
field data type 25

run-time errors 265, 282

S
section . 161, 162

defined . 7
designing 181, 188, 195
properties . 176
triggers . 198

Section Designer 167
Session virtual table 85
shortcut key . 152
shortcut keys

in the C/AL Editor 221
in the debugger 295

SID - Account ID virtual table 95
SIFT

Navision Database Server 402
SQL Server Option 404–422
tables on SQL Server 32

smalldatetime
SQL Server data type 34

smallint
SQL Server data type 34

smallmoney
SQL Server data type 34

specifications
codeunit . 478
DBMS . 476
forms . 478
reports . 478
tables . 477

SQL Server
additional parameters in the Client
Monitor . 84
how code fields work in 24
locking in . 437
SIFT tables . 32

SQL Server Option
configuration parameters 467
index hinting 467
linked objects 66
lock granularity 469
maintaining table relationships 63
SIFT . 404–422
SIFT buckets 406
SIFT table . 405
SIFT table, extended key 413
SIFT table, indexes 413
SIFT table, layout 413
SIFT table, optimizing 422
SIFT Trigger 405
SIFT, costs and benefits 421
SIFT, Date fields 409
SIFT, DateTime fields 412
SIFT, deleting records 418
SIFT, updating the base table 416
sorting numerical values in code fields .
423
supporting record level security . . . 456

statement
compound . 252
conditional . 252
defined . 235

String . 240
subform . 120, 140

design . 141
SumIndexField

and FlowFields 42
and SQL Server 438
defined . 402

Symbol Menu 226, 382
syntax errors . 281
system table . 74

Company . 77
Database Key Groups 78
Member Of . 75
Permission . 76
User . 75
User Role . 76
Windows Access Control 77
Windows Login 77

system-defined variable 264

T
tab control . 119
table

accessing data with external tools . . 36
adding records 39
defined . 20

Index
description . 20
modifying the design of 65
property . 50
relationship . 60
saving . 38
specifications 477
system . 74
temporary . 72
trigger . 58
validating relationship 145
viewing data in 38
virtual . 79

Table Designer 4, 22
Table Information virtual table 89, 90
table property

LinkedInTransaction 66
LinkedObject 66
list . 50
viewing and modifying 50

table relation . 144
and assist edit 62
example . 62

TableFilter
C/AL data type 33
data type (field) 25

TableRelation property 60
tabular form . 102

creating . 105
template . 7
temporary table 72
text

C/AL data type 33, 34, 239
field data type 23
SQL Server data type 34

text box
adding 121, 123
adding a label 126
calculation . 129
multiple lines 129

text constant 222, 243
Text Constants 370
time

C/AL data type 33, 238
field data type 24, 36

tinyint
SQL Server data type 33, 34

toolbox . 121
ToolTip . 128
totals

and sections 193
totals in reports 192
transaction . 428
trigger

control 101, 155
data item . 198
dataport 339, 349
defined . 6
field . 58

form . 101, 154
overview of control triggers 155
overview of form triggers 154
overview of report triggers 198
report . 161, 198
table . 58

triggers
CaptionClassTranslate 443

type conversion 390

U
unbound control 101

changing to bound 125
unbound form 101
uniqueidentifier

SQL Server data type 33, 34
user interface . 2
User Role system table 76
User SID virtual table 95
User system table 75
USERDEF . 304
user-defined variable 244

V
varbinary

SQL Server data type 33
varchar

SQL Server data type 33
SQLdata type 24

variable
arrays . 242
assignment 246
creating . 221
CurrForm . 264
CurrReport 264
global . 218
initialization 246
naming conventions 244
Rec . 264
system-defined 264
user-defined 244
xRec . 264

VATCAPTIONREF 447
VATCAPTIONTYPE 447
virtual table . 79

Breakpoints 293
Database File 88
Date . 80
Drive . 82
Field . 90
File . 81
Integer . 81
Monitor . 82
Session . 85
SID - Account ID 95
Table Information 89, 90
User SID . 95
Windows Group Member 94
Windows Object 93

Index
virtual tables . 200

W
WHILE DO . 256
Windows Access Control system table . 77
Windows Group Member virtual table . 94
Windows Login system table 77
Windows Object virtual table 93
WITH . 257
write locks . 432
write transaction 428

Index

	Table of Contents
	Fundamentals
	C/SIDE Fundamentals
	1.1 The C/SIDE User Interface
	Designing Application Objects

	1.2 What Is a C/SIDE Application?
	General C/SIDE Concepts

	1.3 The Physical and the Logical Database
	The Logical Structures in Your Database

	Designing a C/SIDE Application
	2.1 Introduction to C/SIDE Application Design
	Understanding the Problem
	Designing the Tables
	How Are ER Model Concepts Related to C/SIDE Concepts?
	Determining Field Types
	Role of Keys in C/SIDE
	Determining the Relationships
	Assuring the Quality of the Design

	Designing the Application
	Recommended Books on Database Design

	Tables
	Table Fundamentals
	3.1 What Is a Table?
	Creating a Table
	Adding Fields to Your Table
	Choosing Data Types

	3.2 What Are Keys?
	How to Define a Primary Key
	How to Create Secondary Keys
	How Keys Affect the Working Speed of C/SIDE
	How Are the Keys Stored?

	3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision
	Naming Identifiers
	Representation of Navision Data Types
	Compatibility of Data Types
	Data Format Considerations
	Code Fields
	Date and Time Fields
	Accessing Navision Tables with External Tools

	3.4 Saving, Viewing, and Sorting Data
	3.5 Dividing the Database into Companies
	3.6 Special Table Fields
	What Are FlowFields?
	Calculation Formulas and the CalcFormula Property

	Using FlowFilter Fields in the Calculation Formula

	Customizing and Maintaining Tables
	4.1 Viewing and Modifying Properties
	Viewing and Modifying Table Properties
	Viewing and Modifying Field Properties
	Viewing and Modifying Key Properties

	4.2 Using Table and Field Triggers
	4.3 Setting Relationships Between Tables
	Why Use Relationships?
	Table Relations and the TableRelation Property
	Creating Basic Table Relations
	Creating Table Relations with Assist-Edit
	Maintaining Table Relationships on SQL Server
	Requirements
	Synchronization

	4.4 Changing Tables That Contain Data
	Rules for Changing Tables

	4.5 Linked Objects
	Defining Linked Object Table Properties
	Creating a Navision Table Description
	Deleting a Navision Table Description:

	Requirements for Linking Objects
	Rules Determining Compatibility

	Redesigning the Navision Linked Object Table Definition
	Access to Objects in Other Databases or on Linked Servers

	Special C/SIDE Tables
	5.1 What Is a Temporary Table?
	Defining and Using a Temporary Table

	5.2 What Is a System Table?
	The User System Table
	The Member Of System Table
	The User Role System Table
	The Permission System Table
	The Windows Access Control System Table
	The Windows Login System Table
	The Company System Table
	The Database Key Groups System Table

	5.3 What Is a Virtual Table?
	When to Use Virtual Tables

	5.4 Overview of C/SIDE Virtual Tables
	Using the Virtual Tables
	The Date Virtual Table
	The Integer Virtual Table
	The File Virtual Table
	The Drive Virtual Table
	The Monitor Virtual Table
	Client Monitor - Additional Parameters for the SQL Server Option
	The Session Virtual Table
	The Database File Virtual Table
	The Table Information Virtual Table
	The Field Virtual Table
	The Navision Server Virtual Table
	The Server Virtual Table
	The Windows Object Virtual Table
	The Windows Group Member Table
	The SID - Account ID Virtual Table
	The User SID Virtual Table

	Forms
	Form Fundamentals
	6.1 What Are Forms?
	What are Controls?
	What Are Bound and Unbound Forms and Controls?
	What Are Form and Control Properties?
	What Are Triggers?

	6.2 Creating Forms
	Creating Forms with a Form Wizard
	Creating a Card Form
	Creating a Tabular Form

	Creating Forms Without a Wizard

	6.3 Selecting, Moving and Adjusting Controls
	Selecting Controls
	Multiple Selections
	Adding to a Selection
	Marquee Selection
	Selection and Container Controls
	Selection and Control Branches

	Moving Controls
	Moving Selected Controls
	Aligning Controls
	Sizing and Resizing Controls
	Sizing Container Controls

	6.4 Saving, Compiling and Running Forms
	Saving and Closing a Form
	Compiling a Form
	Running a Form

	Designing Forms
	7.1 Form and Control Properties
	How Properties Are Inherited
	Form Properties
	General Properties for Controls

	7.2 Types of Controls
	Static controls
	Data controls
	Containers
	Data Containers
	Other

	7.3 Adding Controls
	The Toolbox
	Adding a Text Box
	Adding a Text Box without Using the Field Menu
	Creating Labels That Display Descriptive Text

	7.4 Tools for Customizing Controls
	Using the Color Tool
	Using the Font Tool

	7.5 Setting Control Properties
	Changing the Properties of a Control
	Changing the Name and Caption of a Control
	Changing an Unbound Control into a Bound Control
	Adding a Label to a Text Box

	Display Properties
	Controlling the Display of Numbers
	Formatting Data Display

	Properties That Control Input
	Assisting the User

	7.6 How to Use Controls in Applications
	Displaying More Than One Line of Text
	Displaying a Calculated Value
	Presenting a Set of Options
	Creating a Drop-Down List of Options
	Creating an Option Button Group

	Using a Check Box to Display Booleans
	Creating and Using Command Buttons
	Containing Controls Within a Frame
	Adding Shapes and Pictures
	Using Shapes
	Adding a Static Picture as an Image
	Adding a Data Dependent Picture as a Picture Box
	Pictures on Command, Menu and Option Buttons and in Check Boxes

	Using an Indicator to Display Values
	Creating a Tab Control
	Creating a Table Box

	Extending the Functionality of Your Forms
	8.1 Main Forms and Subforms
	Designing the Main Form
	Designing the Subform
	Hints and Advice

	8.2 Looking Up Values and Validating Entries
	Defining the Table Relation
	Validating Entries
	Using the Default Lookup or Writing Your Own?
	Defining a Lookup Form
	Permanent Assist
	Looking Up in the Current Table

	8.3 Drilling Down to the Underlying Transactions
	8.4 Launching Another Form
	8.5 Designing Menu Buttons
	Adding a Menu Button to a Form
	Adding a Menu Line to a Menu
	Adding Other Menu Items
	Check Marks on Menu Items

	8.6 Form and Control Triggers
	Overview of Form Triggers
	Overview of Control Triggers
	How to Define and Modify Form and Control Triggers

	Reports
	Report Fundamentals
	9.1 What Are Reports?
	The Report Components
	Logical and Visual Design

	9.2 What Happens When a Report Runs?
	The Report Run

	9.3 The Report Designer
	The Report Designer
	The Section Designer
	The Request Options Form Designer

	9.4 Saving, Compiling and Running Reports
	Saving and Closing a Report
	Compiling a Report
	Running a Report

	Designing Reports
	10.1 Report Properties
	How Properties Are Inherited
	Report Properties
	Data Item Properties
	Section Properties
	Control Properties

	10.2 Designing a Simple Report
	Defining the Data Model
	Using the Wizards

	Designing the Sections

	10.3 Designing a More Advanced Report
	Defining the Data Model
	Designing The Sections

	Extending the Functionality of Your Reports
	11.1 Grouping and Totaling
	Defining the Data Model
	The Relationship between Totals and Sections
	Designing the Sections

	11.2 Triggers in Reports
	Report Triggers
	Data Item Triggers
	Section Triggers

	11.3 Advanced Sample Reports
	Using Virtual Tables
	Using the Date Table
	Defining the Data Model
	Designing the Sections
	Refining the Design by Using Triggers

	Creating a Simple Document
	Defining the Data Model
	Using the Triggers
	Designing the Sections

	A Nonprinting Report
	Defining the Data Model
	Creating the Request Form
	Using the Triggers

	Codeunits
	Codeunit Fundamentals
	12.1 What Is a C/SIDE Codeunit?
	12.2 Creating Codeunits
	Using the C/AL Editor
	Defining Variables, Text Constants and Functions in Codeunits
	Using the C/AL Symbol Menu
	Compiling and Saving Codeunits

	12.3 Using Codeunits
	Limitations on Codeunits

	Introducing the C/AL Language
	13.1 What Can You Do with C/AL?
	13.2 What Are Statements, Expressions, and Operators?
	What Is a C/AL Expression?
	Introducing the C/AL Data Types
	Fundamental Data Types
	Descriptive Data types
	Complex Data Types
	Creating Arrays of Variables

	13.3 Introducing the Elements of C/AL Expressions
	Constants
	Using Variables in C/AL
	Variable Names
	Initialization
	Assignment and Type Conversion
	Valid Assignments

	Using Operators in C/AL
	Operator Hierarchy
	Function Calls

	13.4 The C/AL Control Language
	Using Compound Statements
	Conditional Statements
	The IF THEN ELSE Control Structure
	The CASE Control Structure

	Using Repetitive Statements
	The FOR TO/DOWNTO Control Structure
	The WHILE DO Control Structure
	The REPEAT UNTIL Control Structure
	The EXIT Statement
	The WITH Statement
	How to Annotate Your Programs

	Using C/AL
	14.1 Overview
	Where to Write C/AL Code
	Reusing Code

	14.2 System-Defined Variables
	14.3 Handling Runtime Errors
	14.4 The Essential C/AL Functions
	Searching For Records
	Sorting and Filtering Records
	Inserting, Modifying and Deleting Records
	Transactions
	Working with Fields
	User Messages And Dialogs
	Creating a Window to Indicate Progress
	Other User Messages

	A Quick Options Form

	Debugging C/AL Code
	15.1 What Are Bugs?
	15.2 Syntax Errors
	15.3 Runtime Errors
	How to Avoid Runtime Errors
	Data Type-Related Errors
	Other Runtime Errors

	Finding and Correcting Runtime Errors

	15.4 Program Logic Errors
	15.5 The Microsoft Business Solutions-Navision Debugger
	Overall Description
	Activating the Debugger
	The Debugger Interface
	Debugger Menus
	The Debugger Toolbar
	Debugger Windows
	Symbols used in the Debugger Interface

	Working with Breakpoints in the C/AL Editor
	The Breakpoints Virtual Table
	Storage of Breakpoints in an XML File
	Overview of Shortcut Keys

	15.6 The Code Coverage Tool
	Using the Code Coverage Tool

	Extending C/AL
	16.1 What Is COM?
	Terminology and History

	16.2 Using COM Technologies in C/SIDE
	Parameters, Return Values and Data Types

	16.3 Using C/SIDE as an Automation Controller
	Writing a Letter In Microsoft Word
	Background Information about Using Microsoft Word for This Example
	Creating the Code Unit and Declaring Variables
	Writing the C/AL Code
	Calling the Code Unit from the Customer Card

	Graphing With Microsoft Excel
	Background Information about This Example
	Creating the Code Unit: Declaring Variables
	Creating the Code Unit: Initial Steps
	Creating the Code Unit: Transferring Data
	Creating the Code Unit: Making the Graph

	16.4 Receiving Events in C/SIDE
	Receiving Notification of Inbound XML Documents
	Declaring Variables for the External Components
	Setting the WithEvents Property
	Creating the Automation Servers
	Writing Code in the Trigger

	Event Triggers

	16.5 Using Custom Controls from C/SIDE
	Simple Example
	Installing and Registering the Control
	Using the Control in C/AL

	16.6 Acquiring Controls

	Dataports
	Dataports
	17.1 What Are Dataports?
	Logical Design
	Designing the Data Model
	External file

	How a Dataport Is Run
	Saving, Compiling and Running a Dataport
	Saving and Closing a Dataport
	Compiling a Dataport

	Running a Dataport

	17.2 Designing Dataports
	Dataport Properties
	File Format

	Data Item Properties
	AutoUpdate, AutoReplace, AutoSave

	Field Properties
	Dataport Triggers

	17.3 Exporting Data
	Exporting - Fixed Format
	Simple Version
	Refined Version

	Exporting - Variable Format

	17.4 Importing Data
	Importing - Fixed Format
	Importing - Variable Format
	Importing or Exporting: A Dynamic Dataport
	Creating the Export Part
	Creating the Import Part
	Further Work

	Multilanguage Functionality
	Multilanguage Functionality
	18.1 Multilanguage Functionality
	Defining the Current Application Language
	Selecting a Language from the User Interface
	Text Constants
	Language Modules
	Installing *.STX, *.ETX, *.CHM and *.HH files for Multilanguage
	Adding a Language Layer
	The Language Subfolder
	Deleting a Language Layer

	The Windows Language Virtual Table
	Tab Controls
	Maintaining SQL Views
	C/ODBC
	Displaying Text
	Multiple Document Languages

	18.2 Developing Multilanguage-Enabled Applications
	Name Property
	Text Constants
	Caption Property
	CaptionML Property
	Creating Captions
	Option Buttons
	Option Strings
	Option Variables

	Date Formulas
	Usage in C/AL Code

	18.3 Learning the Code Base Language
	Generating a Dictionary
	How to See Both Captions and Names
	Zoom Functionality
	Table List, Form List, Field List, Object List and Field Menu

	C/AL Scanner
	C/AL Symbol Menu

	18.4 Number Ranges for Text Constants

	Beyond the Basics
	Type Conversion
	19.1 Type Conversion in Expressions
	19.2 Type Conversion Mechanisms
	Relational Operators
	Valid Uses of Relational Operators

	Boolean (Logical) Operators
	Arithmetic Operators
	Complete Overview of Type Conversion Rules
	The Unary Arithmetic Operators
	The Binary Arithmetic Operators

	SumIndexFields
	20.1 SumIndexFields
	SIFT and Navision Database Server

	20.2 SIFT and the SQL Server Option for Navision
	SIFT Components
	SIFT and Cache

	Naming Conventions
	SIFT Triggers
	SIFT Tables

	Buckets and SIFT Levels
	What are SIFT Levels?

	SIFT Levels and Fields of the Date Data Type
	SIFT Levels and Fields of the DateTime Data Type

	SIFT Tables
	Updating the Base Table
	Deleting Records from the Base Table

	Configuring the SIFT Levels
	SIFT and Performance
	Optimizing SIFT Tables

	Numbering in Navision
	21.1 How Does Number Sorting Work?
	Numbering Principles
	Filters

	C/SIDE in Multiuser Environments
	22.1 Ensuring Data Integrity in a Multiuser Environment
	Write Transactions and Recovery
	More on Write Transactions

	Read Consistency and Concurrency
	What is a Data Version?
	What is Table Locking?
	What Is Deadlock Detection?
	Are There Any Differences between Commit in C/AL and C?

	22.2 Locking in Navision - a Comparison of the two Server Options
	Both Server Options
	Locking in Navision Database Server
	Locking in SQL Server
	Locking Differences in the Code

	Caption Class Functionality
	23.1 Syntax
	Function Code
	Syntax for CAPTIONREF

	Dimension Area
	DIMOPTIONALPARAM1
	DIMOPTIONALPARAM2

	VAT
	VATCAPTIONTYPE
	VATCAPTIONREF

	23.2 Function Code
	DimCaptionClassTranslate (ID 7)
	Code

	VATCaptionClassTranslate (ID 9)
	Code

	Supporting Record Level Security
	24.1 Record Level Security

	Performance
	25.1 The DBMS Cache
	25.2 The Commit Cache
	25.3 The Command Buffer
	25.4 Keys, Queries and Performance
	25.5 C/AL Database Functions and Performance on SQL Server
	Database Administration, Object Design and Performance on SQL Server

	25.6 Configuration Parameters
	Index Hinting
	Lock Granularity

	25.7 Bulk Inserts

	Appendixes
	C/SIDE Specifications
	A.1 Specifications for the DBMS
	A.2 Specifications for C/SIDE Application Objects

	Report Flow Charts
	B.1 Report Flow Charts
	B.2 Report.Run
	B.3 DataItem.Run
	B.4 Section.Run
	B.5 Header.Run
	B.6 Footer.Run
	B.7 TransHeader.Run
	B.8 TransFooter.Run
	B.9 GroupHeader.Run
	B.10 GroupFooter.Run
	B.11 Body.Run
	B.12 NewPage
	B.13 GetRecord

	Dataport Flow Charts
	C.1 Dataport Flow charts
	Legend

	C.2 Dataport.Import/Export
	C.3 DataItem.Export
	C.4 VariableRecord.Export
	C.5 FixedRecord.Export
	C.6 DataItem.Import
	C.7 VariableRecord.Import
	C.8 FixedRecord.Import

	NDBCS - The Database Driver
	D.1 NDBCS - the Database Driver
	Database Driver Concepts
	Command
	Direct and Prepared Execution
	Result Set
	Cursor
	Rowset
	Transaction Type

	Reading Data: Rowset Usage
	Modifying Data
	Transactions
	SIFT

	D.2 A Brief History of Performance Improvements
	The Features and The Versions
	Parameterization (2.50)
	Prepared Statements (2.50)
	Statement re-use (2.50)
	Fetch Buffer Growth (2.50)
	Paging in the User Interface (2.50)
	Preserving Rowsets during Modifications (2.50)
	Providing the ISEMPTY Alternative to FIND (2.50)
	Client Caching (2.50)
	Minimizing unnecessary Transactions (2.50)
	Using optimal SIFT queries (2.50)
	Bulk Fetching during a Backup, and Batch Inserting during a Restore (2.50)
	Extended Parameterization (2.60.A)
	Extended Preservation of Rowsets during Modifications (2.60.A)
	A New Algorithm for Deleting Rowsets (2.60.A)
	Using Single-row Rowsets for FIND (2.60.A)
	Modifying Fewer Fields (2.60.A)
	Client Analysis of Filters (2.60.D, 3.00)
	Extended Statement Re-use (3.00)
	Modified Threshold Values (3.00)
	Client Caching of SIFT Queries on Base Tables (3.00)
	Change to Prepared Statements (3.01)
	Change to Single-row Rowsets (3.01)
	Change to Rowset Closure and Cache Purging in Transactions (3.01)
	Utilizing Faster SQL Statements (3.01)
	Extended Client Caching (3.01)
	Change to Rowset Deletion (3.01)
	Change to Firehose Rowsets (3.10)
	Change to Rowset Closure Due to Modifications (3.10)
	Change to Rowset Memory Usage (3.10)
	Change to Rowset Expiry (3.10)
	Change to Transaction End Markers in the User Interface (3.10)
	Non-locked Rowsets Persist Beyond a Transaction (3.10)
	Automatic Bulk Inserts (3.10)

	Index

