Microsoft
Business
Solutions

Application Designer’s Guide

MICROSOFT BUSINESS SOLUTIONS—NAVISION

APPLICATION DESIGNER’S GUIDE

DISCLAIMER

This material is for informational purposes only. Microsoft Business Solutions ApS
disclaims all warranties and conditions with regard to use of the material for other
purposes. Microsoft Business Solutions ApS shall not, at any time, be liable for any
special, direct, indirect or consequential damages, whether in an action of contract,
negligence or other action arising out of or in connection with the use or performance
of the material. Nothing herein should be construed as constituting any kind of
warranty.

COPYRIGHT NOTICE
Copyright © 2003 Microsoft Business Solutions ApS, Denmark.
TRADEMARK NOTICE

Microsoft, Great Plains, bCentral and Microsoft Windows 2000 are either registered
trademarks or trademarks of Microsoft Corporation or Great Plains Software, Inc. in
the United States and/or other countries. Great Plains Software, Inc. and Microsoft
Business Solutions ApS are wholly owned subsidiaries of Microsoft Corporation.
Navision is a registered trademark of Microsoft Business Solutions ApS in the United
States and/or other countries. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners. No part of this
document may be reproduced or transmitted in any form or by any means, whole or in
part without the prior written permission of Microsoft Business Solutions ApS.
Information in this document is subject to change without notice. Any rights not
expressly granted herein are reserved.

Published by Microsoft Business Solutions ApS, Denmark.
Published in Denmark 2003.

DoclID: NA-370-DVG-001-v01.00-W1W1

PREFACE

This manual provides information about the C/SIDE® development system. It is part of
the documentation and Help materials for Microsoft® Business Solutions—Navision®.

When you create a C/SIDE application, you combine five types of application objects
into a whole that solves a business problem. Each of the five types of application
objects has its own part in this manual. The order in which the parts appear
corresponds to the order in which you are most likely to need them when you design a
new application.

The manual is divided into seven parts. Each part contains one or more chapters. The
first chapter in a part always deals with the fundamentals, for example, "Form
Fundamentals," and the succeeding chapters present more advanced information.

In addition to this manual, C/SIDE has an online Reference Guide. Here you can find
reference information about programming issues: functions, triggers, properties, and
S0 on.

You may also find it useful to refer to the following manuals and online Help:

Installation & System Management: Microsoft Business Solutions—Navision
Database Server

This manual explains the more technical aspects of Navision. You will find information
about user administration, backup procedures and other items that are also relevant

for application developers.

Installation & System Management: Microsoft Business Solutions—Navision
SQL Server Option

This manual explains how to install and maintain the SQL Server Option for Navision.
This program is designed to run on SQL Server 2000.

Installation & System Management: Microsoft Business Solutions—Navision
Application Server
This manual explains how to install and maintain Navision Application Server.

Development Guide for Communication Components

This online Help describes the Navision Communication Component, Navision Named
Pipe Bus Adapter and Navision MS-Message Queue Bus Adapter. These components
allow applications to communicate easily with each other.

TABLE OF CONTENTS

PART 1 FUNDAMENTALS ...t i ittt it i ettt ttesa s teseesaneasaaennensnn 1
Chapter1 C/SIDEFundamentalsccviuunn. 1
The C/SIDE User Interface 2
What Is a C/SIDE Application? 5
The Physical and the Logical Database 8
Chapter 2 Designing a C/SIDE Application.................... 11
Introduction to C/SIDE Application Design 12

PART 2 TABLESttt ittt ittt e e ettt eaaaaaa s eaaannannns 17
Chapter3 Table Fundamentals 19
WhatlsaTable? 20
What Are Keys 2.o 26
Identifiers, Data Types and Data Formats in the SQL Server Option for
NaVISION. . . . 32
Saving, Viewing, and SortingData 38
Dividing the Database into Companies 41
Special Table Fields i 42
Chapter 4 Customizing and Maintaining Tables................ 49
Viewing and Modifying Properties. 50
Using Table and Field Triggers 58
Setting Relationships Between Tables 60
Changing Tables That ContainData. 65
Linked Objects.t 66
Chapter 5 Special C/SIDETables..............ccvviirnnnnnn. 71
What Isa Temporary Table?. 72
Whatlsa System Table? i, 74
What Is a Virtual Table? 79
Overview of C/SIDE Virtual Tables 80

PART3 FORMS. ittt ittt sttt e aanannnns 97
Chapter6 Form Fundamentals.............................. 99
What Are FOrms? 100
Creating Forms 102
Selecting, Moving and Adjusting Controls. 108
Saving, Compiling and Running Forms. 113
Chapter 7 DesigningForms ooo.t. 115
Form and Control Properties. 116

Types of Controls 119

Table of Contents

Adding Controls. 121
Tools for Customizing Controls 124
Setting Control Properties 125
How to Use Controls in Applications 129
Chapter 8 Extending the Functionality of Your Forms 139
Main Forms and Subforms 140
Looking Up Values and Validating Entries 143
Drilling Down to the Underlying Transactions 147
Launching Another Form. 149
Designing MenuButtons 150
Form and Control Triggersco .. 154
... 157
Chapter9 ReportFundamentals 159
What Are Reports? 160
What Happens Whena ReportRuns? 164
The Report Designer. e 167
Saving, Compiling and Running Reports. 170
Chapter 10 DesigningReports.ciiiiiinnnnn. 173
Report Properties 174
Designinga Simple Report 178
Designing a More Advanced Report 186
Chapter 11 Extending the Functionality of Your Reports 191
Groupingand Totaling. 192
Triggers iNReports e 198
Advanced Sample Reports 200
CODEUNITS. + .+ttt it ettt it tnneas s s sennnnasesennnnnnnsnes 215
Chapter 12 Codeunit Fundamentals 217
What Is a C/SIDE Codeunit?. 218
Creating Codeunits i e 220
Using Codeunits e 229
Chapter 13 Introducing the C/AL Language 233
What Can You Do with C/AL? 234
What Are Statements, Expressions, and Operators? 235
Introducing the Elements of C/AL Expressions. 243
The C/AL Control Languaget 252
Chapter14 UsingC/ALttt 261
OVerview 262
System-Defined Variables. 264

Handling Runtime Errors. 265

PART 6

PART 7

PART 8

Table of Contents

The Essential C/AL Functions. i, 266
Chapter 15 Debugging C/ALCode.coitiiinvnnnn 279
What Are Bugs? 280
Syntax Errors. 281
Runtime Errors 282
Program LOQiC Errors i 287
The Microsoft Business Solutions—Navision Debugger. 289
The Code Coverage Toolttt 297
Chapter 16 Extending C/ALcciiiiiiiinnnnnnnns 299
What Is COM? o 300
Using COM Technologies in C/SIDE. 302
Using C/SIDE as an Automation Controller. 306
Receiving Events in C/SIDE i 322
Using Custom Controls from C/SIDE 326
Acquiring Controls. 333
DATAPORTS ittt ittt ittt ittt s tae sttt tae et 335
Chapter17 Dataportscciiiiiiiiiiiiiinannns 337
What Are Dataports?. 338
Designing Dataports 344
ExportingData. 350
Importing Data. 357
MULTILANGUAGE FUNCTIONALITYottt i e i e eeenaen s 367
Chapter 18 Multilanguage Functionality 369
Multilanguage Functionality. 370
Developing Multilanguage-Enabled Applications 376
Learning the Code Base Language. 380
Number Ranges for Text Constants 383
BEYOND THEBASICSttt e e e ane s 387
Chapter19 TypeConversionc.iiiiiirnnnnennnns 389
Type Conversion in Expressions. 390
Type Conversion Mechanisms i, 392
Chapter20 SumindexFields................... 401
SumindexFields. 402
SIFT and the SQL Server Option for Navision 404
Chapter 21 Numberingin Navision 423

How Does Number Sorting Work? 424

Table of Contents

Chapter 22 C/SIDE in Multiuser Environments................ 427
Ensuring Data Integrity in a Multiuser Environment 428
Locking in Navision — a Comparison of the two Server Options 436
Chapter 23 Caption Class Functionality 441
SYNtAX . . .o 442
FunctionCode. 448
Chapter 24 Supporting Record Level Security................ 455
Record Level Security 456
Chapter25 Performance................c.iiiiiirnnnnennnnn 457
The DBMS Cache e 458
The CommitCache 460
The Command Buffer 462
Keys, Queries and Performance 464
C/AL Database Functions and Performance on SQL Server 466
Configuration Parameters 467
BulkInserts 471
APPENDIXES . . .ttt iiit s iiat e insan e sn s anane s 473
Appendix A C/SIDE Specifications 475
Specifications forthe DBMS 476
Specifications for C/SIDE Application Objects 477
AppendixB ReportFlowCharts 479
Report Flow Charts e 480
Report.RUN 481
Dataltem.Run 482
Section.Run. 483
HeaderRun. 484
FooterRun. 485
TransHeader.Run 486
TransFooterRun. 487
GroupHeader.Run. 488
GroupFooter.Run. 489
Body.Run. 490
NewPage. 491
GetRecord. 492
Appendix C DataportFlowCharts.......................... 493
Dataport Flowcharts 494
Dataport.Import/Export 495
Dataltem.Export. 496
VariableRecord.Export 497

FixedRecord.Export. 498

Table of Contents

Dataltem.Import. 499
VariableRecord.Import. 500
FixedRecord.Import. 501
Appendix D NDBCS - The Database Driver 503
NDBCS —the Database Driver i, 504

A Brief History of Performance Improvements 512

Table of Contents

Fundamentals

Chapter 1

A C/SIDE® application is composed from five types of
application objects. Each type of application object is
created using a specific tool called a designer. The
application objects you create using these designers are all
based on some general concepts. A fundamental
knowledge of these concepts speeds up the C/SIDE
application development process.

This chapter introduces you to the C/SIDE user interface
and presents the general concepts that underlie C/SIDE
application objects.

The C/SIDE User Interface

What Is a C/SIDE Application?

The Physical and the Logical Database

Chapter 1.

C/SIDE Fundamentals

1.1 THE C/SIDE USER INTERFACE

This section introduces you to the user interface in C/SIDE. If you have not already
installed C/SIDE, refer to the installation manual. If you have already installed C/SIDE,
the installation program has created a new group that contains all the icons you need
to work with C/SIDE. When the Integrated Development Environment (IDE) is running,
your screen will look like this:

The title bar

¥ CRONUS International Ltd. - Microsoft Business Solutions-Navision

| _The menu bar
| _The toolbar

File Edit Wiew Tools Window Help

S SEBBE © T 2 M HEFES 2 MM ot 24

The work area

07-03-03

The user interface gives you access to a number of tools and functions. Some parts of
the user interface also provide information about the current state of the system. The
table below explains when to use the most important parts of the C/SIDE user
interface.

To... Use the...

get information about the name and path of the current database title bar

access functions on drop-down menus menu bar
access the most commonly used functions quickly toolbar)
work with the application design tools work area(®)
see basic status information about your system (such as the status bar

current date and your user ID)

(A) DEPENDING ON THE TASK YOU ARE WORKING ON, THE SYSTEM AUTOMATICALLY CHANGES THE
ICONS.
(B) THIS IS ALSO WHERE THE USER INTERACTS WITH YOUR APPLICATIONS.

1.1 The C/SIDE User Interface

Designing Application Objects

Tables are the
fundamental objects
that store the actual
data

This is where you
access the
designers for
different objects.
You simply choose
the type of object
you want to work on
here.

Create a new object

Change the design of
the current object

Any application designed in C/SIDE is based on five different types of application

objects:
N B8 %X B
Reports

Tables

v
i?’

Forms Codeunits Dataports

Tables are the fundamental objects that store the actual data; you need other
application objects to insert, modify, delete or show data from tables. You will typically
use a form to enter or retrieve data from the database and use a report to print data.

Note

All application objects are identified by an ID number. There are, however, restrictions
about which numbers you should use when you create your own application objects.
Please contact your NTR for more information.

The main tool used for developing applications in C/SIDE is the Object Designer
(choose Tools, Object Designer). This is the tool you use to view and design tables,
forms, reports, dataports and codeunits.

In the Object Designer you choose the type of application object you want to work on.
From the Object Designer you can run an application object or start an application
object designer to modify the design of an existing application object or create a new
application object. The following picture shows how to use the Object Designer in
more detail.

&% Object Designer [_ (O] x|
| 1o [name [r.]wersion List 1
n 7700 Miniform | NAYW13.60 |
& Table | - 7701 Minifarm Subform HAYY 13,60
7702 Fields HAYW13.60
—|= Form — =
- 7703 Mirifarms HAYW13.60
-] Report | - 7704 Functions HAYY 13,60
+3« Datapart | - 7705 | Miniform Functions MAYW 13,60 =
= - 7706 Item Identifiers HAYW13.60
3 Codeunit_| | 7707 Item Identifiers List MAVW13.60
- 99000750 | Work Shifts HAYW13.00
gl - 99000751 Shop Calendars MAYW 13,00 _d
1| 3
Tew | Design | Run | Help |

| Run the current

object

Chapter 1. C/SIDE Fundamentals

The Object The table below lists the tools you can access via the Object Designer and when you
Designers should use them.

Use the... When working on ...

Table Designer tables

Form Designer forms

Report Designer reports

Dataport Designer dataports

C/AL™ editor codeunits

As you can see, there is a specific designer for each type of application object. When
you create or modify an application, you can work on any number of application
objects at the same time, and each application object is shown in its own designer. For
example, if you work on three new forms at the same time, then each form will be
displayed in its own form designer. The only designer that you cannot create more
than one copy of is the Object Designer. You will learn more about how to use each of
these designers as you read the following parts of this book.

1.2 What Is a C/SIDE Application?

1.2 WHAT Is A C/SIDE APPLICATION?

The C/SIDE Integrated Development Environment (IDE) is specially designed for
creating accounting and business management applications. Any C/SIDE application
consists of the same objects as a C/SIDE database. The difference between the term
database and the term application is that when we speak about a database, we mean
simply a collection of application objects, whereas when we speak about an
application, we mean a set of application objects tied together to form a coherent
whole.

General C/SIDE Concepts

You have already learned that there are five different types of application objects in
C/SIDE. All five types are based on some general concepts. Some of these concepts
are restricted to one type of application object while others apply to several types.
When you understand these fundamental concepts, you have a good foundation for
creating your own applications. The following figure illustrates how the application
objects are related to these general concepts.

M B8 % §JH =

Tables Forms Codeunits Reports Dataports

|

Table Form Codeunit Report Dataport

r B r B rH
F D e D RE

Symbols

P Properties F Fields RF| Request form ﬂ Dataltems ﬂSections

H C/AL Code Keys 0 Template ¢ Control

Chapter 1.

C/SIDE Fundamentals

The table below summarizes the information in the figure, and explains what each
type of application object is used for.

Application Object What is it used for?

Which concepts is

Type it based on?

Table A table is used for storing the actual data. Typically Properties, Fields,
a business application will have a Customer table Keys, C/AL
that stores information such as name, address,
phone number and contact person for each of your
customers.

Form A form is used to access the information in your Properties, C/AL,
tables. Forms are used both when you enter new Controls
information and when you view existing information.

Report A report is used to present data that contains Properties, C/AL,
summary information. For example, you willuse a Controls, Dataltems,
report to print a list of customers. Sections, Templates,

RequestForm

Dataport A dataport is used to import and export information Properties, C/AL,
to and from other programs (a comma-separated Dataltems,
file from a spreadsheet, for example). RequestForm

Codeunit A codeunit contains user-defined functions written C/AL

in C/AL code. These functions can be used from the
other objects in your application. This minimizes the
size of the application because the same code can
be reused over and over again.

The terms in the third column have the following descriptions:

Properties Properties control the appearance and behavior of application objects
and all subobjects. Properties are used to control the appearance of data, specify
default values, specify colors and define relationships.

C/AL CJ/AL is the language used for writing functions in C/SIDE. In the table above,
"C/AL" refers to functions written in this language.

Triggers When specific things happen to the application objects, the system
automatically activates a trigger. Inside a trigger you can add your own C/AL code if
you want to modify the default behavior of the application object or extend its

functionality.

Keys A key defines the order in which data are stored in your tables. You can speed
up searches in your tables by defining several keys which sort your information in

different ways.

Fields A field is the smallest unit of information in your database. A field typically
stores information such as a name or a number.

Controls Controls are objects on a form or report that display data, perform actions
or decorate the form. Typical examples are command buttons and text labels.

1.2 What Is a C/SIDE Application?

Request Form A request form is a form that is used in a report. Before a report is
run, a request form appears to let the user specify filters and options for the report.

Template A template defines the overall layout of a report.

Data Items A data item is a building block you use for defining a model of your data
when you create a report. By using a hierarchy of data items you define which data
your report should include. A data item represents a table, and when you run a report,
the system cycles through the records in the associated table. A data item can have
one or more sections.

Sections A section is a substructure of a data item. A section is where you place
controls to display information. You will typically use sections defining the body,
header, and footer in your report.

Chapter 1. C/SIDE Fundamentals

1.3 THE PHYSICAL AND THE LOGICAL DATABASE

The previous section described the general concepts underlying all five types of
application objects in C/SIDE. This section presents another view of C/SIDE
applications. In this view we are concerned only with how the information in your
application is structured.

As a typical database user, you are not concerned with where each piece of data is
stored on the hard disk or what its size is; you just want to be sure that when you refer
to a name, for example, the correct value is returned. This is why the C/SIDE
database system provides you with a conceptual representation of data that does not
include too many details of how the data is stored. An abstract data model is used for
this conceptual representation. This data model uses logical concepts (such as
objects, their properties and their relations) which are easier to understand.

This leads us to distinguish between the logical and the physical database. When we
speak about the logical database we are concerned only with the structure of the data
and the relationships between different bits of information. That is, we do not deal with
how these structures and relations are implemented. When we speak about the
physical database we deal only with how the structures in the logical database and the
search paths between them are implemented.

In this book the term database should be interpreted to mean the logical database
unless otherwise noted.

What the user sees as a coherent set of information in the C/SIDE database system
can be stored in several physical disk files, but this is transparent to the user. The
figure below illustrates how one logical database can be physically stored on three
hard disks but still comprise a single (logical) database.

One logical f 5 N — — — '/j::;j Several physical
Logical | = | Physical Physical | +--+ | Physical | — disk fil
database D tabaseJ { Disk F:/j E Disk F:/j E Disk sk il “ M

The Logical Structures in Your Database

Access to the data is made possible by a well-defined logical organization composed
of:

Fields A field is the smallest logical structure used in the C/SIDE database. A field is
used to hold a single bit of information, such as a name, "Joe," or an amount,
"2,352.00." Any particular field can hold information of only one specific type. (The
C/SIDE database system distinguishes between 10 different types of information.)
Fields are assembled into a structure called a record. On its own, a field is not very
useful, as it can hold only a limited amount of information. By assembling these small
bits of information into records we get a much more flexible "information-holder” that is
also better organized because it keeps together fields that belong together.

Records A record is a logical structure assembled from an arbitrary number of fields.
It is used to store a single entry in the database. The fields in a record are used to

1.3 The Physical and the Logical Database

store information about important properties of the entry. Records are organized in
tables.

Tables A table can be thought of as an N times M matrix. Each of the N rows
describes a record and each of the M columns describes a field in the record. Tables
are organized in companies.

Companies A company is the largest logical structure used in a C/SIDE database. A
company may be considered as a subdatabase; its primary use is to separate and
group large portions of data in a database. A company can contain private tables as
well as tables shared with other companies.

Companies are

the largest logical /
structures in a

C/SIDE database |

~

Database

Fields are the

smallest logical
structures in a

C/SIDE database K /

Chapter 1. C/SIDE Fundamentals

10

Chapter 2

Carefully planning the details of your database applications
will help you end up with a sound design. A properly
designed application is easier to build and maintain.

This chapter provides guidelines for creating quality
applications in C/SIDE using the well-known methodology
of analysis, design, and implementation.

Introduction to C/SIDE Application Design

Chapter 2. Designing a C/SIDE Application

2.1 INTRODUCTION TO C/SIDE APPLICATION DESIGN

In this section we will briefly outline the procedures involved in designing a C/SIDE
database application. It usually includes the following steps:

Understanding the Problem Make sure you understand the business problem you
are trying to solve. Be sure you know who will be using the application and what they
will be trying to accomplish.

Designing the Tables Begin by designing a data model that you use to determine
how the data will be stored and how it can be most meaningfully utilized. The data
model determines:

which tables the database must contain.

what kind of data you want to store in the fields in the tables.

how the data in the tables are related to each other.

constraints that are necessary to ensure data integrity.

Designing the Application When you have completed the design of the database
tables, you are ready to begin designing the application itself. This involves:

designing forms (to enter and retrieve data) and reports (to retrieve and present
data).

creating C/AL code to connect the application objects.

The above steps depend on each other. When you go from one step to another you
will often have to rethink some of the decisions you made in the previous step.

Understanding the Problem

12

To decide which information you should store in C/SIDE, you have to determine the
purpose of the database and how it will be used. The easiest way to do this is to talk to
the people who will use it. Involving the end user as early as possible eliminates
problems that can stem from misunderstandings about the purpose of the database.
Interviewing the end users will help you get a better understanding of the tasks they
expect the system to be able to solve. Based on this, you can determine the data
(tables) necessary for completing these tasks. This will often be the most difficult part
of the design process and also the most important, as the usefulness of the entire
application depends on whether the tables have been designed correctly.

Your interviews of the end users will give you a good knowledge of which questions
the end users want answered and thus of the information that forms and reports
should provide. This does not necessarily tell you how you should structure your
tables, however.

2.1 Introduction to C/SIDE Application Design

Designing the Tables

Your next task is to divide the information you want to store in the database into basic
categories such as customers, products, employees, and so on.

You begin by defining a data model. This model should describe:

the tables in the database.
the fields in the tables.
the relations between the fields in your tables.

constraints for fields and relations.

A model suitable for this purpose is the ER model (Entity-Relationship model). An ER
model is capable of mapping real-world situations to a relational database system
such as C/SIDE.

Basically, an ER model divides all the elements of a real world situation into two
categories: entities and relations. An entity is a "thing" in the real world with an
independent existence. An entity may be an object with a physical existence, such as
a particular car or person, or it may be an object with a conceptual existence, such as
a company or a job. Relationships describe how the entities are related.

To use the ER model, you will complete the following steps:

1 Identify the types of entities associated with your problem. Create tables to
represent each of these types of entities.

2 Identify the properties of each entity type and create fields in the tables to represent
each of these properties.

3 Identify the relationships between the entities and add these relationships to the
tables.

The following subsections are not intended to serve as a description of all facets and
implications of the ER model but are rather intended to give you an overview of the
model and at the same time show you the benefits of applying a formalized design
method.

How Are ER Model Concepts Related to C/SIDE Concepts?

A real world problem will usually contain groups of entity types that are similar. For
example, consider a company having hundreds of customers. All of the customers are
entities. These customer entities share the same properties, but each entity will have
its own values for the properties. Such similar entities define an entity type, that is, a
set of entities that have the same properties. When you implement the abstract ER
model in C/SIDE, you will transform all the abstract elements in your model into
concrete representations. Each entity type corresponds to a table in C/SIDE, and each
of the entity’s properties corresponds to a field in the table.

13

Chapter 2. Designing a C/SIDE Application

The following table summarizes how basic ER model concepts relate to C/SIDE

concepts.

ER Model Concept Corresponding Concept in C/SIDE
An entity type A table

An entity A record

A property A field

Determining Field Types

In the ER model, after you have identified the entity types and their properties, your
next step is to determine the types of values these properties can have. In C/SIDE this
corresponds to determining the data types of the fields in your tables.

EXAMPLE

Suppose that your analysis using the ER model has revealed that you have an entity type
describing your company’s customers. This has led you to define a Customer table:

Customer Table

Company Name | Contact Person | Phone | ... Payment Method

Your analysis has shown that you need fields such as Company Name, Contact Person, Phone
and Payment Method. When you implement the Customer table, you select the following field
types:

Field Name Description Field Type

Company Name This field is used to store the name of the customer string
(for example, "Microsoft Business Solutions ApS").

Contact Person This field identifies the contact person in the string
company (for example, "JLJ").

Phone This field contains the customer’s phone number string
(for example, "45662111").

Payment Method This field describes the payment method for the option
customer (for example, "pay in cash").

Refer to Choosing Data Types on page 23 for a description of the C/SIDE field types.

Role of Keys in C/SIDE

The ER model places a very important constraint on the entities in an entity type
(records in a table). This is the key or uniqueness constraint on the properties (fields).
An entity type usually has at least one property whose values are distinct for each

14

2.1 Introduction to C/SIDE Application Design

individual entity. The table below shows how the ER model concepts are related to
C/SIDE concepts.

ER-Model Concept Corresponding Concept in C/SIDE

Constraints on the entities of an entity type Constraints on the records in a table

The uniqueness constraint on entity properties A key based on fields in a table

For C/SIDE to be able to operate efficiently on the data in tables, the records must be
arranged according to some criterion (that is, a key). For example, an Employee table
can be ordered according to the employees’ social security numbers because this
number uniquely identifies each employee.

In order for a field to be a key for a table, the uniqueness constraint above must hold
for every record in the table. This constraint prevents any two records from having the
same value for the key field. It is not a constraint on a specific record but a constraint
for all records in the table, considered together.

Sometimes a key consists of several fields together; in this case the combination of
the field values must be distinct for each record.

Sometimes you will be able to define several keys for a table. Refer to the section How
to Define a Primary Key on page 26, which discusses the concepts of keys.

Determining the Relationships

At this point in the design process, you have carefully planned a number of tables to
store individual types of information. In your final application you want to be able to
retrieve the information in a meaningful way. Very often an answer from your database
will consist of information stored in several tables. To allow for such answers, C/SIDE
uses relationships to chain related information together. In database terminology it is
common to distinguish between three types of relationships:

One-to-Many Relationships In this type of relationship, a record in Table 1 can
have more than one matching record in Table 2, while a record in Table 2 can have no
more than one matching record in Table 1. This is the most common type of
relationship in a relational database.

Many-to-Many Relationships In this type of relationship, a record in Table 1 can
have more than one matching record in Table 2, and a record in Table 2 can have
more than one matching record in Table 1. This represents a problem in database
design and may signal an inefficient design. Normally you break down a many-to-
many relationship into two one-to-many relationships.

One-to-One Relationships In this type of relationship, a record in Table 1 can have
no more than one matching record in Table 2, and a record in Table 2 can have no
more than one matching record in Table 1. This kind of relationship is inefficient and
can often simply be avoided by combining the two tables.

15

Chapter 2. Designing a C/SIDE Application

Assuring the Quality of the Design

In the process of defining the tables and setting up relationships, you will often have to
select from among several possible solutions. To make sure that you select the most
appropriate solutions, you need a way to measure design quality.

This is done using what is known as the normalization process. The normalization

process takes your design through a series of tests to verify whether it belongs to a
certain normal form. There are six normal forms. Most texts on relational database
design can teach you how to obtain these normal forms. Some good starting points
are the books mentioned on the last page of this chapter.

Designing the Application

After you have completed your table design, you are ready to begin designing the
application itself. From the analysis phase, you have an overview of which answers
the application is expected to be able to provide. From the table design phase, you
have a clear description of where and how the information will be stored. Based on
this understanding, you are ready to begin assembling the entire application.

This part of the application design involves:

Creating Forms Forms are used to present or collect information. You have access
to a number of design elements, such as text, data, pictures, lines, and color.

Creating Reports Reports are used to present data as printed documents. Reports
allow more flexibility than forms do when you want to present summary information.

Creating C/AL Codeunits Codeunits are containers for storing C/AL code. When
you put the code into a codeunit, you can reuse the same algorithms many places in
your application. This reduces the size of the application and makes it easier to
maintain.

Testing and Refining the Application Before you release your application, you
have to analyze your design for errors. This is normally an iterative process.

At this point you will have a useful application. If you took the time to plan all steps of
the application design carefully, you also have an application that is fully documented.
This will prove to be a great help when you need to make future adjustments and
additions.

Recommended Books on Database Design

16

Some of the most well-known books about relational database design are:
C. J. Date. An Introduction to Database Systems. Addison-Wesley Publishing Co.

Elmasri, R. A. and Navate, S. B. Fundamentals of Database Systems.
Benjamin/Cummings.

Dutka, A. F. and Hanson, H. H. Fundamentals of Data Normalization. Addison-Wesley
Publishing Co.

Tables

Chapter 3

Tables are the fundamental objects in any database. This is
true no matter what kind of data you need to store. When
you create a new database, you begin by building the
tables. Later on, you create forms and reports in order to
access and view the data in the tables.

This chapter explains how to design appropriate tables to
store your data.

What Is a Table?
What Are Keys?

Identifiers, Data Types and Data Formats in the SQL
Server Option for Navision

Saving, Viewing, and Sorting Data
Dividing the Database into Companies

Special Table Fields

Chapter 3. Table Fundamentals

3.1 WHAT Is A TABLE?

20

The records in the C/SIDE database are stored in tables. A C/SIDE table may be
visualized as a two-dimensional matrix, consisting of columns and rows. The figure
below shows a table with nine rows and eight columns. Each row is a record, and
each column is a field.

Rows: Records .
Columns: Fields

ma G/L Entry - Table M= 3
G/L Do Dolc:ument Bal.
Entry Mo, |Account Date Typ|Mo. Diescription Account | Amount
ma 1110) C12/31/93 START Opening Entry 11.244.104] = |
- 2 11400 C12/31/93 START Opening Entry 2915721/ 2]
_— 3 12100 C12/31/93 START Opening Entry 4,990,344
_— 4 12400 C12/31/93 START Opening Entry -3.101.574
_— 5 1110) C12/31/93 START Opening Entry 1,322,682
_— g 11400 C12/31/93 START Opening Entry 538,741
_— 7 130 C12/31/93 START Opening Entry 423578
_— g 13400 C12/31/93 START Opening Entry 212,361 %
_— 9 21200 C12/31/93 START Opening Entry 2,311,206/ - |
LI ol
_ teb |

A table consists of two parts: the table data and a table description. The table data is
the part users often think of as comprising the database, because it contains the
actual records with their data fields. The layout and properties of those fields,
however, are specified by the table description. The table description is not directly
visible to the user. The next figure illustrates how the table data and the table
description together form a table.

Table B This is the Table
- Properties |—tDescription
- Triggers
- Keys

Table Data |

When you design a table, you assign it a number of characteristics, such as a name,
an ID number and the fields it contains. You also assign a number of characteristics
(such as name, ID number, data type and initial value) to each field. When you design
a new table, you also specify which keys you want the system to maintain. All these
characteristics are stored in the table description when you save your table design.

The information in the table description is used by the Database Management System
(DBMS) and occasionally by database users who need information about the table
structure. The table description makes the DBMS flexible, as it lets the system access
tables with different structures. The DBMS can extract the definitions of the table
structure from the table description and thereby correctly access any table.

The figure illustrates that a table description contains properties, triggers, fields and
keys and shows how these are related.

Creating a Table

3.1 What s a Table?

Table Description

| Table Properties

— Triggers

L Fields Properties
—[Triggers

L Keys —— Properties

The table description contains some properties that are related to the table, while
others are related to the fields in the table. Still other properties are related to the keys
in the table. You can also see from the figure that triggers are defined both for the
table and for the fields in the table.

Don’t worry if you are not familiar with these terms already. You'll learn more about
them on the following pages, and the next chapter, Customizing and Maintaining
Tables on page 49, provides a more detailed description of how to customize your
tables by modifying the properties and creating triggers.

When you first create a table, it will not contain any data. When you create the table
you have to decide which types of information you want to store in it.

To create a table:

1 Click Tools, Object Designer. C/SIDE will display:

&% Object Designer [_ (O] x|
| 1o [name [r.]wersion List 1
Select the type of » 7700 MinifFarm | MNaYW13.60 -]
objectyouwantto— = 7 taple |] 7701 Miriform Subform MAYW13,60
work on here ﬁ 7702 Fields HAYYW13.60
== Form — =
] 7703 Minifarms MAYY13.60
-] Report | - 7704 Functions HAYY 13,60
+3« Datapart | - 7705 | Miniform Functions MAYW 13,60 =
=] 7706 | Item Identifiers MAYY13.60
3 Codeunit_| | 7707 Item Identifiers List MAVW13.60
i] 99000750 Work Shifts MAYY13.00
= - 99000751 Shop Calendars MAYW 13,00 -
| _>l:|
Tew Design | Run | Help |

Create a new object J

21

Chapter 3.

Table Fundamentals

2 Click Table, New and the Table Designer appears:

ma Table D - Table Designer =1 E3

Er|Field Ma.
v

Field Mame Data Tope |Length Diescription

BB

LITTTTTTT R
-

k2
=]
Help |

In the Table Designer, for each field you add to the table, you enter the field number,
name, data type and, optionally, a length and a description. The following subsections
describe how to do this.

Adding Fields to Your Table

22

Designing a field means assigning it a number of characteristics. These
characteristics depend on what you intend the field to be used for.

ma Table D - Table Designer =1 E3
Er|Field Mo, |Field Mame Data Tope |Length Diescription
|~ 1Mo Code 20/ The customer number =
v =
Help |

After you have added fields to a table in the Table Designer, you must save the table
before you can add any records. Once you have saved a table, it will appear in the list
of tables in the Object Designer.

All the tables and fields you create have two forms of identification:

A unique identification number (integer). When you access your database using
either the C/SIDE IDE or C/FRONT, this number uniquely identifies all tables and
fields.

A name (an alphanumeric string) serving as a label (such as CUSTOMER or CITY).
This name appears on the screen when you run the table and should be meaningful
and easily understood. This name is secondary information and can be changed at
any time.

Choosing Data Types

3.1 What s a Table?

When you have selected an identification number and name for a field, you have to
select an appropriate data type. You can use 17 different types of fields in the C/SIDE
database system. Each type is designed to hold a specific kind of information, such as
text, numbers, dates and so on.

Fields in a record can be of the following types:

Data Type

Description Size

Option

Denotes an integer in the range -2,147,483,647 and 4 bytes
2,147,483,647. An option field is defined with an option string,
which is a comma-separated list of strings representing each
valid value of the field. This string is used when a field of type
Option is formatted and its value is converted into a string. An
example:

The Option field "Color" is defined with the option string
"Red,Green,Blue". Valid values of the field are then 0, 1 and 2,
with 0 representing "Red" and so on. When the "Color" field is
formatted, 0 is converted into the string "Red", 1 into "Green",
and 2 into "Blue".

The size of the corresponding SQL data type, | NTEGER, is 4
bytes.(A)(B)

Integer

Denotes an integer between -2,147,483,647 and 4 bytes
2,147,483,647.

The size of the corresponding SQL data type, | NTEGER, is 4

bytes.(A)(B)

Decimal

A decimal number between -108% and 10%3. The exponent 12 bytes
ranges from -63 to +63. Decimal numbers are held in memory

with 18 significant digits. The representation of a decimal

number is a Binary Coded Decimal (BCD).

The size of the corresponding SQL data type,

DECI MAL(38, 20) , is 17 bytes.M)(®)

Text

Any alphanumeric string. The field must be defined to be Maximum string
between 1 and 250 characters. The space used by a text field length + 1 byte
equals the maximum length of the text plus one byte. This extra (see note below).
byte is a used to hold the length of the string. An empty text

string has the length zero.

The size of the corresponding SQL data type, VARCHAR, is 1

byte per character in the field’s value.A)(B)

23

Chapter 3. Table Fundamentals

Data Type

Description

Size

Code

An alphanumeric string, which is right-justified if the contents
are numbers only. If letters or blanks occur among the
numbers, the contents are left-justified. All letters are converted
to uppercase upon entry.

The field must be defined to be between 1 and 250 characters.
The space used by a code field equals the maximum length of
the text plus two bytes. The first of the extra bytes holds
information about the length of the string, and the second byte
stores alignment information.

In the Microsoft SQL Server Option for Navision, code fields
work in a different way. You can use the SQL Data Type
property to indicate whether code fields can contain integers or
text strings. Refer to the online C/SIDE Reference Guide for
information about the SQL Data Type property. Further,
Appendix H contains information about the sorting of numeric
values in code fields.

The size of the corresponding SQL data type, VARCHAR, is 1
byte per character in the field’s value.*)B)

Maximum string
length + 2 bytes
(see note below).

Date

A date value in the range from January 1, 0 to December 31,
9999. An undefined date is expressed as 0. All dates have a
corresponding closing date. The system regards the closing
date for a given date as a period that follows the given date but
comes before the next normal date; that is, a closing date is
sorted immediately after the corresponding normal date but
before the next normal date.

The size of the corresponding SQL data type, DATETI ME, is 8
bytes.(A)(B)

4 bytes

Time

Any time in the range 00:00:00 to 23:59:59.999. A time field
contains 1 plus the number of milliseconds since 00:00:00
o'clock, or 0 (zero), an undefined time. A time value is
calculated in the following way:

Time =1 + (number of milliseconds since 00:00:00).

The size of the corresponding SQL data type, DATETI ME, is 8
bytes.(A)(B)

A time field is
stored as an
integer (four
bytes).

Boolean

Assumes the values TRUE or FALSE. When formatted, a
boolean field is shown as "Yes" or "No".

The size of the corresponding SQL data type, TI NYI NT, is 1
byte.(A)NB)

4 bytes

Binary

Contains binary data. The binary data is stored in the record.
The size of the corresponding SQL data type, VARBI NARY, is
the number of bytes in the field’s value.®)(B)

Maximum length
is 250 bytes (see
note below).

BLOB

Binary Large Object. Used to store bitmaps and memos.
Notice that the BLOB isn'’t stored in the record, but in the BLOB
area of the table.

The size of the corresponding SQL data type, | MAGE, is the
number of bytes in the field’s value.A)(B)

8 bytes in the
record + size of
BLOB data.
(max. 2 GB)

24

3.1 What s a Table?

Data Type Description Size

DateFormula Used to verify the date entered by the user. The syntax is for 4 bytes
example:
30D (=30 days)
CM+1M (=current month plus one month)
D15 (=on the 15th of each month)

TableFilter This data type is used to apply a filter to another table.
Currently, this can only be used to apply security filters from the
Permission table.

BigInteger A 64 bit integer. 8 bytes

Duration Represents the difference between two points in time, in 8 bytes
milliseconds. This value can be negative.

DateTime Represents a point in time as a combined date and time. The Stored as two 4
datetime is stored in the database as Coordinated Universal byte integers
Time (UTC) and is always displayed as local time in Navision.
Local time is determined by the time zone regional settings
used by your computer.
You must always enter datetimes as local time. When you enter
a datetime as local time, it is converted to UTC using the
current settings for the time zone and daylight saving time.
The DateTime datatype does not support closing dates.

GUID Globally unique identifier 16 bytes

RecordID Unique record identifier

(A) THE CALCULATION OF THE SIZE OF A SPECIFIC SQL SERVER RECORD REQUIRES MORE THAN
SIMPLY SUMMING THE SIZES OF THE FIELD VALUES. REFER TO MICROSOFT'S SQL SERVER
DOCUMENTATION FOR FURTHER INFORMATION.

(B) THIs IS THE SQL SERVER DATA TYPE THAT NAVISION USES WHEN IT CREATES THE NAVISION DATA
TYPE. FOR FURTHER INFORMATION, SEE PAGE 33.

In Navision Database Server, data is stored with a four byte alignment because of
performance considerations. The sizes of text, code and binary fields (that can have
variable lengths) are rounded up to the nearest value that is a multiple of four. This
means that, for example, a text string of 10 characters will occupy 12 bytes.

Besides the ordinary fields discussed in this section, the C/SIDE database system
also includes two special types of fields

FlowField®

FlowFilter®

How these special fields provide powerful data retrieval mechanisms is described on
page 42.

25

Chapter 3. Table Fundamentals

3.2 WHAT ARE KEYS?

The DBMS keeps track of each field by means of the field number, described above,
and the record's primary key.

The primary key is composed of up to 20 fields in a record. The combination of values
in fields in the primary key makes it possible for the DBMS to perform a unique
identification of each record. The primary key determines the logical order in which
records are stored, regardless of their physical placement on disk.

Logically, the records are stored sequentially in ascending order, sorted according to
the primary key. Before adding a new record to a table, the DBMS checks that the
information in primary key fields in the record is unique, and only then inserts the
record into its correct logical position. Because the records are sorted "on the fly," the
database will always be structurally correct. This allows fast data manipulation and
retrieval.

A table description contains a list of keys. A key is a sequence of one or more field IDs
from the table. Up to 40 keys can be associated to a table. The first key in the list is the
primary key.

The primary key is always active; the DBMS keeps the table sorted in primary key
order and rejects records with duplicate values in primary key fields. Therefore, the
values in the primary key must always be unique. Be aware that it is not the value in
each field in the primary key that must be unique, but rather the combination of values
in all the fields comprising the primary key.

Some other database systems support unkeyed tables. An unkeyed table is one for
which no key fields have been designated; in such a table, records are stored in the
order in which they were entered in the table. The C/SIDE database system does not
support unkeyed tables.

How to Define a Primary Key

26

A maximum of 20 distinct fields can be used in the definition of the primary key. The
number of fields in the primary key puts a limitation on the number of fields in the other
(secondary) keys.

When you create a table in the table designer, C/SIDE automatically uses the field
with the lowest field number as the primary key.

3.2 What Are Keys?

To define a primary key:

1 Assume that you have created a table in the Table Designer:

ma Table D - Table Designer M= 3
Er|Field Mo, |Field Mame Data Tope |Length Diescription
|~ 1 Mame Tenxt a0 |~
v 2 Address Text 30 =
|~ 3 Zip Code Text 30
|~ 41D Mumber Integer
|~ 5 &mount Decimal
*_} v
I =
— -]
Help |
2 Choose Keys from the View menu to define a primary key. C/SIDE will display the
following:
Define the

primary key here

N Table O - Keys [_ (O] x|
E.[Key | SumindexFields
| #p|v ID Number,Nama | fl =
| &
|| -]
Help |

3 On the first line in the Key window, enter the primary key as a comma-separated list
(for example: ID Number,Name).

How to Create Secondary Keys

We have already mentioned that up to 40 keys can be associated to a table and that
the first is the primary key. All other keys are secondary keys and optional. Secondary
keys are used to view records in an order different from the one in which they are
sorted according to the primary key fields.

27

Chapter 3. Table Fundamentals

28

To create a secondary key:

1 Open your table in the Table Designer:

ma Table 99999 Customers - Table Designer M= 3
Er|Field Mo, |Field Mame Data Tope |Length Diescription
|~ 1 Mame Tenxt a0 |~
v 2 Address Text 30 =
|~ 3 Zip Code Text 30
1~ 41D Mumber Integer
p|vi 5 &mount Decimal
Help |

2 Click View, Keys and C/SIDE will display the Keys window for the table:

Enter the
secondary keys
here as comma-
separated lists

[Table 99939 Customers - Keys |_ O] x|

E.| Key | SumlndexFields
¥ |0 Mumber, M ame

v Mamedddress

¥ | Zip Code M ame

v Y

I»I»

LITTTT el 1]
w

[T

Help |

3 The first line shows the primary key. Enter the secondary keys on the following lines
as comma-separated lists (for example: Name,Address).

The number of fields in the primary key together with all the fields in secondary keys
must not exceed 20.

This means that if your primary key includes four distinct fields, then your secondary
keys can include these four fields, and at most 16 others. Correspondingly, if your
primary key consists of 20 distinct fields, then your secondary keys must consist only
of combinations of these fields.

A secondary key uses an additional data structure called an index. The idea behind an
index is similar to the idea behind the indexes used in common textbooks. A textbook
index lists important terms at the end of the book in alphabetical order. Next to each
term is a list of page numbers where the term appears. We can search the index to

3.2 What Are Keys?

find a list of page numbers (addresses) and easily locate the term in the textbook by
searching the specified pages. Hence, the index is an exact indicator of where each
term occurs in the textbook.

When you define a secondary key and mark it as active, the system will automatically
maintain an index reflecting the sorting order defined by the key. Several secondary
keys may be active at the same time.

A secondary key can be changed into an inactive key. This means that the DBMS
does not use time during updates to maintain its index. Furthermore, an inactive key
doesn’t occupy database space. Inactive keys can be reactivated; this process may
consume some time, depending on the size of the table, because the DBMS has to
scan the entire table to rebuild the index.

The fields comprising the secondary keys are not guaranteed to contain unique data;
the DBMS does not reject records with duplicate data in secondary key fields. If two or
more records contain identical information in the secondary key, the DBMS will use
the primary key for the table to solve this conflict. The example below shows how the
primary key influences the sorting order when a secondary key has been activated:

We assume that the Customer table includes four entries (records). The records in
the Customer table have two fields: Customer No. and Customer Name.

The Key List for the Customer table is:

Key No. Key Type Definition
1 Primary Customer No.
2 Secondary Customer Name

Customer table sorted by the primary key:

Customer No. Customer Name

001 Microsoft® Business
Solutions

002 IBM

003 Lotus

004 Microsoft Business
Solutions

If you select the secondary key for sorting, the ordering will be based on the contents
of the Customer Name field. As the contents of these fields are not unique, the
records will have to be subsorted according to the primary key.

Customer Name Customer No.
IBM 002
Lotus 003

29

Chapter 3. Table Fundamentals

Customer Name Customer No.
Microsoft Business 001

Solutions

Microsoft Business 004

Solutions

In this case the last two records, which have the same Customer Name, have been
ordered by Customer No.

How Keys Affect the Working Speed of C/SIDE

30

Searching for specific data is normally easier if several keys have been defined and
maintained for the table holding the desired data. The indexes for each of the keys
provide specific views that enable flexible searches to be performed quickly. There
are, however, both advantages and drawbacks to using a large number of keys.
Consider the following situations:

If you... Performance improves... Performance slows...
increase the number |when you retrieve data in several when you enter data because
of secondary keys different sorting sequences because |C/SIDE has to maintain the indexes
marked as active. the system has already sorted the |for each secondary key.
data.
decide to use only a |when you enter data because when you retrieve data. You may
few keys. C/SIDE has a minimal number of have to define or reactivate the
indexes to maintain. secondary keys to get the
appropriate sortings. Depending on
the size of the database, this can
take some time, as the system
builds the index.

The decision whether to use a few or many keys is not easy to discuss in general. The
choice of appropriate keys and the number of active keys to use should be the best
compromise between maximizing the speed of data retrieval and maximizing the
speed of data updates (operations that insert, delete or modify data). In general, it
may be worthwhile to deactivate complex keys if they are used only rarely.

The overall speed of C/SIDE will depend strongly upon a number of factors:

The size of your database
The number of active keys
The complexity of the keys
The number of records in your tables

The speed of your hardware, that is, the speed of your computer and its disk
system.

3.2 What Are Keys?

How Are the Keys Stored?

As illustrated in the figure on page 20, keys are stored in the Table Description, which
contains a list of keys. The next figure illustrates a part of the key list for a Cust.

Ledger Entry table.
1 (Entry No.) Primary key
3 (Customer No.) 4 (Date) Secondary Key

Key Description

5 (Document Type) | 6 (Document No.)| 3 (Customer No.) Secondary Key

3 (Customer No.) 36 (Open) 43 (Positive) | 37 (Due Date) Secondary Key

The figure illustrates the first four keys of this table — the primary key and three
secondary keys. The primary key consists of a single field ID. The first secondary key
contains two field IDs, while the second and third secondary keys contain three and
four fields respectively.

31

Chapter 3. Table Fundamentals

3.3 IDENTIFIERS, DATA TYPES AND DATA FORMATS IN THE SQL SERVER
OPTION FOR NAVISION

Naming Identifiers

32

Identifiers for SQL Server tables and columns are based upon the table names and
field names for the corresponding tables and fields of a Navision table definition. If you
set a table’s DataPerCompany property to Yes, the SQL Server table name is prefixed
by the company name. The two names are separated by the ($) symbol. For example,
the SQL Server table name for the Customer table of the CRONUS International Ltd.
company is CRONUS International Ltd_$Customer. If the DataPerCompany property
of a table is set to No, there is no prefix.

The primary key of a Navision table is created in a SQL Server table as a primary key
constraint. The name of the primary key will be based on the table name with a suffix
of $0, for example, CRONUS International Lt $Customer$0. Any secondary keys in a
Navision table that must be created and maintained in SQL Server — the

MaintainSQLIndex key property is set to Yes — will have SQL Server indexes created
that are named after an internal key ID with a $ prefix. Examples of this are $7 and $4.

If the database maintains SQL views for language IDs, the system creates a SQL view
by prefixing the SQL Server table name with the Windows language ID. For example,
if you want to refer to the Customer table in the CRONUS International Ltd. company
in German (Standard), the SQL view is DEUSCRONUS International Ltd_$Customer.
For more information about multilanguage functionality, see Chapter 18.

If the database maintains relationships, the system creates foreign key constraints
using the SQL Server table name and TableRelation property information. The names
of the constraints have the following format: <table name>FKT<referencing table
ID>_F<referencing field ID>$T<referenced table ID>. Here is an example using the
Customer table: CRONUS International Ltd_$Customer$FK$T18 _F107$T308.

When you create a Navision table with keys that contain SumindexFields®, this
causes additional tables to be created in SQL Server to support the SIFT™
functionality. These tables are named after the company, the table ID and an internal
key ID. For example, the SIFT table name for SumindexFields of the key (G/L
AccountNo.,Posting Date) in the G/L Entry table in CRONUS International Ltd. is
CRONUS International Ltd_$17$0.

Important

If you create a Navision table with keys that contain SumindexFields, you must not
give the table the same name as its ID. SIFT tables whose names are the same as
their ID cannot be saved. If you try to do so, you will receive an error message.

3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision

Representation of Navision Data Types

Every available Navision data type is mapped to an appropriate SQL Server data type
in the tables of the SQL Server Option for Navision. The following table shows which

SQL Server data type is used for the corresponding Navision data type:

Navision SQL Server
Data Type Data Type
Integer I NTEGER
Option | NTEGER
Code(n) VARCHAR(n)
I NTEGER
SQL_VARI ANT
Text(n) VARCHAR(n)
Decimal DECI MAL(38, 20)
Date DATETI ME
Time DATETI ME
DateTime DATETI ME
Boolean TI NYI NT
Binary(n) VARBI NARY(n)
BLOB | MAGE
DateFormula VARCHAR(32)
TableFilter VARBI NARY(252)
BigInteger Bl G NT
Duration Bl G NT
GUID UNI QUEI DENTI FI ER
RecordID VARBI NARY(n)

Each of the SQL Server data types is created as NOT NULL except the | MAGE type,
which allows NULL.

Compatibility of Data Types

Some of the SQL Server data types listed previously are compatible with other
Navision data types. The following table shows the extended compatibility of SQL

Server data types with Navision data types:

SQL Server Navision

Data Type Data Type

CHAR(n) Code(n)
Text(n)

DateFormula

33

Chapter 3. Table Fundamentals

SQL Server Navision

Data Type Data Type

NCHAR(n) Text(n)

NVARCHAR(n) Text(n)

| NTEGER Code

TI NYI NT Integer
Option

SMALLI NT Integer
Option

NUMERI C(p, s), MONEY, Decimal

SVALLMONEY, REAL, Integer

FLOAT(n), DECI MAL Option
Boolean

SMVALLDATETI ME Date

BIT Integer
Option
Boolean

BI NARY(n) Binary(n)

TEXT BLOB

NTEXT BLOB

UNI QUEI DENTI FI ER Binary(16)
Text(36)

Data Format Considerations

Code Fields

34

When you are using the SQL Server Option for Navision, you must be aware of the
effect the data formats will have on the way your data is compared and sorted.

In the SQL Server Option for Navision, code fields can be represented by several SQL
Server data types.

Code fields have a property, SQL Data Type, that determines whether they contain
integers, text strings or a mixture of both. You set this property in the following way:

1 Click Tools, Object Designer.
2 Click Table and select the appropriate table.
3 Click Design.

4 Select the field whose data type is defined as code and then click View, Properties.
The Properties window for that field appears:

3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision

s User ID - Properties H= &3
Propert: | alue
AutoFormatExpr < -
CaptionClass < |£)
Editable “Vess
MokElank. <Moo=
Mumneric <No=
CharAllowed <Undefined =
DateFormula <Moo=
ValuesAllowed
S0L Data Type
TableRelation
ValidateTableRelation

You can set the SQL Data Type property to Varchar, Integer or Variant. Leaving the
value as Undefined is the same as selecting Varchar, which is the default value.

When you create a table in the SQL Server Option for Navision, the code field data is
stored in VARCHAR, | NTEGER or SQL_VARI ANT columns in the SQL Server table that
correspond to the SQL Data Type property’s values Varchar, Integer or Variant.

When you set the value of the SQL Data Type property of a code field to Varchar:

All the values in the field are compared and sorted as character data, including
numeric values.

When you set the value of the SQL Data Type property of a code field to Integer:
All the values in the field are compared and sorted as integers. No alphanumeric
values can be stored in the field.

If you enter negative values in the column outside Navision using external tools,
they cannot be read into Navision.

The value "0"(zero) is used to represent an empty string in Navision.

Non-numeric code values or any numeric values beginning with "0"(zero) cannot be
entered in the code field.

When you set the value of the SQL Data Type property of a code field to Variant:

The values in the field are compared and sorted according to their base data type.
Numeric values are sorted after alphanumeric values.

Data that is entered into the code field in Navision is stored as either the VARCHAR
or | NTEGER base data type, depending on the value that has been entered.

Any value beginning with "0"(zero) can be entered in the code field and is stored as
an | NTEGER base data type.

Be aware that not all the third-party tools that can be used to access data in SQL
Server databases support the Variant data type.

35

Chapter 3. Table Fundamentals

Date and Time Fields

SQL Server stores information about both date and time in columns of the DATETI ME
and SMALLDATETI ME types. For date fields, Navision uses only the date part and
places a constant value for the time. For a normal date, this contains 00:00:00:000.
For a closing date, it contains 23:59:59:000 for a DATETI ME and 23:59:00:000 for a
SNVALLDATETI ME.

The Navision undefined date is represented by the earliest valid date in SQL Server:
01-01-1753 00:00:00:000 for a DATETI ME, and 01-01-1900 00:00:00:000 for a
SVALLDATETI ME.

For time fields, only a SQL Server DATETI ME type can be used. Navision uses only
the time part and places a constant value for the date: 01-01-1754. The Navision
undefined time is represented by the same value as an undefined date.

In order for Navision to interpret date and time values correctly, the formats mentioned
above must be used when linking Navision table definitions to external tables or
views. For more information about this, see page 66.

To reformat a DATETI ME or SMALLDATETI ME column that is to be used as a date field in
Navision, an UPDATE statement can be applied to the table data. Here is an example of
such an update statement:

UPDATE [M/ Table] SET [My Date] = CONVERT(CHAR(10), [M/ Date], 102)

For a closing date, a CONVERT style of 120 can be used to set the appropriate time
part. To reformat a time field, a similar statement can be used:

UPDATE [My Tabl e] SET [My Tine] = CAST(' 1754-01- 01 ' +CONVERT(CHAR(8) ,
[M Time], 108) AS DATETI ME)

As an alternative to modifying the table data, you can create a view that applies the
necessary conversion to the column and gives the column an alias. However, you
cannot update views that are created in this way and it is more efficient to change the
data than to apply conversions for every row.

The information in this section only applies to fields of the Date and Time data type
and does not apply to fields of the DateTime data type.

Accessing Navision Tables with External Tools

36

You can access data in Navision tables with external tools, such as Microsoft
Enterprise Manager. When you do this, the values in fields that contain the code, date
and time data types and which have a specific format must be manipulated correctly
for data modification or comparison. When you use external tools, no special
processing of code field data is required to join fields in different tables provided that
you use the same SQL data type value for each code field in a join or CAST the value
to the appropriate data type.

3.3 Identifiers, Data Types and Data Formats in the SQL Server Option for Navision

Multilanguage Views In the New Database and Alter Database windows, you can select to maintain SQL
views. If you enable this option, SQL Server will create and maintain a view for each
language ID that is added to a table in Navision. The system creates a SQL view by
prefixing the SQL Server table name with the Windows language ID for each
CaptionML value.

This means that external tools can use a view of the object in the user’s language, for
example Spanish, rather than the object name. The object name could be in an other
language, for example English (United States).

The view is updated by every change in the CaptionML values of a table. For more
information about multilanguage, see Multilanguage Functionality on page 369.

37

Chapter 3. Table Fundamentals

3.4 SAVING, VIEWING, AND SORTING DATA

38

When you have designed the fields and keys for a new table, you have to save the
table in your database before you can use it. Once you have saved a table, it will
appear in the list of tables shown in the Object Designer.

To save a table in the database:

1 Make sure that focus is on the Table Designer. Click File, Save. C/SIDE displays
the following window:

Save As E
D | a
Mame. |
Compiled
Cancel Help |

2 Enter a number to serve as a unique identification of the table in the ID field. Notice
that there are restrictions about which numbers you can use. Please contact your
NTR for information.

Normally you use a form to view the data in a table, but you can also view the data in
a table directly by running the table from the Object Designer.

To view the data in a table without using a form:

1 Open the Object Designer, select the table you want to view and click the Run
button. C/SIDE displays the data in a tabular format:

i G/L Entry - Table [_ (O] x|
Entry Mo, | G/L Acc... | Posting D| D..| Documen...l Deescription | Bal Acco... | Amant
-l 28 530 C31-12-99 START Opening Entr_q -496.341(4 |
| 28 5410 C31-12-99 START Opening Entry -B06.152(2 |
| 27 5420 C31-12-99 START Opening Entry -B9.276|
| 28 5710, C31-12-99 START Opening Entry -52.962)
| 29 5810, C31-12-99 START Opening Entry -57.990)
| 30 5830 C31-12-99 START Opening Entry -14.702)
| il 5840 C31-12-99 START Opening Entry -4.518]
| 32 5920, C31-12-99 START Opening Entry -45.552)
| 33 31200 C31-1299 START Opening Entry -480.325(% |
| 34 13200 01-01-0001... 108003 Order 106015 30.000(= |
d | >
Help |

The order in which the information appears in the window above reflects the sorting
order defined by the current key. If more than one key is defined for the table, you can
switch between the sorting orders these keys define.

3.4 Saving, Viewing, and Sorting Data

To view the table data in different sorting orders:

1 Run the table from the Object Designer. C/SIDE will display the following:

i G/L Entry - Table [_ (O] x|
Entry Mo, | G/L Acc... | Posting D| D..| Documen...l Deescription | Bal Acco... | Amant
-l 28 530 C31-12-99 START Opening Entr_q -496.341(4 |
| 28 5410 C31-12-99 START Opening Entry -B06.152(2 |
| 27 5420 C31-12-99 START Opening Entry -B9.276|
| 28 5710, C31-12-99 START Opening Entry -52.962)
| 29 5810, C31-12-99 START Opening Entry -57.990)
| 30 5830 C31-12-99 START Opening Entry -14.702)
| il 5840 C31-12-99 START Opening Entry -4.518]
| 32 5920, C31-12-99 START Opening Entry -45.552)
| 33 31200 C31-1299 START Opening Entry -480.325(% |
| 34 13200 01-01-0001... 108003 Order 106015 30.000(= |
4] | N
Help |

2 Click View, Sort and C/SIDE displays:

Select the key here

mE G/L Entry - Sort

Entry Mo

G/L Account Mo, D ate B
G/L Account Mo, Business Unit Code Department Code, Project H
Document Mo. D ate =]
Bk Select ascending
® Ascending or descending
" Descending order here

u].4 I Cancel | Apply | Help |

3 Select the key that defines the sorting order you want, and choose whether you
want the records displayed in ascending or descending order. Click the OK or the
Apply button to apply the new key. If you choose OK, the Sort dialog closes; if you
choose Apply, the Sort dialog stays open. Using Apply is convenient if you
frequently change the sorting order.

Data is normally entered in a table by using a form, but it is also possible to enter it
directly in the table.

To add records to a table without using a form:

1 Open the Object Designer and select the table you want to add records to.

39

Chapter 3. Table Fundamentals

2 Click Run. C/SIDE will display the table in a tabular format:

o G/L Entry - Table [_ (O] x|
Entry Mo, | G/L Acc... | Posting D| D..| Documen...l Deescription | Bal Acco... | Amant
| 2703 5530 25-01-01 2607 Packing Tape LR
| 2704 2910 2501-01 2607 Packing Tape 8910 -24) 2 |
- 2705 2910 25-01-01 2608 Repair and Upgrade of Sprag-p... 277
- 2706 11200 25-00-01 2608 Repair and Upgrade of Sprag-p... 147
- 2707 BR30 25-01-01 2608 Repair and Upgrade of Sprag-p... 36
- 2708 8910 25-01-01 2608 Repair and Upgrade of Sprag-p... Fic
- 2709 BR30 25-01-01 2608 Repair and Upgrade of Sprag-p... 18]
| 2710 g1200 250101 C.. 2810 Auto-Giinther KG 49633663 322
| 271 23200 250101 C.. 2810 Auto-Giinther KG E120 -322) 7 |
Y =]
4] | N
Help |

3 Place the cursor in a blank line. Enter data in the fields and press Enter. You can
use TAB, SHIFT-TAB and the arrow keys on the keyboard to navigate between the
fields.

4 When you have finished entering data, close the table. (You do not have to save it,
as the records are saved and updated whenever you leave a field after entering a
value in it.)

40

3.5 Dividing the Database into Companies

3.5 DIVIDING THE DATABASE INTO COMPANIES

The DBMS can access only one logical database at a time, but this database can be
divided into one or more companies. A company is a "sub-database," and its primary
use is to separate and group data in the same database. As mentioned on page 22,
fields and tables are identified by a number. Companies are identified not by a number
but by a name. A company "bundles" one or more data tables together into a logical
superstructure that is identified by a company name. Other than the shared company
name, the different tables within a company have nothing in common. Opening a
company is your first step after opening the database or connecting to a server. How
to do this is described in the manual Installation and System Management: Microsoft
Business Solutions—Navision Database Server.

Consider a database with four tables as shown in this figure:

Report Menu Option

Table Description Company A | Company B Company C
‘ G/L Account ‘ ‘ Data ‘ | Data ‘ | Data |
‘ Customer ‘ ‘ Data ‘ | Data ‘ | Data |
‘ Vendor ‘ ‘ Data ‘ | Data ‘ | Data |
| |

Common Data

The four table descriptions on the left apply to each of the data tables, which are
logically sorted into three companies. The records in the tables G/L Account,
Customer and Vendor, all have the same structure and the same field definitions,
even though they belong logically in three different companies. Only the data stored in
the fields differ. As the information in a Table Description can be used by tables from
more than one company, no redundant information will be stored. This minimizes the
size of the database.

The idea of a company can be explained by an analogy with records in C/AL: When
you work with records in C/AL, you can use a WITH statement in order to tell the
system that whenever you refer to a field, you mean that field within a specific record.
That is, within the scope of the WITH statement, you do not explicitly need to refer to
<record>.<field> but just to <field>, as <record> is assumed as the default. Likewise,
by opening a company you specify a default group of tables to which all your database
accesses will be directed.

Even though you have selected a specific company, you can still access data in any
table in any other company. To do so, you must use the C/AL function
<Record>.CHANGECOMPANY to explicitly define which other company you want to
access.

More than one application can access the same company and the same table(s) at the
same time. How the DBMS controls these multiple accesses is described on page
432.

41

Chapter 3. Table Fundamentals

3.6 SPECIAL TABLE FIELDS

In addition to the conventional data fields, which simply hold values, two kinds of
specialized fields are available for data retrieval:

FlowFields

FlowFilter fields

What Are FlowFields?

42

FlowFields are a powerful feature of the C/SIDE database system. The FlowField is a
fundamental concept that strongly influences the way a C/SIDE application is
designed.

FlowFields and the underlying concept of SumindexFields have been designed in
order to increase the performance in such activities as calculating the balance of your
customers, which in traditional database systems involves a series of accesses and
calculations before a result is available. Why such a result will be immediately
available when you use FlowFields will be clear as you read through the rest of this
section and the chapter SumindexFields on page 401, which deals with the underlying
concept of SumindexFields.

FlowFields are not a permanent part of the table data. A FlowField can be thought of
as a virtual field, which is an extension to the table data. Actually the information in the
FlowFields exists only at run time. The values in FlowFields are automatically
initialized to 0 (zero). To update a FlowField, you must use the C/AL function
<Record>.CALCFIELDS. Notice that if a FlowField is the direct source expression of a
control on a form, the FlowField will automatically be calculated when the form is
displayed.

There are seven types of FlowFields:

FlowField Field Type Description

Type

Sum decimal The sum of a specified set within a column in a table

Average decimal The average value of a specified set within a column in a table
Exist boolean Indicates whether any records exist within a specified set in a table
Count integer The number of records within a specified set in a table

Min any The minimum value in a column within a specified set in a table
Max any The maximum value in a column within a specified set in a table
Lookup any Looks up a value in a column in another table

EXAMPLE

Consider the Customer table in the figure below. This table contains two FlowFields. The field
named Any Entries is a FlowField of the Exist type, and the Balance field is a FlowField of the
Sum type.

3.6 Special Table Fields

Customer (Table data)

Customer Name Country Code (IE:,% \?\‘/rll?gl d)?FrI]gwEFri]gij?s
10000| windy City Solutions U (60) | Yes
10010 Modern Cars Inc. usg @ Yes
10020 | Jean Saint Laurent ER 210 Yes
10030 | Russel Publishing UK 0 No
10040 | LaCuisine Francaise FR (300) Yes

Virtual part of

Customer Entry (Table data) the table data

Customer Date Comment ~ Amount
10000 / 10\

2|

10000 (
10000 \ 3/

10010 [40\
10010 \ 50/
10020 / G(N

10020 (70 }

10020 \ 80/

10040 @
10040 | 100}

10040 \ 110/

The figure shows that the value in the Balance FlowField for customer number 10000 (Windy City
Solutions), is retrieved from the Amount column in the Customer Entry table. The value is the
sum of the amount fields for the entries that have the customer number 10000, that is

Sum = 10 + 20 + 30 = 60.

The values shown in the Balance column in the Customer table for customers number 10010,
10020, 10040 are found in the same way. For customer number 10030 the value is O (zero), as
there are no entries in the Customer Entry table that have a Customer No. that equals 10030.

In this example the Balance FlowField in the Customer table reflects the sum of a specific subset
of the Amount fields in the Customer Entry table. How the calculation of a FlowField is to be
made, is defined in a calculation formula. The calculation formula for the Balance field is

Sum(" Cust oner Entries". Anount WHERE(Cust No=FI ELD(Cust No)))

Correspondingly, the Any Entries field, which indicates whether any entries exist, has the
following definition:

Exi st (" Custoner Entries" WHERE(Cust No=FI ELD(Cust No)))

43

Chapter 3. Table Fundamentals

To create a FlowField:

1 Design the table in the Table Designer. C/SIDE will typically display:

mE Table D - Table Designer =1 E3
Er|Field Mo, |Field Mame Data Tope |Length Diescription
|~ 1 Mame Tenxt a0 |~
v 2 Address Text 30 =
| kv E Amont Decimal
Help |

2 Click on the line defining the field that you want to turn into a FlowField.

3 Click View, Properties. C/SIDE displays the property sheet:

Froperty | Walue

M ame Amont =
Caption <Undefined: =
Drescription £

[rata Type Decimal

Enabled <vesy

Ity alue <Undefined:

FieldClazs FlowField

CalcFarmula <Undefined>| _I
DecimalPlaces <Undefined: ﬂ
BlankMumbers <DontBlank:: j

4 Change the value of the FieldClass property from Normal to FlowField

5 Now you have to enter a calculation formula for the FlowField. This is done with the
CalcFormula property. The next section tells you how.

Calculation Formulas and the CalcFormula Property

A FlowField is always associated with a calculation formula that determines how the
value in the FlowField is calculated. Below is a description of the valid syntax for the
CalcFormula property:

<Cal cul ationFormul a> :: =
[-]Exi st (<Tabl eNo> [WHERE (<Tabl eFilters>)]) |
Count (<Tabl eNo> [WHERE (<Tabl eFilters>)]) |
[-] Sum(<Tabl eNo>. <Fi el dNo> [WHERE(<Tabl eFilters>)])|
[-] Aver age(<Tabl eNo>. <Fi el dNo> [WHERE (<TableFilters>)]) |
M n(<Tabl eNo>. <Fi el dNo> [WHERE (<Tabl eFilters>)]) |
Max(<Tabl eNo>. <Fi el dNo> [WHERE (<Tabl eFilters>)]) |
Lookup(<Tabl eNo>. <Fi el dNo> [WHERE (<Tabl eFilters>)])

<TableFilters> ::=
[<Tabl eFilter> {, <Tabl eFil ter>}]

44

3.6 Special Table Fields

<TableFilter> ::=
<Dst Fi el dNo>=CONST(<Fi el dConst >) |
<Dst Fi el dNo>=FI LTER(<Filter>) |
<Dst Fi el dNo>=FI ELD(<Sr cFi el dNo>) |
<Dst Fi el dNo>=FI ELD(UPPERLI M T(<Sr cFi el dNo>)) |
<Dst Fi el dNo>=FI ELD(FI LTER(<Sr cFi el dNo>)) |
<Dst Fi el dNo>=FI ELD(UPPERLI M T(FI LTER(<Sr cFi el dNo>)))

where...

Symbol Explanation

<TableNo> Specifies the table holding the information to be used in the FlowField.

<FieldNo> Specifies the column from which you want to compute values.

<TableFilters> A list of filters to be used in the computation of the FlowField.

<TableFilter> A table filter can be one of the following: a constant expression, a filter
expression, a value from ordinary fields or a FlowFilter field (FlowFilter
fields are discussed in the next section). Notice that a key for the other
table must exist and include the fields used in the filters.

<DstFieldNo> Specifies the destination field number.

<SrcFieldNo> Specifies the source field number.

<Filter> A filter expression such as 10|20..30.

To create, view, or edit a calculation formula:
1 Click the field for which you want to create, view, or edit the calculation formula.

2 Click View, Properties. Find the CalcFormula property in the property sheet:

Froperty | Walue

M ame Amont =

Caption <Undefined: =

Drescription £

[rata Type Decimal

Enabled <vesy

Ity alue <Undefined:

FieldClass FlowFisd Enter the
CalcFarmula <Undefined>| _I calculation formula
DecimalPlaces <Undefined: ﬂ here
BlankMumbers <DontBlank:: j

45

Chapter 3. Table Fundamentals

3 You can either enter the calculation formula directly or click the assist-edit button.
When you click the assist-edit button, C/SIDE displays:

ma Calculation Formula E
Method. Im VI
Feverse Sign. O
Table. |G.-"L Entry 3|
Field [Armaurt |
Table Filker |G.-"L Account No.=FIELDNG. G /L Acc]
QK | Cancel | Help |

4 Click the drop-down button to select the appropriate calculation method. Click the
Reverse Sign option if you want to reverse the sign of the result (only for Sum and
Average). Use the lookup buttons to select the table and column (field) from which
you want to get the information. If necessary, you can add a table filter to specify a
limited set of records. Click the assist-edit button to the right of the Filter field.
C/SIDE displays the Table Filter window:

[Table Filter [_ (O] x|
| [Fieid [Tope [walue | OnlyMas... [MaluelsFil..
| |G/ Account No. FIELD Mo =
| |G/ Account No. FIELD Totaling v = Each line defines a
| |Business Unit Code FIELD Business Unlt.FI"E[field filter. Notice
|| Department Code FIELD Department Filter that th
|| Project Cade FIELD | Prajsct Filter that there are
|| Pasting Date FIELD | Dats Fier implicit logical
[| #|consT ANDs between the
- lines.
Ok | Cancel | Help |

5 At each line in this window, you can define a field filter. For each field filter you must
specify a field, a type, and a value and you can set the OnlyMaxLimit and the
ValuelsFilter options. The following example illustrates where the information in this
window comes from.

EXAMPLE

The Balance at Date field in the G/L Account table is a decimal type FlowField. This field is
calculated from values in the Amount column in the G/L Entry table.

46

The Amount field that

3.6 Special Table Fields

contains the
information to be
summed. This field is
defined as a
SumlindexField in the
key for the G/L Entry
Table.

The Field column in
the Table Filter
window contains
references to fields
(columns) in the G/L
Entry table.

mEG/L Entry - Table [(O] x]
<|T3.r‘L h |Dn: Document Bal
Entry Mo, \|Account Date Tep|Ho. Drezcription Account |Amount
» [TH0 pTaraies START Opening Entry 11.344.104{ = |
2 1140 [12/31/93 START Opening Entry 25,722
3 1210 [12/31/93 START Opening Entry 4,990,344
4 1240 [12/31/93 START Opening Entry 310574
5 1110] [12/31/93 START Opening Entry 1.322.682
3 1140) [12/31/83 START Opening Entry £38.741
7 1310 [12/31/93 START Opening Entry 423578
8 1340 [12/31/93 START Opening Entry 2123813 |
9 2120 [12/31/93 START Opening Entry 2.311,2050~ |
L o
I

mn Table Filter

I
Field | |Tyue Value |Eln|yMaxL|m Waluel sFilter
#fo—(Ne
| |G/L Account Mo FIELD! Totaling v
Business Unit Code: FIELD Business Unit Filter
|| Department Code FIELD! Department Filker
Project Code FIELD! Project Filker
Date — FIELD Date Filker v
ok Cancel Help

mm G/L Account - Table

The Value column
in the Table Filter
window contains
references to fields
(columns) in the
G/L Account
table.

TR

) Search Accoun

No. MName MHame Type
5550 Electricity Tax ELECTRICI' Posting
5560 Matural Gas Tax MNATURAL [Posting

5570 Coal Tax

5580 CO2 Tax

5590 water Tax

5610 WAT Payable

GE30 VAT, Tatal

5800 Personnel-related ltems
5810 Withhalding Taxes Papable

COAL T&x Pasting
CO2 TAx Posting
WATER T4 Posting

WAT PATAE Posting

VAT, TOTA |End-Tot
PERSOMMNE Begin-T
WITHHOLL Posting

Balance at Date

Project
Code

Department
Code

Inc

0.00

-726,666.00

Bal
Bal
Bal
Bal
Bal
Bal
Bal
Bal
Bal

o
Help I

DD

Bk

L TheBalanceat
Date FlowField

Some of the fields in the G/L Account table are FlowFilter fields. By entering filter expressions into
these fields, the user can affect the calculation of FlowFields (such as Balance at Date) at run
time. The user will be able to enter filter values in a FlowFilter form:

ma G/L Account - FlowFilter E

Field

[Fiter

[ate Filter
Department Filter
Project Filker
Budget Filter

Business Unit Filker

Ok

Canc:

&l Apply H

BB

=

elp |

47

Chapter 3. Table Fundamentals

This means that if the user enters a date filter expression in the Date Filter field, it will be
transferred via the table filter and used in the Date column in the G/L Entry table.

You can use the OnlyMaxLimit option to remove the lower bound from a range defined by a filter
expression. For example, if the filter expression is defined as a range x..y, setting the
OnlyMaxLimit option will transform the expression into ..y.

The ValuelsFilter option determines how the system interprets the contents of the field referred to
in the Value column in the table filter window. For example, if the field contains the value
1000..2000, setting the ValuelsFilter option will cause this value to be interpreted as a filter rather
than a specific value.

Using FlowFilter Fields in the Calculation Formula

48

End users may want to limit calculations so that they include only those values in a
column that have some specific properties. For example the user may want to sum up
only the amounts of customer entries that are entered in April. This is possible if the
application has been designed using FlowFilter fields in connection with the
FlowFields.

TableB
Table A Constants
Ordinary fields
) TableC
FlowFilter fields Calculation <
Formula ¢
]
v I
FlowFields —1 |
— | —
— —
— —<¢
TableD
Path for information used in the calculation formula
— p Path for data used in computation of FlowFields

The above figure illustrates the relations between various types of database fields and
the calculation formula. The filters defined in the calculation formula can consist of
constants, of values from ordinary fields and of filters given as parameters in
FlowFilter fields. FlowFilter fields are fields in which the end user can enter a filter
value (via the user interface in a C/SIDE application) that will affect the calculation of a
FlowField.

Chapter 4

As you create tables, you'll want to take advantage of
properties and triggers. By setting properties for your
tables, you can set up defaults to use throughout your
database, and by defining C/AL code in triggers, you can
modify the system’s default behavior.

This chapter shows you how to use properties and triggers
when you design tables. Furthermore, it shows how to
create relationships between tables. Finally, the chapter
explains how to deal with the problems you may encounter
when you change tables that contain data.

Viewing and Modifying Properties

Using Table and Field Triggers

Setting Relationships Between Tables

Changing Tables That Contain Data

Linked Objects

Chapter 4. Customizing and Maintaining Tables

4.1 VIEWING AND MODIFYING PROPERTIES

This section describes how you can use properties in your table design. As you have
learned in the previous section the properties in a C/SIDE table can be divided into
these categories

Table Properties

Field Properties

Key Properties

Viewing and Modifying Table Properties

50

A table in C/SIDE has a number of properties that describe the behavior of the table in
your environment. When you create a table, C/SIDE automatically defines a number

of default values for these properties. Depending on the purpose of the table and how
it is related to other application objects, you may want to change these default values.

C/SIDE contains the following table properties:

Property Name Use this property to...

ID define the ID of the table.

Name define a name (used as caption) for the table.

Caption display the caption in the currently selected language. The value is

taken from the CaptionML property if this property is set. A caption is
the text the system uses to show the identity of a control (for example,
in the caption bar of a form or as the basis for a label for another
control).

CaptionML provide the text that will be used to identify a control or other object in
the user interface. CaptionML is multilanguage enabled. This means
that it can contain a list of texts in different languages. The text that is
actually used will be selected according to the current language setting
of the user.

Description include an optional description of the table. This description is for
internal purposes only and is not visible to the end user. A short
description of the table’s purpose makes it easier to maintain the
application.

DataPerCompany determine whether the system will create a version of the data for each
company in the database.

Permissions define extended permissions for the table.

LookupFormID define the ID of the form you want to use as a lookup.
DrillDownFormID define the ID of the form you want to use as a drill down.
DataCaptionFields define a list of fields to be used as captions when a record from this

table is displayed in, for example, a form.

PastelsValid tell the system whether it should be allowed to insert records in this
table by pasting.

4.1 Viewing and Modifying Properties

Property Name Use this property to...

LinkedObject determine whether this Navision table description is to be linked to an
existing SQL Server object.

LinkedInTransaction determine whether the linked object supports transactions and can be
accessed within Navision transactions or does not support transactions
and is not under transaction control.

This property is only available when the value of the LinkedObject
property is set to Yes.
For more information, see the section See Linked Objects on page 66.

Refer to the online Reference Guide for additional information about any of these
properties.

To view or modify table properties:
1 From the Tools menu, choose Object Designer.
2 Click the Table button in the Object Designer window to get a list of the tables.

3 Select a table and click the Design button. C/SIDE will display the table in the Table
Designer:

The Table
Designer
|
[xN Table 3 Payment Terms - Table Designer [_ (O] x|

E. |Field o, |Field ame |Data Type |Length |Descripti0n
v }_l Code Code 10 =
v 2 |Due Date Calculation DateFor, .. |)
v 3 Discount Dake Calculation DateFor...
v 4 Discount % Decimal
v 5 | Description Text 50
v 6 Calc, Pmt, Disc, on Cr, Memos | Boolean

[l

Help |

4 Place the cursor on an empty line in the Table Designer or click Edit, Select Object.
(If you place the cursor on a line defining one of the fields in the table, you will get
the properties for the field instead of those for the table.)

51

Chapter 4. Customizing and Maintaining Tables

5 Choose Properties from the View menu. C/SIDE will display the Property Sheet:

[N Table - Properties [_ (O] x|
The Property

Prapert [value Sheet displays
LD &= the properties for
Mame Payment Terms = the current table.
Capkion Payrnent Terms
CapkionML ENU=Payrent Terms
Description <

DataPerCompany
IncludeDatalnDesc
RemateServerhbo
Permissions
LookupFormID
CrillDownFormID
DataCaptionFields
Pastelsyalid

<Yes

<No=

<Undefined =

Payrn

<Undefined =

<Und
<Yes

i <Mooz

>

=0z

ent Terms

efined:
>

[l

6 If you want to modify the setting of a property, simply enter the new value on the
Property Sheet. When you have entered the new value, update the property by
either pressing Enter or simply moving the cursor away from the field.

7 To get Help for a property, point at it on the Property Sheet and press F1.

EXAMPLE

LookUpFormID is a typical example of a property you will want to modify. The default value for the
LookUpFormID property is <Undefined>. By changing this value, you can determine which form
the system will display when F6 (Lookup) is pressed.

Viewing and Modifying Field Properties

52

Just like tables, all fields in C/SIDE have a number of properties that describe their
behavior. When you create a field, C/SIDE automatically suggests a number of default
values for these properties. Depending on the purpose of the field, you will sometimes
want to change these default values.

C/SIDE contains the following field properties:

Property Name

Use this property to...

Field No. assign a unique numeric ID to this field.

Name specify the name of the field.

Caption specify the text the system displays next to a control that is based on
the field.

CaptionML provide the text that will be used to identify a control or other object in
the user interface.

CaptionClass enable a field in a database table or a control to use caption classes.

Description include an optional description of the field. This description is for
internal purposes only and is not visible to the end user.

Data Type specify the data type of a table field.

Enabled determine whether the field is enabled.

Property Name

4.1 Viewing and Modifying Properties

Use this property to...

Data Length

specify the maximum length of the data stored in this field.

InitValue define an initial value for a field.

FieldClass define the class for a field (that is, specify whether it is a normal field, a
FlowField or a FlowFilter field).

CalcFormula define a formula used by a FlowField.

AltSearchField define an alternative search field.

DecimalPlaces

set the number of decimal places shown to the user. This property also
performs validation of whether user input conforms to this setting.

Editable

determine whether a field can be edited.

NotBlank

force the user to make a non-blank entry in this field.

BlankNumbers

tell the system to blank a range of numbers as it formats them.

Numeric

force the user to enter numbers in this field.

CharAllowed

set the characters you will allow the user to enter in this field.

DateFormula

validate the syntax of a date expression entered by the user.

Standard day/time unit

specify the unit of measure that is used when you enter data into
Duration fields.

MinValue set the minimum value for the contents of a field.
MaxValue set the maximum value for the contents of a field.
Title add a title to a field. The first letter in each word is capitalized.

ValuesAllowed

specify the values you want to allow in the field. Can be specified either
as a range or as distinct values, or as a combination of these.

Autolncrement

specify whether or not each field value is automatically given a new
number that is greater than the number given to the previous value.

TableRelation

define relationships to other tables. Refer to the section Setting
Relationships Between Tables on page 60 for a detailed discussion
about how to create table relations.

ValidateTableRelation

tell the system whether or not it should validate a table relationship.

TestTableRelation

tell the system whether or not you want it to include this field when it
tests the table relationships

TablelDExpr specify the ID of the table to which you want to apply a table filter.
BlankZero define that the field will appear blank if the value is 0 (zero) or FALSE.
DatalLength define the length of a data field.

SubType define the subtype of a BLOB field (for example a Bitmap or Memo).
OptionString define an option string (a comma-separated string of options). The

maximum size is 1000 characters.

ClosingDates

determine whether closing dates are allowed.

AutoFormatType

determine how data is formatted.

AutoFormatExpr

determine how data is formatted.

53

Chapter 4. Customizing and Maintaining Tables

Property Name

Use this property to...

SignDisplacement

shift negative values to the right for display purposes.

SQLDataType

specify the data type you want to allow in a code field.
This property applies to code fields in the SQL Server Option for
Navision.

ClearOnLookup

tell the system to delete the current contents of the field before it adds
the value the user selects via the lookup.

SubType

provide additional information about what will be contained in this field.
This property only applies to BLOB fields.

Compressed

specify whether or not a BLOB is compressed. This property only
applies to BLOB fields and only on the SQL Server Option.

OptionCaption

define the text string options that will be displayed to the user.

OptionCaptionML

set the strings that will be displayed to the user for selecting an option.
OptionCaptionML is only used if the field has an OptionString property.
The OptionString property contains the set of values that are
acceptable choices, and it is one of these values that will be saved in
the database or used in C/AL code.

Refer to the online C/SIDE Reference Guide for additional information about any of
these properties.

To view or modify field properties:

1 From the Tools menu, choose Object Designer.

2 Click the Table button in the Object Designer window to get a list of the tables.

3 Select a table and click the Design button. C/SIDE will display the table in the Table
Designer:

The Table Designer

Place the cursor at the line defining the
field for which you want to change or
view the properties.

[xN Table 3 Payment Terms - Table Designer [_ (O] x|
E. |Field o, |Field ame |Data Type |Length |Descripti0n |
v }_l Code Code 10 . =
v 2 |Due Date Calculation DateFor, .. |)
v 3 Discount Dake Calculation DateFor...
v 4 Discount % Decimal
v 5 | Description Text 50
v 6 Calc, Pmt, Disc, on Cr, Memos | Boolean

[l

Help |

4 Place the cursor on the line in the Table Designer that defines the field for which
you want to access the properties.

54

4.1 Viewing and Modifying Properties

5 From the View menu, choose Properties. C/SIDE will display the Property Sheet:

XN Code - Properties [_ (O] x|
Propert Tvale The Property Sheet
Field Mo, 1 = displays the
Marme Code |2 properties for the
Caption Code current field.
CaptiontL ENU=Code
Description <
Data Type Code
Enabled “Vess
Datalength 10
Inityalue <Undefined =
FieldClass <Mormal =
AleSearchField <Undefined =
AutoFormatType =0z
AutoFormmatExpr <
CaptionClass £
Editable <Yes> kd
MokElank Yes J

6 If you want to modify the setting of a property, simply enter the new value on the
Property Sheet. When you have entered the new value, update the property by
either pressing Enter or simply moving the cursor away from the field.

7 To get Help for a property, point at it on the Property Sheet and press F1.

EXAMPLE

The DecimalPlaces property is a typical example of a field property you may want to change.
When you create a new field of type Decimal, C/SIDE will assume that you want the value to be
formatted as a currency. If your decimal field will not contain a currency, you can use this property
to determine the number of decimal places that will appear on the screen.

Viewing and Modifying Key Properties
The keys associated with a table have properties that describe their behavior, just as
tables and fields do. When you create a key, C/SIDE automatically suggests a number
of default values for these properties. Depending on the purpose of the key, you will
sometimes want to change these default values.

C/SIDE contains the following properties for keys:

Property Name Use this property to...

Enabled determine whether the system will maintain an index for the key. You
cannot use a key unless it is enabled.

Key define the key.

SumindexFields determine the fields for which the system will maintain a Sumindex®.
KeyGroups determine which keygroups the key is a member of.

BackupKey see whether any errors occurred the last time you restored a backup.
MaintainSQLIndex determine whether or not a SQL Server index corresponding to the

Navision key should be created.

55

Chapter 4. Customizing and Maintaining Tables

56

Property Name Use this property to...

MaintainSIFTIndex determine whether or not SIFT structures should be created in SQL
Server to support the corresponding SumindexFields for the Navision
key.

SIFTLevelsToMaintain specify which SIFT levels are maintained for a key.

Refer to the online C/SIDE Reference Guide for additional information about these
properties.

To view or modify properties for the keys of a particular table:
1 From the Tools menu, choose Object Designer.
2 Click the Table button in the Object Designer to get a list of the tables.

3 Select a table and click the Design button. C/SIDE will display the table in the Table
Designer:

[xN Table 3 Payment Terms - Table Designer [_ (O] x|
E. |Field o, |Field ame |Data Type |Length |Descripti0n
v }_l Code Code 10 =
v 2 |Due Date Calculation DateFor, .. |)
v 3 Discount Dake Calculation DateFor...
v 4 Discount % Decimal
v 5 | Description Text 50
v 6 Calc, Pmt, Disc, on Cr, Memos | Boolean

[l

Help |

4 From the View menu, choose Keys. C/SIDE will display:

[xm Table 3 Payment Terms - Keys [_ (O] x|
E.[Key | SumindexFields
| |v | Code =
| #p | | fl |2
| &
|| -]
Help |

5 Place the cursor on the line defining the key for which you want to view or modify
the properties.

4.1 Viewing and Modifying Properties

6 From the View menu, choose Properties. C/SIDE will display the Property Sheet:

The Property

Froperty Walue | Sheet for a
Enabled foves] == key
Key Code 1%
SumlndesFields <Undefined:
KeyGroups £
Backupk.ey Mo

k2

=]

7 If you want to modify the setting of a property, simply enter the new value in the
Property Sheet. When you have entered the new value, update the property by
either pressing ENTER or simply moving the cursor away from the field.

8 To get Help for a property, point at it on the Property Sheet and press F1.

57

Chapter 4. Customizing and Maintaining Tables

4.2 USING TABLE AND FIELD TRIGGERS

58

C/SIDE recognizes certain things that happen to a table when you use it, for example
that you insert or modify data. In response, you can get the system to execute C/AL
code defined in a trigger. Triggers can be thought of as predefined functions that are
executed when certain things happen. The bodies of these functions are initially empty
and must be defined by the developer. By defining C/AL code in triggers, you can
change the default behavior of the system. The triggers in a C/SIDE table can be
divided into two categories:

Table triggers
Field triggers

Tables in C/SIDE have the following triggers:

Table Trigger Name Executed when...

Onlinsert a new record is inserted into the table.

OnModify a record in the table is modified.

OnDelete a record in the table is deleted.

OnRename a record is modified in a field that is part of the primary key.

Fields in tables have these triggers:

Field Trigger Name Executed when...

OnValidate data is entered in a field or when <Record>.VALIDATE is executed
in C/AL code.

OnLookup Lookup (F6) is activated.

If you are not familiar with C/AL programming, please refer to chapter 13, Introducing
the C/AL Language, on page 233.

To define or modify a trigger for a table or a field:
1 Open the Object Designer and click Table to see a list of the tables.

2 Select the table and click Design. The system will open the Table Designer,
containing a list of the fields in the table.

3 Click View, C/AL Code (F9). C/SIDE will display the code for the table in the Table
Designer. The system uses the position of the cursor in the Table Designer to
determine what code to display. That is, if you place the cursor on a specific field in
the Table Designer, the code in the C/AL Editor is automatically scrolled so that the
first trigger related to that field appears at the top of the window. If the cursor is
placed on an empty line in the Table Designer, the system shows the first trigger
related to the table itself. Notice, however, that the position of the cursor in the
Table Designer does not restrict your access to other triggers. You can always scroll
up and down through the triggers in the C/AL editor.

4.2 Using Table and Field Triggers

ma Table 3 Payment Terms - C/AL Ed

ninserti)

OnHodifu()

OnDelete(}

OnRename ()

Code - OnValidate(}

Code — OnlLookupi{}

Due Date Calculation - OnValidate(}

Due Date Calculation - OnlLookup{)}

Discount Date Calculation - OnValidatef)

Discount Date Calculation - OnLookup(}

Discount % - OnValidate{)}
[

4]

4 Enter or modify the C/AL code in the relevant trigger(s).

59

Chapter 4. Customizing and Maintaining Tables

4.3 SETTING RELATIONSHIPS BETWEEN TABLES

As mentioned in the section Introduction to C/SIDE Application Design on page 12, it
is common to distinguish among three types of relationships between tables in
relational database design:

One-to-Many Relationships
Many-to-Many Relationships

One-to-One Relationships

Because the one-to-many relationship is the most commonly used, this section will
focus on this type of relationship. If your database design model indicates that you
need to set up a many-to-many relationship, you probably have a problem in your
design — it may be inefficient. You normally break down a many-to-many relationship
into two one-to-many relationships. A one-to-one relationship is usually undesirable
and can often be avoided by simply combining the two tables. To learn more about
database design, refer to one of the text books mentioned in the subsection
Recommended Books on Database Design on page 16.

Why Use Relationships?

If your database contains tables with related data you can define a relationship
between them. You relate tables by specifying one or more fields that contain the
same value in related records. These matching fields often have the same name in
each table. You can use relationships to:

validate data entries.

perform Lookup in other tables.

automatically propagate changes from one table to other tables.

Table Relations and the TableRelation Property

60

Table relations are defined using the TableRelation property. This property is very
flexible and allows you to define both simple and advanced table relations. A typical
simple table relation consists of just a table ID and an optional field ID, while advanced
table relations are typically prefixed with a conditional statement and include filters.
The syntax for table relations is:

<Tabl eRel ation> ::=
<Tabl eNo>[. <Fi el dNo>] [WHERE (<TableFilters>)] |
IF (<Conditions>) <Tabl eNo>[.<Fi el dNo>]
[WHERE(<Tabl eFilters>)] ELSE <Tabl eRel ati on>

<Conditions> ::=
<Tabl eFi | ters>

<Tabl eFilters>::=
[<Tabl eFilter> {, <Tabl eFil ter>}]

4.3 Setting Relationships Between Tables

<TableFilter>:: =
<Dst Fi el dNo>=CONST(<Fi el dConst >) |
<Dst Fi el dNo>=FI LTER(<Fi | ter>)

where...

Symbol Explanation

<TableNo> Specifies the related table.

<FieldNo> Specifies a field in the related table.

<Conditions> Table relations can be conditional.

<TableFilters> A list of table filters.

<TableFilter> A table filter can be either a constant expression or a filter
expression.

<DstFieldNo> Specifies the destination field number.

<Filter> A filter expression such as 10]20..30.

Creating Basic Table Relations

When you create table relations you can either enter them manually or use the assist-
edit tool. You will usually enter basic table relations such as:

<Tabl eNo>[. <Fi el dNo>]

directly on the Property Sheet, whereas you will use assist-edit to enter the more
advanced table relations that use conditions and filters. Below you will see how to
create (basic) table relations by entering them directly on the Property Sheet. In the
following section, you will see how to use the assist edit tool to do the same.

To create a basic table relation:
1 Open the Object Designer and click Table to see a list of the tables.

2 Select a table for which you want to create a relationship, and click Design. C/SIDE
will display the table in the Table Designer.

3 Make sure that the cursor is placed in the field for which you want to set up a
relation. Click View, Properties and C/SIDE will display the Property Sheet for the

field:
XN Tax Group Code - Propetrties [_ (O] x|
Propert: | alue
AutoFormatExpr < -
CaptionClass < |)
Editable “Vess
MokElank. Mo
Mumeric <No=
Charallowed <Undefined =
DateFormula Mo
ValuesAllowed <z
S0L Data Type <Undefined> .
TableRelation “Tax Group” Deﬂr']e the table
ValidateTableRelation “Vess I relation here
TestTableRelation “Yess =

61

Chapter 4. Customizing and Maintaining Tables

4 Enter the table relation directly in the Value field for the TableRelation property.
Simple table relations use the syntax: <TableNo>.[<FieldNo>]. Refer to the next
section to learn how to use the assist-edit tool to create advanced table relations.

EXAMPLE

Assume that you have an Orders table that stores orders and a Salesperson table that stores the
names of all salespeople in your company. In the Orders table, you can include a field called
Salesperson that identifies the salesperson. By setting up a relationship between these two tables
you can get the system to check whether the Salesperson field in the Orders table contains a
valid code.

When data is entered in a field in

The Orders —_— Sales- the Salesperson column in the

table

The Salesperson —[code

table

person Orders table, the system uses the
relation to the Salesperson table
to check whether the code is valid.

| ————

The TableRelation property for the
Salesperson column is set to
Salesperson.Code.

EXAMPLE

Assume that you have a Vendors table with all your vendors and a Currency Code table. Then
you can create a relationship between a Currency Code field in the Vendors table and the
Currency Code table. This will allow users to lookup (F6) information about valid currency codes.

EXAMPLE

Assume that you have a Vendors table and a Currency Code table as in the example above. If
you change one of the currency codes in the Currency Code table, the system will automatically
propagate this change to all the tables that refer to this code.

Creating Table Relations with Assist-Edit

62

C/SIDE has an assist-edit tool to help you enter advanced table relations. By an
advanced table relation, we mean a table relation that is prefixed with a conditional
statement and uses filters.

To create a table relation using assist-edit:

1 Start exactly as if you are creating a basic table relation. Repeat steps 1 to 3 as
described on page 61.

4.3 Setting Relationships Between Tables

2 Click the assist-edit button in the Value field for the TableRelation property. C/SIDE
will display:

[N Table Relation [_ (O] x|
Condition |Table |Field |Table Filter
| » Tax Group ﬂ =]
K | _’I:
Ok | Cancel | Help |

3 Fillin Condition fields by using the assist-edit to set the relevant table filters. For
example, you can look up in different tables, based on the value in an option field.

4 In the Table field, enter the name of the table to which you want to make a relation,
or use the lookup button to select a table from a list. In the Field field, you can enter
the name of the field or use the lookup button to select from a list of fields (those in
the table you have entered in the Table field).

5 If necessary, define a table filter (for the table in the Table field) in the Table Filter
field.

Maintaining Table Relationships on SQL Server

Requirements

The TableRelation property in Navision can be represented in SQL Server by table
relationships that are known as foreign key constraints. These table relationships are
meta-data about the tables and are only intended for modelling and diagramming and
are not used to enforce data integrity. The foreign key constraints are disabled.

The table relationships in SQL Server can be accessed with external tools that can
use this information to generate diagrams illustrating the structure of the database.

You can use the Maintain Relationships option on the Integration tab of the New
Database and the Alter Database windows to enable and disable the table
relationships on SQL Server. For more information about setting this option, see the
manual Installation & System Management: Microsoft Business Solutions—Navision
SQL Server Option.

There are certain requirements that must be met before a TableRelation property can
be represented on SQL Server.

To maintain a table relationship:

The fields forming the relationship must be of the same data type in both of the
related tables. This also applies to any fields that are specified in the Table Filter
field. Text and code fields are compatible as long as they have the same length.

63

Chapter 4. Customizing and Maintaining Tables

Synchronization

64

The SQL Data Type property of code fields must be the same in both tables.

The table filter that is part of the table relationship must contain only the FIELD filter
type. Table filters of the CONST and FILTER filter type cannot be created on SQL
Server.

Conditional relationships have one SQL Server relationship for each condition, as
long as all of the criteria listed here are met by each condition.

The TableRelation properties and SQL Server relationships are automatically
synchronized when you create a table and when you redesign a table. However, there
are some situations in which you might need to manually synchronize the
relationships:

Deleting a table in the Object Designer.

Restoring a database backup.

Importing a . f ob file.
To manually initiate the synchronization process:
1 Click File, Database, Alter, and the Alter Database window appears.
2 Click the Integration tab.

3 Enter a check mark in the Synchronize check box and click OK.

This check box is only enabled when there are table relationships that need to be
synchronized because of inconsistencies in the TableRelation properties.

If an error occurs during the synchronization process, you will receive an error
message informing you that a particular table has an invalid relationship. To correct
this error, you must modify the TableRelation property of the table in question in the
Table Designer and then manually synchronize the relationships again.

4.4 Changing Tables That Contain Data

4.4 CHANGING TABLES THAT CONTAIN DATA

When you design the tables in your database, you determine which fields they
contain. Sometime later, you may want to modify the design of some of the tables in
your application. Typically you will want to add or delete fields, or make changes to

field names or data types.

C/SIDE is designed to ensure that you never lose data when you modify the design of

a table that contains data.

Rules for Changing Tables

Whether it is possible to make changes to a table depends on a number of things. If
you haven'’t added data to the table, you can modify it as you like, but when the table
contains data, a number of restrictions apply. The table below gives some general

rules:

Modification

Rules

Changing a field name

You can always change the name of a field.

Changing a data type

You can change the data type for a field only if there is no data in
this field for any of the records in the table. There is one exception
to this rule: you can change the data type of a field from Code to
Text even if the field contains data for some records.

Adding a field to a table

You can always add a field to a table.

Deleting a field

In order to delete a field, you must delete all data from the field in
all records in the table. Furthermore you must remove all
references to the field from other tables, forms and reports.

Changing the length of a
String field

You can always increase the length of a String field. Whether you
can decrease the length of a String field depends on the contents
of all the values in the column in the table. The minimum length of a
String field is determined by the longest string in the column.

65

Chapter 4. Customizing and Maintaining Tables

4.5 LINKED OBJECTS

With Navision, you can create a table definition for a SQL Server object (user table,
system table or view) that already exists in the current database.

Defining Linked Object Table Properties

You use the table property LinkedObject to link to SQL Server objects by changing the
value to Yes when creating or modifying a table description in the table designer.
When you change this value to Yes, the LinkedInTransaction property becomes
available.

The LinkedInTransaction property must be set to No when the Navision table
description refers to a view that depends on objects that are outside the current
database or on a linked server.

The LinkedInTransaction property allows you to read and modify data from linked
server data sources, such as Excel, Access or another SQL Server. This access is not
under Navision transaction control. This means that if a Navision transaction is
aborted, any changes that were made during this transaction to a linked object that is
outside the current database or on a linked server will remain in effect. For information
about linked sever data sources, see Access to Objects in Other Databases or on
Linked Servers on page 69.

You cannot run tables with the LinkedInTransaction property set to No when the
database has been set to single user mode.

Creating a Navision Table Description

The following descriptions illustrate the different kinds of Navision table descriptions
that you can create, depending on the LinkedObject and LinkedInTransaction table
property values. You must be a member of the db_owner fixed database role to create
a table description.

To create a non-linked table:

Set the value of the LinkedObject property to No.

When you save this table, a SQL Server table that is owned by the db_owner fixed
database role is created with the name you have specified (including the company
name, if necessary).

If an object with this name already exists, an error message is displayed and the
table is not saved.

To create a linked object that is under transaction control:

Set the LinkedObject property to Yes.
Set the LinkedInTransaction property to Yes.

66

4.5 Linked Objects

The table is saved without checking its validity. Navision will check that the
corresponding SQL object exists and that it is compatible with the Navision table
description when the table is accessed.

To create a linked object that is not under transaction control:

Set the LinkedObject property to Yes.
Set the LinkedInTransaction property to No.

The table is saved without checking its validity. Navision will check that the
corresponding SQL object exists and that it is compatible with the Navision table
description when the table is accessed.

Deleting a Navision Table Description:

When the LinkedObject property is set to No:

The SQL Server object is deleted if it is a user table.

The SQL Server object is not deleted if it is a system table or a view. It can only be
a system table or a view if it has been changed to one of these object types with the
aid of an external tool. The LinkedObject property must be set to Yes in order to be
able to link to a system table or a view.

When the LinkedObject property is set to Yes:

The SQL Server object is not deleted.

This means that if you create a Navision table with the LinkedObject property set to
No and then change it to Yes, its corresponding SQL Server object is not deleted.

When you modify the LinkedInTransaction property of a Navision table:

All access to the linked SQL Server object will be made under or outside
transaction control, depending on the setting you choose.

When you access data in a linked object:
If the LinkedInTransaction property is set to Yes, all access to the linked object will
be performed under transaction control — within Navision transactions.

If the LinkedInTransaction property is set to No, all access to the linked object will
be performed outside transaction control — independent of Navision transactions.

Requirements for Linking Objects
When you are using a linked object, you should take the following into account:

The name of the SQL Server object that includes any company prefix and ($)
separator must match exactly with the name of the Navision table.

As is the case when creating regular Navision tables, you must be a member of the
db_owner fixed database role in the current database.

67

Chapter 4. Customizing and Maintaining Tables

As is the case with regular Navision tables, the object must exist in the current
database and be owned by a user in the database who is a member of the
db_owner fixed database role. A SQL Server view can be used to access objects
outside the current database (including those residing on separate servers) or
owned by other users. For more information about accessing objects outside the
current database, see page 69.

Navision will automatically grant the required SQL permissions on the object so that
you can access it in the same way that regular Navision tables are accessed. It will
then be subject to permissions assigned in the Navision security system.

The object being linked must have a SQL Server table definition that is compatible
with the Navision table definition.

A view that cannot be updated in SQL Server (for example one containing
computed/converted columns or unions) will also be read-only if it is used as a
linked object from Navision. With SQL Server 2000, you can write | nst ead- O
triggers to define the logic that allows such a view to be updated. This logic is not
part of Navision.

Rules Determining Compatibility

68

There are a number of rules that you need to keep in mind when you use linked
objects:

All columns in the object must be type compatible with those named in the Navision
table definition. It is not necessary to name all the columns in the Navision table
definition. For more information about type compatibility, see page 33.

SumindexFields cannot be defined for any object type.

If the object is a user table, it must have a primary key constraint that contains the
same number of columns as those listed in the Navision primary key, and these
columns must have the same names.

If the object is a view or system table, a primary key must be defined, and any
secondary keys may also be defined if required. These keys will only be used in
Navision. They will have no effect on a view, its underlying objects in SQL Server or
on a system table. It is important that the data in the columns named in the primary
key is unique. This will not be enforced as a physical constraint by the view or
system table in SQL Server. However, Navision will order the data as though a
primary key was physically defined. Navision relies on this uniqueness in order to
correctly identify and order records.

If the object is a view, it can have only one column of the SQL Server timestamp
type, but it does not need to have any unless BLOB fields are present in the
Navision table definition. A timestamp column must exist in a user table.

An | DENTI TY column can be used in a user table or a view, and Navision will ignore
this column when inserting records into the table. This allows the | DENTI TY column
to be used as intended. Similarly, a computed column in a user table is also
ignored. For a view, a column defined on a computed table column cannot be used
if insert operations are required.

You cannot link to a SQL Server temporary table.

4.5 Linked Objects

Multilanguage views are not created or maintained for linked objects. For more
information about multilanguage views, see the section "Creating and Maintaining
Databases" in the manual Installation & System Management: Microsoft Business
Solutions—Navision SQL Server Option.

Once an object has been linked, Navision treats it like a regular table. However,
depending on the object type, SQL Server may prevent certain operations from taking
place. For example, a non-updateable view cannot be updated in Navision, and a SQL
Server error message appears if you attempt to do this. The ability to redesign the
object from within Navision is limited, and these restrictions are described in the next
section.

Redesigning the Navision Linked Object Table Definition

A Navision linked object table definition can be redesigned in accordance with the
following rules:

It cannot be renamed by changing the table definition name or the company name.
No fields in the table definition can be renamed.

New fields can be added providing they exist in the view, and existing fields can be
deleted. In either case, the definition of the view in SQL Server is not changed.

The primary and secondary key definitions can be changed. Also, new keys can be
added, and existing keys can be deleted.

The Navision field data types can be modified provided that the new type remains
compatible with the column type in the view.

A linked user table can undergo any design changes that are applicable to a regular
table that is created from within Navision.

If the DataPerCompany property of the Navision table definition is changed, it will
result in an attempt to link to a new object. This new object will be based on the new
company name. The previously linked SQL Server object will no longer be linked by
the table definition.

The LinkedObject table property can only be changed from Yes to No for a user
table.

Access to Objects in Other Databases or on Linked Servers
You can access objects outside the current database or server from Navision by
linking to an appropriately defined view in the current database. You can create a view
definition outside of Navision that accesses data on SQL Server linked servers, which
can access heterogeneous data sources. This could, for example, involve performing
a join of an Oracle table, a Microsoft Access table or a Microsoft Excel spreadsheet.

In order to access objects in other databases or on linked servers you must comply
with the following rules:

69

Chapter 4. Customizing and Maintaining Tables

70

You must set the LinkedInTransaction table property to No in order to use a view
referring to objects outside of the current database. The ability to modify data in
these objects is dependent on the data providers that the objects refer to.

All security permissions for linked servers must be granted outside Navision to the
appropriate SQL Server logins.

If a linked object refers to a view that accesses objects that are stored in another
database on the same server, this view must be treated as though it were
accessing a linked server. It is not sufficient to grant permissions for the objects to
the users that will be using the view. This constraint does not apply if all the users
using the view are members of the db_owner fixed database role in the current
database.

Chapter 5

In addition to the normal database tables, C/SIDE has three
other types of tables that serve special purposes in C/SIDE
applications. These are called temporary, system and
virtual tables. Temporary tables are used as a repository for
temporary information at run time, while the two other types
are system generated tables that provide various
information about the current state of the system.

This chapter introduces you to the special C/SIDE tables
and explains how to use them in your design.

What Is a Temporary Table?

What Is a System Table?

What Is a Virtual Table?

Overview of C/SIDE Virtual Tables

Chapter 5. Special C/SIDE Tables

5.1 WHAT Is A TEMPORARY TABLE?

A temporary table can be regarded as a temporary variable that is used to hold a
table. A temporary table is intended to be used as a buffer for table data in your C/AL
programs. If you are not familiar with C/AL, please refer to chapter 13, Introducing the
C/AL Language, on page 233.

You can do almost anything with a temporary table that you can do with a normal
database table; the only differences between a normal database table and a
temporary table are that:

Temporary tables aren’t stored in the database but only held in memory on your
workstation until the table is closed.

The write transaction principle that applies to normal database tables does not
apply to temporary tables. If you are not familiar with the transaction principle,
please refer to the section Write Transactions and Recovery on page 428.

The temporary
tables are stored
only on the client.

C/SIDE C/SIDE C/SIDE
Client Client Client

— C/SIDE
- Server

The advantage of using a temporary table is that all interaction with a temporary table
takes place on the client. This reduces the load both on the network and on the server.

When you need to perform many operations on data in a specific table in the
database, you can load the information into a temporary table while you modify it.
Because all operations are local, this will speed up the process.

Defining and Using a Temporary Table

72

Before you can use a temporary table in your C/AL code, you have to define it. The
variable holding a temporary table is defined just like any other global or local variable.

To define a temporary table:

1 We assume that you are working in the C/AL editor. From the View menu, choose
C/AL Globals or C/AL Locals, depending on whether your variable is going to be
global or local.

If you choose C/AL Globals, C/SIDE displays:

@i C/AL Globals

Variables | Text Constants I Functions I

LTI T[]
w

Mame

|DataT pe |Subt pe

| Length

[]

I |<|«

I

Help |

5.1

What Is a Temporary Table?

2 Enter a name for the temporary table variable and enter Record as data type. Use
the lookup button in the Subtype field to select the table you want to make a
temporary copy of.

3 With the cursor still on the line that defines the temporary table, choose Properties
from the View menu to display the Property Sheet. C/SIDE displays:

mE TempCustomer - Properties E
Froperty Walue |
Dimensions =
Temparary <Maox 1%

4 Change the Temporary property value to Yes.

After you have created a temporary table as described above, you can use it in your
C/AL code. You can apply filters and perform searches just the way you do when you

work with normal database tables.

73

Chapter 5. Special C/SIDE Tables

5.2 WHAT Is A SYSTEM TABLE?

74

System tables are stored in the database just like normal database tables. However,
system tables, unlike normal database tables, are created automatically by the
system. The information in system tables is closely related to the DBMS, which uses
the system tables to manage, for example, system security and permissions in
C/SIDE.

It is possible to read, write, modify and delete the information in system tables.

C/SIDE C/SIDE C/SIDE
Client Client Client

- System tables are stored

— C/SIDE in the database like
Server normal database tables.

There are eight system tables in C/SIDE:

User Table

Member Of Table

User Role Table

Permission Table

Windows Access Control Table
Windows Login Table
Company Table

Database Key Groups Table

The first six tables in the list above all deal with system security.

About permissions

In order to insert, modify or delete information in the User, Member Of, User Role,
Permission, Windows Access Control and Windows Login tables, you must have
at least the same permissions as the users you want to modify. This means that you
cannot assign to other users or take away from them permissions that you do not have
yourself.

The following subsections provide an overview of these system tables. For further
information, see the manual Installation & System Management: Microsoft Business
Solutions—Navision Database Server.

5.2 What Is a System Table?

The User System Table

The User system table provides an overview of all the user IDs you have defined in
your database for users with database logins. Each record in the User system table
defines a single user ID. For information about creating database logins, see the
manual Installation & System Management: Microsoft Business Solutions—Navision
Database Server.

ma User - Table =1 E3
Expiration
User ID Password Mame Date

D “w+END John Doe 014014597 =
o] B
|| k2
|| =]

Help |

For each ID defined in your database, the User system table includes information
about the password (displayed in encrypted form on your screen), the real name of the
user and how long the user’s ID is valid. You can create new user IDs by entering
appropriate data in this table. Correspondingly, you can remove a user ID by deleting
the record from this table. (Of course, this depends on your own permissions.)

Deleting a record

If you delete a record in the User system table, the system will automatically remove
the corresponding entries in the Member Of system table.

The Member Of System Table

The Member Of system table provides an overview of which user groups (roles) a
user is a member of. Each user (ID) can be a member of any number of user groups.

=5 Member Of - Table [_ O] x|
Uszer ID | Fole D | Company | Uzer Name | Fiole Name
[+ B
4] | ﬂ:
Help |

75

Chapter 5. Special C/SIDE Tables

The User Role System Table

The User Role system table provides an overview of the user roles in your database.
A user role specifies a set of permissions. The exact permissions for each user role
are defined in the Permissions system table.

8 User Role - Table A= &3
Fole ID | Mame |
All uzers

[]

Ch-ACTL.. | Read activities

CH-ACTL.. | Edit activities

Ch-CAM... | Read campaigns

Ch-CAM... | Edit campaigns

Ch-CUS... | Edit cust. Avend. from prospect
Ch-PERI... | Cont. Mgt periodic activities
Ch-PRO... |Read prospects and contacts
Ch-PRO... | Edit progpects and contacts
CM-SETUF | Cont. Mat. setup K
F&-FIXE... | Read fized assets and entries J

Deleting a Record

If you delete a record in the User Role system table, the system will automatically
delete the corresponding entries in the Member Of and Permission system tables.

The Permission System Table

76

You can use the Permission system table to define what different user roles are
allowed to do. Permissions are specified for objects; you can specify the exact set of
permissions per table, form, and so on. You can specify that a user role has no (blank
field), Full (Yes), or Indirect permissions to perform the following actions:

Read

Create/Insert

Modify
Delete
Execute
s Permission - Table A= &3
| [Roein [0 [obectin [F.[l. [M.]D.[E. [Role Name | Object Mame
-l ﬂ T.. T Al ugers Standard Text =
| |ALL T.. A0Y... All uzers Accounting Period |£)
| |ALL T.. BT, L. All uzers Uszer Time Register
| |ALL T.. BT Al ugers Frinter Selection
| |ALL T.. 7Y All uzers Company Information
| |ALL T.. 91 Y. All uzers Uszer Setup
| |ALL T.. 93 All uzers General Ledger Setup
| |ALL T.. 225 ... Al ugers Fost Code
| |ALL T.. 243 LY All uzers Feport List k4
| {ALL T.. 2BR Y.L Y All uzers Document Entry d
| | ol
_ e |

5.2 What Is a System Table?

The Windows Access Control System Table

The Windows Access Control system table enables you to manage the access
rights of a user or group of users to Windows 2000, and thereby to Navision. Each
user’s or group’s Windows login has a unique security identifier (SID). Further, each
user or group has a role ID, which relates to a set of permissions within a certain
company in Navision. The information displayed in the Login ID and Role Name
fields is based on the login SID and role ID, respectively.

mE Windows Access Control - Table A= &3
Login 510 | Fole ID | Company Marne | Login ID |
[+] =l
e | _’|:
Help |

The Windows Login System Table

The Windows Login system table enables you to define which Windows users and
groups can log on to the system. Only those Windows users or those who are
members of a Windows group that are listed here can log on. Each Windows user or
group has a unique security identifier (SID). The name of the user or group that is
displayed in the ID field is generated from the name of the user or group that is
identified by the SID. The Name field is currently unused.

m® Windows Login - Table A= &3
SID [io [Name |
| =
| =
|| =]
Help |

The Company System Table

The Company system table provides an overview of the companies in your database.
It contains a record for each company in your database. You can create a new
company by entering a new record in this table. You can also delete a company in
your database by deleting the corresponding record in the Company table. (When
you do that, you delete all the tables in the company. At the same time you also delete
all permissions that include this company.)

77

Chapter 5. Special C/SIDE Tables

mE Company - Table =1 E3

Mame

ACME Cor

LETTTTTT Rl]
-

CROMUS Intemational Ine.

BB

=

Help |

The Database Key Groups System Table

The Database Key Groups system table provides an overview of the key groups
defined in your database. Each record in this table shows a key group.

m Database Key Groups - Table [_ (O] x|

L]

KEE Group

Bank[D/F)
Cuzt[Curr]
Cust[D/P)
Cuist(int]
Item(D/F)
Item{MFG)
Wend[Curr]
Wend(D/F)

[T«

Help |

Note about Key Groups

By making your keys members of key groups, you can activate or deactivate various
combinations of keys in your tables by enabling or disabling the key groups. To make
use of key groups, select File, Database, Information and then click Tables. The
Database Information window appears. You can now click Key Groups.

78

5.3 What Is a Virtual Table?

5.3 WHAT Is A VIRTUAL TABLE?

A virtual table contains information provided by the system. In C/SIDE you have
access to a number of virtual tables. They work in much the same way as normal
database tables, but you cannot change the information in them. That is, you can only
read the information. Another difference is that virtual tables are not stored in the
database (as normal tables are) but are computed by the system at run time.

When to Use Virtual Tables

Virtual tables give you a consistent interface to a variety of different information.
Because a virtual table can be treated just like an ordinary table, you can use the
same methods to access information in virtual tables as you use when working with
ordinary tables. For example, you can use filters to get subsets or ranges of integers
or dates.

The virtual tables provide information such as:

integers in the range -1.000.000.000 to 1.000.000.000.

dates within a given period.

an overview of operating system files.

an overview of logical disk drives.

a trace of database requests from your client to the database.
an overview of connected users.

an overview of the operating system files that store the database.

79

Chapter 5. Special C/SIDE Tables

5.4 OVERVIEW OF C/SIDE VIRTUAL TABLES

C/SIDE contains numerous virtual tables, including:

Virtual Tables

Date, Integer, File, Drive, Monitor, Session, Database File, Table Information, Field,
Server, Windows Object, Windows Group Member, SID - Account ID, User SID

Using the Virtual Tables

The first of these virtual tables give you easy access to dates, integers, information
about your operating system files and the logical drives on your computer.

The Date Virtual Table

80

This virtual table provides easy access to days, weeks, months, quarters and years.
The Date virtual table has the following fields:

Field Comments

Period Type Days, weeks, months, quarters or years
Period Start The date of the first day in the period
Period End The date of the last day in the period

The following figure illustrates how you should think of the Date virtual table. For each
period type, there are many records in the Date table.

& Microsoft Business Solutions-Navision

B |Peri0d Skark | Period End |Peri0d o, |Peri0d Tame

D..
D..
D..
D..
D..
D..
D..
D..
D..
D..
D..

01-01-0000 <01-01-0...
02-01-0000 Coz-01-0...
03-01-0000 CO03-01-0...
04-01-0000 Co4-01-0...
05-01-0000 C0s-01-0...
06-01-0000 CO0&-01-0...
07-01-0000 CO7-01-0...
05-01-0000 Co5-01-0...
09-01-0000 C09-01-0...
10-01-0000 C10-01-0...
11-01-0000 C11-01-0...

|
6 Saturday =
7 | Sunday T
1 Monday
2| Tuesday
3 | Wednesday
4| Thursday
5 | Friday
6| Saturday
7 | Sunday
1 Monday
2| Tuesday LI

Help |

You can apply filters to the Period Type, Period Start, and Period End fields to
easily get a subset or range of days, weeks, months, quarters or years to use in your
forms or reports.

EXAMPLE

The Date virtual table is most frequently used to provide a range of dates, the G/L Balance form
below is a typical example. You will learn how to design forms in part 2, Forms, on page 97.

5.4 Overview of C/SIDE Virtual Tables

mm 1000 BALAMCE SHEET - Balance/Budget M= 3
......... | Budget Filter|STANDAF|D +]
_EJ Budgetei&l;j Budgeted|Met
Met Change Balance Change: Balancel Ehangel
0.00 0.00 0.00 0.00 0.0
0.00 0.00 0.00 0.00 002}
0.00 0.00 0.00 0.00 0o
0.00 0.00 0.00 0.00 0o
0.00 0.00 0.00 0.00 0o
0.00 0.00 0.00 0.00 0o
0.00 0.00 0.00 0.00 0o
0.00 0.00 0.00 0.00 0.0)=]
0.00 0.00 0.00 0.00 0.0~
of
EIRAETEY N _Hep |

This information is
provided by the Date
virtual table

The Integer Virtual Table

This virtual table includes integers in the range -1,000,000,000 to 1,000,000,000. The
Integer virtual table has only one field:

Field Comments

Integer An integer in the range -1.000.000.000 to 1.000.000.000

By applying a filter to this virtual table, you can easily get a subset or range of
numbers that can be used to control looping in reports.

The File Virtual Table

This virtual table provides an overview of the files in a directory on your disk system.
The File virtual table has the following fields:

Field Comments
Path The filter on this field determines which directory will be shown.
Is a File The value Yes indicates that the entry is a file, while the value No

indicates that the entry is a directory.

Name The name of the file or directory.

Size The size of the file in bytes.

Date The date the file was last modified.

Time The time the file was last modified.

Data A BLOB field with the contents of the file.

81

Chapter 5. Special C/SIDE Tables

The Drive Virtual Table

This virtual table provides an overview of the logical drives on your computer. The
Drive virtual table has the following fields:

Field Comments

Drive The name of the drive, such as A: or D:

Removable Indicates whether the disk is removable (a floppy disk) or a fixed
disk

Size (KB) The total size of the disk

Free (KB) The amount of free space on the disk

Note

The other virtual tables are most commonly used by the system administrator, as they
provide a lot of useful information about the users that are connected to the system.
They also provide information about the current state of the system.

The Monitor Virtual Table

82

This virtual table traces all the database requests made by the client to the tables in
your database. You can get access to the Monitor virtual table directly from C/SIDE
by clicking Tools, Client Monitor.

This virtual table is used by C/AL programmers to get an overview of the time
consumption of specific operations. C/AL programmers can use the information in this
virtual table to optimize the performance of their code. The Monitor virtual table
contains the following fields:

Field Comments Possible Values

Entry No. Successive numbers From 1 to 231-1
that are increased for
each database
request

Function Name The type of database LOCKTABLE, DELETE, MODIFY, INSERT,

request DELETEALL, Create Key, Delete Key, Redesign Table,
FIND/NEXT, CALCSUMS, CALCSUMS (Slow),
COMMIT, Delete Table, Create Database, Close
Database, Open Database, Delete Database, Expand
Database, Get Table Statistics, COUNT, Get Database
Statistics, Optimize Key, Login, Read Database Block,
Read BLOB, Insert BLOB, Delete BLOB, Clear Old
Versions, Get Database Free Percent, Preload
Database Block, and so on.

5.4 Overview of C/SIDE Virtual Tables

Field Comments Possible Values
Parameter No. The number of the Depending on the number of parameters
parameter
Parameter The name of the Table, Key, Order, Filter, Search Method, Search
parameter Result, Records Found, Sum, CPU (ms), Records
Read, Sum Intervals, Records Deleted, Records
Modified, Disk Reads, Disk Writes, Record, Wait,
SumindexFields, BLOB Field, Commit, User ID, File
Name, Source Object, Source Trigger/Function, Source
Line No., Source Text, Record Count, Timeout Status,
Time Out (ms)
Number If the parameteris a Any numeric value
number, the value is
shown in this column
Data Any non-number Any string

parameter is shown
in this column

You can access the Monitor virtual table directly by clicking Tools, Client Monitor and
the Client Monitor window appears:

[Client Monitor [_ (O] x|
General | Options I
Date |Time |Entr Mo, |Functi0n Mame |Parameter Mo |Parameter |Number |Da‘
| k| 10-04-02 15:05:10,281 1| FIND{MEXT i Table HkdkdEE Ob 4
|| 10-04-02 15:05:10,281 1| FIND{MEXT 2 Search Method ==
| 10-04-02) 15:05:10,281 1| FINDYMEXT 3 Key Ty
|| 10-04-02 15:05:10,281 1| FIND{MEXT 14 Source Object Far
|| 10-04-02 15:05:10,281 1| FIND/MEXT 15 | Source TriggerF... on
|| 10-04-02 15:05:10,281 1| FIND{MEXT 16 Source Line Ma, 69
|| 10-04-02 15:05:10,281 1| FIND{MEXT 17 Source Text h.
|| 10-04-02 15:05:10,281 1| FIND{MEXT 30 S0L Statement SEL
- IID-D4-02 15:05:10,301 1| FIND{MEXT I 50 Search Result = x
4 3

Stark | Stop | Help |

The Client Monitor window contains two tabs and you use the Options tab to specify
the kind of information that is collected by the Client Monitor.

[Client Monitor [_ (O] x|

General Options |
Settings

¥ Include Ohject table activity [V Retain last source information
Advanced

[~ show server statiskics
[~ show execution plan and SQL index ™ show extended status information
Stark Stop Help

83

Chapter 5. Special C/SIDE Tables

The Options tab contains the following parameters, and the advanced parameters
are only available in the SQL Server Option:

Parameter Behavior When Selected

Include Object table activity Every function that acts on the Object table is written to
the Client Monitor.

Retain last source information The parameters Source Object, Source Trigger/Function,
Source Line No. and Source Line are written to the Client
Monitor even for functions that are not related to the
execution of C/AL code.

Show SQL statement The SQL statement is displayed.

Use placeholders The SQL statement uses '?' placeholders instead of filter
values.

Show server statistics The following statistics are collected — 'Server Time',

'Logical Reads' and 'Records Read'.

Show execution plan and SQL index The SQL plan is displayed (for most statements), as a
collapsed tree with the format:

Plan Step(Object)[n,p];... Here, node n has parent p.
Example:
Computer Scalar[2,1];Clustered Index Seek(User$0)[4,2]

This defines the tree:

1 -- Root

--------- 2 -- Computer Scalar

------------------ 4 -- Clustered Index Seek(User$0)

The SQL index is also displayed as a list of fields in the
same way as the Order parameter.

Show extended status information The SQL status displays additional information:
internal unique statement ID,
reuse status,
prepared status,
cursor type,
optimizer hints,
transaction type.

Client Monitor — Additional Parameters for the SQL Server Option

84

New parameters have been added to the Client Monitor to improve troubleshooting
and performance analysis when you are running the SQL Server Option for Navision.
These new parameters can be configured dynamically and include status information
about caching, SQL statements and execution plans.

Collecting server statistics is time-consuming. Therefore, if you are performing
benchmarking to get the most accurate value for the Elapsed Time (ms) parameter,
you should not collect statistics at the same time.

5.4 Overview of C/SIDE Virtual Tables

Similarly, displaying the execution plans is extremely time-consuming and should not
be done when you are benchmarking. This parameter is useful when you are
troubleshooting problematic application areas to determine if a particular SQL
statement is a bottleneck, and can be valuable to users who are unable to run the SQL
Profiler tool.

Executing a SQL statement in the Query Analyzer in order to use its graphical
execution plan does not necessarily give the same plan or statistics as it does when
the same statement is executed from within Navision. This is due to cursor type
differences. The SQL Profiler or the Client Monitor SQL Plan parameter give the most
accurate plan.

Showing extended status information is useful when you want to see which properties
of a SQL statement are being used in an operation. It is also possible to see how
frequently statements are being reused or re-created. The unique ID can be used to
cross-reference the statements that are being reused and determine the original SQL
statement entry.

To use the Client Monitor to monitor server calls:
1 Open the Client Monitor.

2 Select the parameters that you want to use.

3 Click Start to activate the Client Monitor.

4 You can now close the Client Monitor window while you perform the tasks you
want to investigate.

5 When you have completed these tasks, click Tools, Client Monitor to open the
window again.

6 Click Stop to stop the Client Monitor.

The Session Virtual Table

This virtual table gives you an overview of the users that are connected to Navision
Database Server (NDS) or to SQL Server.

85

Chapter 5. Special C/SIDE Tables

86

The Session virtual table contains the following fields:

Field Comments sSQL NDS
Server

Connection ID The ID of the connection. X X

User ID The user ID of the connected user. X X

My Session Shows whether or not a session belongs to you. X X

Login Time The time when the user logged in and started this X X
session.

Login Date The date when the user logged in.

Database Name The name of the database that this session has X
opened.

Application Name The name of the application connected to the X X
server.

Login Type Shows whether this session is a Windows login or X X
a database login.

Cache Reads The number of cache read operations performed X
by this session.(®)

Disk Reads The number of disk read operations performed by X
this session.(®)

Disk Writes The number of disk write operations performed by X
this session.®

Records Found The number of records found since this session X
logged in.

Records Scanned The number of records scanned by this session X
since they logged in.

Records Inserted The number of records inserted by this session X
since they logged in.

Records Deleted The number of records deleted by this session X
since they logged in.

Records Modified The number of records modified by this session X
since they logged in.

Sum Intervals The number of jumps between value intervals X
made by the system when calculating sums since
this session logged in. A high value may indicate
that an inefficient key is being used.

Host Name The name of the workstation used by this session. X

CPU Time (ms) The cumulative amount of CPU time by this X
session.

Memory Usage (KB) The number of kilobytes in the procedure cache X

that are currently allocated to this session.

Physical I1/10

The cumulative amount of disk reads and writes for
this session.

5.4 Overview of C/SIDE Virtual Tables

Field Comments SQL NDS
Server
Blocked Shows whether or not this session is blocked X

(waiting to acquire a lock) by another session.

Wait Time (ms) The amount of time that this session has been X
waiting.

Blocking Connection ID The ID of the connection that is blocking this X
session.

Blocking User ID The user ID of the connection that is blocking this X
session.

Blocking Host Name The name of the workstation used by the X

connection that is blocking this session.

Blocking Object The name of the SQL object that is blocking this X
session.

(A) ONLY IF COMMITCACHE = YES

Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Navision, it will have to be modified to run on SQL Server. These fields will not be
created on SQL Server. If the program tries to access them, an error message will
appear.

C/SIDE uses the Session virtual table to display database information.

To access this virtual table from C/SIDE, follow this procedure:

1 Click File, Database, Information and the Database Information window appears.
2 Click the Sessions tab.

3 Click the AssistButton + in the Current Sessions field and the Database
Sessions window (SQL Option) appears:

BE Database Sessions [_ (O] x|
Connecki,., |M Session |L0gin Type |User 1D |L0gin Date |L0gin Time |Database Mame |.ﬂnnlirarir| I

S 3 Database s 100303 9i47:10 master =]

i) Database |sa 10-03-03 947110 master

i) 3] Database |sa 10-03-03 947110 master

] g Database |sa 10-03-03 947110 master

] 9 Database |sa 10-03-03 947110 master =

st 10 Database |sa 10-03-03 947110 master

] 11 Database |sa 10-03-03 947110 master

] 1z Database |sa 10-03-03 947110 master

st 13 Database |sa 10-03-03 947110 master

i 51 v Database |sa 10-03-03 10:06:14 Mavision Dema D... Microsiftlﬂ
| | »

Help |

An administrator can cancel one of the sessions by selecting the line in question and
deleting it. The user will then be disconnected from the server and will have to restart

87

Chapter 5. Special C/SIDE Tables

the program if they want to continue working. The administrator must be a member of
either the sysadmin or processadmin SQL Server server rolls.

The Database Sessions window displays different fields from the Session virtual
table depending on which server you are running.

The Database File Virtual Table

88

This virtual table provides an overview of the operating system files that store the
database. The Database File virtual table has the following fields:

Field Comments

No. The number of the operating system file.

File Name The operating system file name.

Size (KB) The size of the operating system file in KB.

Total Reads The number of read accesses since the database was opened.(B)
Mean Read Time (ms) The average time for a read operation (in milliseconds).(B)
Reads In Queue Number of read operations waiting in queue.(A)(B)

Total Writes Number of write operations since the database was opened.(B)
Mean Write Time (ms) The average time for a write operation (in miIIiseconds).(B)
Writes In Queue Number of write operations waiting in queue (in miIIiseconds).(A)(B)
Disk Load (%) A percentage weight describing the load on the disk.(®)

(A) ONLY IF COMMITCACHE = YES
(B) NOT AVAILABLE IN THE SQL SERVER OPTION FOR NAVISION.

Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Navision, it will have to be modified to run on SQL Server. These fields will not be
created on SQL Server. If the program tries to access them, an error message will
appear.

C/SIDE uses this virtual table to show database information.
To access the Database File virtual table from C/SIDE, follow this procedure:
1 Click File, Database, Information.

2 Click the Database tab.

5.4 Overview of C/SIDE Virtual Tables

3 Click the AssistButton « in the Database Name field. C/SIDE will display:

mn Database Files

IS[=] E3

File Mame

Size [KE]

D:

14000

[I=

Help |

The Database Files window displays only some of the fields in the Database File
virtual table. Note, this window does not appear in the Microsoft SQL Server Option for

Navision.

The Table Information Virtual Table

This virtual table contains various information about database tables. The Table
Information virtual table has the following fields:

Field

Comments

Company Name

The name of the company the table belongs to.

Table No.

The ID number for the table.

Table Name

The name of the table.

No. of Records

The number of records in the table.

Record Size

A value expressing the average size of a record. Calculated as
1024*Size(KB)/Records.

Size (KB)

How much space the table occupies in the database (in KB).

Optimization

A percentage of Size that expresses how much data there is in a
table. Some of the remaining size is used for internal administration
in the table while other is slack-space. Slack-space can be
minimized by optimizing the table.(*)

(A) NOT AVAILABLE IN THE MICROSOFT SQL SERVER OPTION FOR NAVISION.

Important

If a solution uses any of the fields that are not available in the SQL Server Option for
Navision, it will have to be modified to run on SQL Server. These columns will not be
created on SQL Server. If the program tries to access them, an error message will

appear.

89

Chapter 5. Special C/SIDE Tables

C/SIDE uses the Table Information virtual table to display information about

database tables.

To access the Table Information virtual table from C/SIDE:

1 Click File, Database, Information.

2 Click Tables. C/SIDE will display:

m D atabase Information (T ables] [_ (O] x|
Company Marne |Table Mo. |Table Mame |N0. ofHe...lFiecord S...lS@_
S ! 243 Feport List o o B
| 2000000002 User 1 4.036 =
| 2000000003 Member Of 2 2048
- 2000000004 User Group 97 127
| 2000000005 Permission 1765 56
| 2000000006 Company 1 4.036
- 2000000203 Databaze Key Groups 9 455
| |CRONUS International Ltd. 3| Payment Terms E B3
| |CRONUS International Ltd. 4| Currency 15 273 ¥
| |CRONUS International Ltd. 5| Finance Charge Terms 2 2048 L
<| >
Optimize Test Key Groups | Help |

This window does not display all the fields in the Table Information virtual table. Use
the horizontal scroll bar to view the information in the hidden fields.

The Field Virtual Table

90

This virtual table contains various information about fields in database tables. The
Field virtual table has the following fields:

Field Comments

TableNo This field shows the ID number for the table.

No. This field shows the number assigned to the field.

Table Name This field shows the name of the table.

FieldName This field shows the name of the field.

Type The field indicates the data type assigned to the field, for example,
decimal.

Len This field shows the length of the field entry in bytes.

Class This field indicates the class of the field, for example, FlowField.

Enabled This field indicates whether the field is enabled.

Type Name This field shows the data type assigned to the field. The length of

the field entry in bytes is included for Code and Text data types.

Field Caption

This field shows the caption of the field in the language that has
been selected.

RelationTableNo

This field shows the ID number for the table that the field is related
to.

5.4 Overview of C/SIDE Virtual Tables

Field Comments

RelationFieldNo This field indicates the number of the field in another table that the
field is related to.

SQLDataType This field shows the data type assigned to code fields in the
Microsoft SQL Server Option for Navision.

To access the Field virtual table from C/SIDE, follow this procedure:
1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

4 Create a tabular-type form based on the Field table. C/SIDE will display:

B Microsoft Business Solutions-Navision [_ (O] x|
Tablemo |N0. |TabIeName |FieIdName |T.. |Len |C. |
_}E 1 Payment Terms Code C. 10N, =]
it 3 2 | Payment Terms Due Date Calculation O, 32 M.
| 3 3| Payment Terms Discount: Date Calculation O, 32 M, —
] 3 4 Payment Terms Discounk % o.. 12 M.
] 3 5 Payment Terms Description T. S0 M.,
st 3 & Payment Terms Calc, Pmt, Disc, on Cr, Memos B.. 4 M.,
i 4 1 Currency Code C. 10 M.,
i 4 2| Currency Last Date Modified O, 4 M.,
- 4 3| Currency Last Date Adjusted O, 4 M.,
i 4 6 | Currency Unrealized Gains Acc, C. 20 N_d
| | »
D]
Note

This window does not display all the fields in the Field virtual table. Use the horizontal
scroll bar to view the information in the hidden fields.

The Navision Server Virtual Table

This virtual table contains information about the Navision Database Servers and
where they reside on the network. You can see this information when the application
runs on the Microsoft Windows 2000 operating system. Navision retrieves the data
from Active Directory. See Microsoft's Windows 2000 documentation for information
about Active Directory.

The Navision Server virtual table contains the following fields:

Field Comments

SCP GUID Shows the globally unique identifier (GUID) for the Navision
Database Server’s service connection point (SCP).

Description Shows the name that has been given to the Navision Database
Server.

Server Name Shows the name of the computer on which the server is installed.

91

Chapter 5. Special C/SIDE Tables

Field Comments

Domain Shows the name of the domain on which the server resides. A
domain can consist of more than one physical location.

Net Type Shows the network type (TCP/IP or NetBIOS) that is used to
connect to the Navision Database Server.

Port Number Shows the port number for the transfer of data to the server.

Distinguished Name Shows the unique name of the Navision Database Server in Active
Directory.

Online This field indicates whether or not the server is running and thereby
available.

To access the Navision Server virtual table from C/SIDE, follow this procedure:
1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

4 Create a tabular-type form based on the Navision Server table. C/SIDE displays:

& Microsoft Business Solutions-Navision !EI m
SCP GUID |Descripti0n |Server Mame |D0main |
GUID [Client Only] =

-
1| | »

This window does not display all the fields in the Navision Server virtual table. Use
the horizontal scroll bar to view the information in the hidden fields.

The Server Virtual Table

92

The Navision Server virtual table is only available when you are running on Navision
Database Server. If you are running on the SQL Server Option for Navision, you can
access the Server table.

5.4 Overview of C/SIDE Virtual Tables

The Server table contains the following fields:

Field

Comments

Server Name

Shows the name of the computer on which the server is installed.

My Server

Shows whether or not this is the server that you are logged on to.

The Windows Object Virtual Table

This virtual table provides an overview of Windows users and Windows groups, which
can be integrated in the Navision security system. You can see this information when
the application is running on a client with the Microsoft Windows 2000 operating
system. Navision retrieves the data from Active Directory. See Microsoft's Windows
2000 documentation for information about Active Directory.

The Windows Object virtual table has the following fields:

Field Comments

GUID This field shows the globally unique identifier (GUID) for the
Windows user or group.

ID This field shows the ID of the Windows user or the Windows group.
This information is displayed in the User ID fields of the User and
Member Of system tables.

Name This field shows the name of the Windows object. This object can
be a Windows user or a Windows group. The object name is
displayed in the Name field of the User system table and in the
User Name field of the Member Of system table.

Type This field indicates whether the object is a Windows user or a
Windows group.

SID This field shows the unique security identifier (SID) for the

Windows user or group.

Distinguished Name

The distinguished name identifies the domain that holds the
Windows object as well as the complete path by which the object is
reached. Every object in the Active Directory has a unique
distinguished name.

To access the Windows Object virtual table from C/SIDE, follow this procedure:

1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

93

Chapter 5. Special C/SIDE Tables

4 Create a tabular-type form based on the Windows Object virtual table. C/SIDE will
display:

B8 Microsoft Business Solutions-Navision !El m

GUID 1o [name [1ype []
)

EEEEEEREEC
ha

v
1| | »

Help |

The Windows Group Member Table

94

This virtual table contains information about the members of Windows Groups who
can be integrated in the Navision security system. A Windows group member who has
permissions in the Navision security system does not have to enter a password when
they log on to Navision.

You can access this virtual table if you are running Navision on the Microsoft Windows
2000 operating system. The Windows Group Member virtual table has the following
fields:

Field Comments

Group GUID This field shows the globally unique identifier (GUID) for the Windows
group.

Member GUID This field shows the GUID for the Windows group member.

Group ID This field shows the ID for the Windows group to which the Windows group

member belongs.

Member ID This field shows the ID for the Windows group member.

To access the Windows Group Member virtual table from C/SIDE, follow this
procedure:

1 Click Tools, Object Designer.
2 In the Object Designer, click Form.

3 Click New.

5.4 Overview of C/SIDE Virtual Tables

4 Create a tabular-type form based on the Windows Group Member virtual table.
C/SIDE displays:

B8 Microsoft Business Solutions-Navision !El m

Group GUID |Member GLUID |Gr0up (8] |Member (8] | |

=

EEEEEEREEC
ha

v
1| | »

The SID - Account ID Virtual Table

This virtual table can convert the security identifier (SID) for a Windows object into an
ID. It can also convert an ID for a Windows object into a SID. The Windows object can
be a Windows user or group. The ID is calculated on the basis of the SID.

If you request a record with a specific SID, C/SIDE looks up the information in the SID
- Account ID virtual table and returns the ID.

The SID - Account ID virtual table has the following fields:

Field Comments
SID This field shows the security identifier (SID) for the Windows user or group.
ID This field shows the ID of the Windows user or group. The ID is calculated

on the basis of the SID.

The User SID Virtual Table

This virtual table shows the security identifiers (SIDs) and IDs for the groups that the
user who is logged on to the system is a member of. The User SID virtual table has
the following fields:

Field Comments

SID This field shows the security identifier (SID) for the groups that the user
who is logged on to the system is a member of.

ID This field shows the ID of the groups that the user who is logged on to the
system is a member of. The ID is calculated on the basis of the SID.

95

Chapter 5. Special C/SIDE Tables

To access the User SID virtual table from C/SIDE, follow this procedure:
1 Click Tools, Object Designer.

2 In the Object Designer, click Form.

3 Click New.

4 Create a tabular-type form based on the User SID virtual table. C/SIDE displays:

& Microsoft Business Solutions-Navision !EI m
o) [|
b] [=
7] =
Help |

96

Forms

Chapter 6

Forms are used to enter and display data. For example,
you can use a form to enter information about new
customers or to update and review information about
existing customers.

This chapter introduces the fundamental concepts and
basic tasks involved in designing and using forms.

What Are Forms?
Creating Forms
Selecting, Moving and Adjusting Controls

Saving, Compiling and Running Forms

Chapter 6. Form Fundamentals

6.1 WHAT ARE FORMS?

After you have created tables, the next step in developing a C/SIDE application should
be to design forms. In contrast to programs written in traditional programming
languages, C/SIDE applications do not execute sequentially: they are event-driven. A
major part of the logic of an application could be said to rest with the forms: forms are
used for entering information into database tables and for retrieving and displaying
information from database tables. It is through forms that users generate the events
that determine the flow of the application.

Forms can be used to access one table at a time, or they can combine information
from a number of different tables. A form can display information that is calculated on
the fly, as the form is displayed, and it can contain information (such as a label) that is
not related to any table, or purely decorative elements (such as bitmap pictures).

The figure below shows the components of a form and how they are related. This and
the following chapters will explore each component in depth.

Form Description

| Form Properties

L Triggers

L Control Properties
[Triggers

Forms are created and edited in the Form Designer.

What are Controls?

100

All information on a form is presented in controls. Controls are objects that can display
data from a database table field, the value of a C/AL expression, bitmap pictures or
static information such as a descriptive text.

Some controls are called container controls. An example is a frame. The frame itself
does not display data or information, but it can contain a number of other controls that
you want to group. A powerful container control is the tab control. A tab control really
is a number of frames or pages that are placed on top of each other. The user can
switch between the pages by clicking the tabs that have captions. Tab controls make it
possible to group information on a form so that each page is not cluttered with
information, and it is very fast and easy to switch between pages.

Another concept is control branches, which consist of a parent control and
subordinate or child controls. The best example is a text box and a label. The child
control inherits some properties from the parent, and the entire branch can be moved
together on the form.

6.1 What Are Forms?

What Are Bound and Unbound Forms and Controls?

Typically, a form is related to a database table and will be used to enter information
into the table and to display information from the table. The form is said to be bound to
the table.

An unbound form is not related to a table. An example of an unbound form is a form
that is used as a menu, from which the user can choose other forms or reports to run.

The controls on a form that is bound to a table are usually bound to fields in the same
table. There need not be a control for every field in the table, nor do all controls on the
form need to be bound to table fields: controls that aren’t bound to fields are called
unbound controls. An example is a command button that causes the information on
the form to be printed; another is a control that contains a descriptive text. An
important category of unbound controls includes controls displaying information —
based on the underlying table or user-entered values — that is calculated as the form
is displayed.

What Are Form and Control Properties?
Properties describe how a control is placed on the form, what field it is related to and
what happens when information is entered into the field, among other things. Different
types of controls have different sets of properties. For example, a text box, the control
type that is typically used to display the contents of a database field, has more
properties than a picture box, a control used to display bitmap pictures.

The form itself also has properties. For example, you can specify whether the form is
to be used only for displaying information or whether it will be possible to insert new
records or update existing ones.

Properties are defined on the Property Sheet that can be edited when the form is
opened in the Form Designer.

What Are Triggers?

Certain predefined events that happen to a form or a control cause the system to
execute a user-definable C/AL function — the event triggers the function. The event
and the function are together called a trigger. Form triggers include OnOpenForm,
containing statements that will be executed when the form is opened, and
OnModifyRecord, containing statements that will be executed before the system
accepts changes the user makes to a record. Triggers are edited in the C/AL editor,
which can be opened from the Form Designer.

101

Chapter 6. Form Fundamentals

6.2 CREATING FORMS

A Card Form

A Tabular Form

102

Forms can be created and designed manually. Although this method gives you the
highest degree of control, it may take some time to master. C/SIDE offers an
alternative method that is fast and easy to use and therefore preferable when you are
just beginning to create forms: you can use a form wizard. A form wizard prompts you
for the minimum amount of information needed to create a form and then does the rest
of the work for you. The automatically created form can be changed later on in the
Form Designer.

Forms that display one record at a time are called card forms, while forms that show
several records at a time are called tabular forms. The form wizard will help you create
either type.

ma 1 - Contacts

......... m FPhone
......... IJohn Doe Company
......... 17 Riverside Drive Tite,

IS[=] E3

| 11223344
IAEME Corp

Sales Clerk. hd

Help |

& Microsoft Business Solutions-Navision

Mo,

| Mame

|Search I... |Name z

| Address |

1

10000 iThe Cannon Group PLC
20000 | Selangorian Lkd,

30000 John Haddock Insurance Co.
40000 Deerfield Graphics Company
50000 | Guildford Water Department
60000 | Blanemark Hifi Shop

61000 Fairway Sound

62000 The Device Shop

01121212 Spotsmever's Furnishings
01445544 Progressive Home Furnishings

THE CAN...
SELANG...

JOHM HA, ..
DEERFIE...
GUILDFO...
BLAMEM. ..

FAIRMWA, ..
THE DEVI...
SPOTSM...

PROGRE...

192 Market Square 4|
153 Thomas Drive

10 High Tower Green

10 Deerfield Road

25 Water Way

28 Baker Street

159 Fairway

273 Basin Street

612 South Sunset Dri

3000 Roosevel Blvd, v|
3

Help |

6.2 Creating Forms

Creating Forms with a Form Wizard
To create a form using the form wizard:

1 From the Tools menu, choose the Object Designer.
2 Click the Form button In the Object Designer.

3 Click the New button. C/SIDE will display this form:

mE Hew Form =1 E3
]
Tabular Form | _ ‘

QK | Cancel | Help |

4 If you are creating a form that is related to a table, type the name of the table in the
Table field. You can also click the Lookup button and choose the table from a list.
Once you have entered the table name in the field, press ENTER.

5 Select the option called "Create a form using the wizard." Then you must select the
type of form you want the wizard to create: card form or tabular form. After this, click

OK.

Creating a Card Form
To create a card form, follow the steps outlined above. Then proceed as follows:

1 The system asks whether you want the form to have tabs or whether it should be a
plain form. A form with tabs is a multi-page form where the user can switch between

pages by clicking the tabs.

ma Card Form Wizard M= 3
QM Should the form contain tabs?
® ‘Yes, | want a form with the following tabs:
Tab Mame
| |General =
| # |Irvvnicing 1%
" No, | want a plain farm
cgack | Mews | Fnsh | canel | Hep |

2 If you choose to create tabs, type a caption for each tab you want. In either case,
click the Next button when you are ready to continue.

103

Chapter 6. Form Fundamentals

104

3 In the next form the wizard displays, you must choose those fields from the
database table you want on your form.

ma Card Form Wizard =1 E3

QM ‘which fields from table Customer do pou want on the tabs?

General | Invaicing |

Available Fields Field Order
H e Separator |
ﬁ Calumn Break |
cgack | Mews | Fnsh | canel || Hep |

If you are creating a form with tab controls, begin by choosing the page on which
you want certain fields to appear. You can switch between pages by clicking on the
tabs, which have the captions you have defined.

4 The form that the wizard displays contains two lists: the Available Fields list, which
contains all fields in the table, and the Field Order list, which contains the fields
that have been selected. To insert a field in the Field Order list, select it in the
Available Fields list and click >. You can insert all the fields at once by clicking the
>>_ You can remove fields from the Field Order list by selecting them there and
clicking <; you can remove them all at once by clicking <<.

The contents of the Available Fields list are the Caption properties of the fields
available to you — not the Name properties. For more information about captions, see
Chapter 18.

5 The order of the fields in the Field Order list is the order in which the fields will
appear on the form. If you want a different order, move a field by removing it from
the Field Order list and inserting it again in the position you want.

6 By clicking Separator, you can insert a small amount of extra vertical space
between the controls; this allows you to group information together in a logical and
visually pleasing way. Note that tabs provide a more powerful way of grouping
information together on a form. The separator will be inserted after the field that is
currently selected on the Field Order list; you can remove a separator by selecting
it and clicking <.

7 To insert a column break, click Column Break. The rules for insertion and deletion
are the same as for a separator. If you feel you need to create three or more
columns, you should consider using tabs instead.

6.2 Creating Forms

8 When you are satisfied, click Finish. The form wizard will create your form, and the
Form Designer window will open containing the new form. You can test-run the
form by clicking File, Run.

9 Close this window and answer Yes to save the form. You will be prompted to enter
an ID number and Name for the new form, and you can choose whether or not the
form will be compiled now.

You can also do it later, by selecting the form in the Object Designer window and
clicking Tools, Compile.

Save As E
D | a
Mame. I
Compiled
u].4 I Cancel | Help |

10When the form has been saved and compiled, it can be run. Select the form from
the Object Designer window and click Run.

Creating a Tabular Form

To create a tabular form, follow the initial steps outlined in "Creating Forms with a
Form Wizard" on page 103. Then proceed as follows:

ma Tabular Form Wizard M= 3
QM ‘which fields from table Customer do pou want on your form?
Available Fields Field Order
Search Mame LI
Mame 2 < |
Address
<£
Address 2 —I €
City =] B
O e R e e

1 You are prompted to choose the fields from the database table that you want on
your form. The form that the wizard displays contains two lists: the Available
Fields list, which contains all fields in the table, and the Field Order list, which
contains the fields that have been selected. To insert a field in the Field Order list,
select it in the Available Fields list and click >. You can insert all the fields at once
by clicking the >>. You can remove fields from the Field Order list by selecting
them there and clicking <; you can remove them all at once by clicking <<.

105

Chapter 6. Form Fundamentals

The contents of the Available Fields list are the Caption properties of the fields
available to you - not the Name properties. For more information about captions, see
Chapter 18.

2 The order of the fields in the Field Order list is the order in which the fields will
appear on the form. If you want a different order, move a field by removing it from
the Field Order list and inserting it again in the position you want.

3 When you are satisfied, click Finish. The form wizard will create your form, and the
Form Designer window will open containing the new form. You can test-run the
form by clicking File, Run.

4 Close this window and answer Yes to save the form. You will be prompted to enter
an ID number and Name for the new form, and you can choose whether or not the
form will be compiled now. You can also do it later, by selecting the form in the
Object Designer window and clicking Tools, Compile.

Save As E
D | a
Mame. I
Compiled
u].4 I Cancel | Help |

5 When the form has been saved and compiled, it can be run. Select the form in the
Object Designer window and click Run.

Creating Forms Without a Wizard

106

To create a form without using a wizard:
1 Click Tools, Object Designer.
2 In the Object Designer window, click Form.

3 Click New. C/SIDE will display this form:

mE Hew Form =1 E3
]
Tabular Form |
QK | Cancel | Help |

6.2 Creating Forms

If you are creating a form that is related to a table, type the name of the table in the
Table field. You can also click the AssistButton + and select the table from a list.

Select Create a blank form, and click OK.

The Form Designer will open, displaying an empty form. Chapter Chapter 7,
Designing Forms, describes in detail how to design the form by adding controls,
changing properties and so forth.

You can test-run the form at any point by clicking File, Run.

When you have finished designing the form, close the Form Designer window, and
answer Yes to save the form. You will be prompted to enter an ID number and
Name for the new form, and you can choose whether or not the form will be
compiled now. You can also do it later, by selecting the form in the Object
Designer window and clicking Tools, Compile.

107

Chapter 6. Form Fundamentals

6.3 SELECTING, MOVING AND ADJUSTING CONTROLS

This section describes how to select and move controls, and how to adjust controls by
aligning and sizing them.

Selecting Controls

To move or adjust a control, you must first select it. As some operations can be
applied to only one control at a time and others to a group of controls, controls can be
selected both individually and as groups.

You select a control by pointing at it and clicking the mouse. In order to make it easier
to see what the mouse cursor is pointing at, the appearance of the cursor changes as
-~ itis moved around the design area. The default appearance is a cross, which means
that the cursor is not currently pointing at any control. As soon as the cursor points at
Q a control, it changes into a selection cursor. Clicking the mouse selects the control,
which will be surrounded by a box with sizing handles.

8 Form O - Form Designer - (O] x|

-

d | H oz

Multiple Selections
A multiple selection is a group of controls that are all selected. You make a multiple
selection, for example, in order to align all the controls in the selection (how to actually
align the controls will be described below).

Adding to a Selection

When one control has been selected, you can add other controls to the selection by
holding down the CTRL key when clicking to select them. As you add controls, a box
will appear around the complete selection and each control in the selection will be
marked by a circle in the upper left corner of its own bounding box.

108

6.3 Selecting, Moving and Adjusting Controls

8 Form O - Form Designer - (O] x|

-

s e

d | H oz

Marquee Selection

Another way to make a multiple selection is by marquee selection. When the mouse
cursor is in the design area but not pointing at anything (appears as a cross), press
the left mouse button and hold it down. When you drag the mouse, a rectangle will
appear — a marquee.

As the rectangle expands, any control that it overlaps, completely or partly, will be
selected; there will be a circle in the upper left corner of its bounding box.

. Eor:mol.‘l. . B
: Control2.|
d | 4

Release the mouse button when you have finished selecting controls.

Controls can be added to the selection individually (as described above), and a
marquee selection can be added to an existing selection by holding down the CTRL
key while you carry out the marquee selection.

109

Chapter 6. Form Fundamentals

There is an option that determines how marquee selection works. In the Tools menu,
choose Options. The Marquee Full Selection option can be Yes or No. Only if the
option is set to No does the marquee selection work as described above. If it is set to
Yes, a control will be selected only if the marquee overlaps the control completely —
not just partly.

Selection and Container Controls

When you select a container control, all the contained controls are selected, even if
they are not marked as such by individual bounding boxes. Beware that a contained
control can be moved so that it is only partly inside the container. However, it is
considered part of the control as long as any part of it overlaps the container. To select
such a control, you must click in the part that is still inside the container.

Selection and Control Branches

Moving Controls

110

I

A control branch consists of the control itself and one or more child (subordinate)
controls. An example is a text box with a label. Both are controls — the text box holding
information that can change during program execution and the label holding static
information (usually a caption for the text box), changeable only during form design.
The label is said to be a child of the text box.

When a control branch, such as a text box with a label, is selected, the control itself is
displayed in a bounding box with sizing handles, as usual. The child controls that are
part of the control branch are marked by a box with a circle in the upper left corner,
and the whole branch is surrounded by a dotted emphasis frame. If you click on the
emphasis frame (the cursor changes into a selection cursor as it touches the frame),
the child controls will be added to the selection; this turns the selection into a multiple
selection that can be moved as a whole.

A 2

When the selection cursor appears, you can move the control below it by pressing the
left mouse button and holding it down while you drag the control to the desired
position. The control will be dropped when you release the mouse button.

6.3 Selecting, Moving and Adjusting Controls

Moving Selected Controls

Controls also can be moved after they have been selected. To move a selected
control, move the mouse cursor towards it. When the cursor touches the border of the

@ control, it will look like a hand. Press and hold down the left mouse button, drag the
control to the desired position, and then release the mouse button.

Multiple selections are moved as a whole and their relative positions within the
selection are not changed.

Aligning Controls

If you created a form without using a wizard — or if you did use a wizard but rearranged
some controls afterwards — you may want to align the controls more accurately than it
is convenient to do freehand with the mouse. C/SIDE provides two methods for
aligning controls easily and accurately:

1 You can turn on the option Snap to Grid in the Format menu. When you move a
control as described above you will notice that it is not moving smoothly, but rather
in small, fixed increments. The dots in the design area represent some of the actual
grid points that the controls snap to when they are moved.

Hint: the distance between the grid points are properties (HorzGrid and VertGrid) of
the form. The unit is 1/100 millimeters.

2 To align several controls, select the controls as a multiple selection and click
Format, Align. From the submenu that follows, select one of four ways to align the
controls. If, for example, the controls are in a column, you will want to align them
vertically, either to the left or to the right. Select Left or Right to do this.
Correspondingly, a row of controls can be top or bottom aligned. Beware — if you
inadvertently choose to top align a columnar group, for example, the system will
indeed do just this, placing all the controls on top of each other.

Sizing and Resizing Controls

When the wizard adds controls to a form, these controls are sized evenly according to
a default scheme. If you move the controls around, the sizes that the wizard assigned
may no longer be appropriate. Other situations where you will want to change the size
of a control are if you change the font size, or if you don’t want to display all the
information from a very large table field, but only the first part. You can only resize one
control at a time.

To resize a control:
1 Select the control. It will be surrounded by a bounding box with sizing handles.

% 2 Place the mouse cursor on a sizing handle. The cursor will change into a sizing
cursor.

3 Press the left mouse button and drag the control to the size you want. If Snap to
Grid is on, the sizing takes place in fixed increments, in a way similar to the one
described above for moving a control.

111

Chapter 6. Form Fundamentals

Sizing Container Controls

112

If you have created a container control, you can size the contained controls
individually in the usual manner. The containing control — for example, the frame — can
be sized like any other control. When a containing control is sized, the contained
controls are not affected, that is, neither their size nor their position changes.

When you enlarge a container, any control that becomes completely overlapped by it
will automatically be ‘adopted’ as a contained child of the container.

Beware that it is quite possible to reduce the size of the containing control so that a
contained control seems to be outside the container. However, it is still considered part
of the container. As no part of it is inside the control, however, it cannot be selected.
The remedy for this is to enlarge the container so all contained controls are inside it.

6.4 Saving, Compiling and Running Forms

6.4 SAVING, COMPILING AND RUNNING FORMS

After you have designed a form, you must save and compile it before it can be run.
Normally, you will do this when you are done designing the form. However, you may
want to save a form that is not yet finished and thus cannot be compiled, if the form is
more complex than the forms described so far and contains C/AL code. You can also
test-compile and test-run a form without closing or saving it.

Saving and Closing a Form

A designed form is closed when the Form Designer window is closed. You can close
this window in the same ways that you can close any other window.

To save a form:

1 When you are closing a form, C/SIDE will ask whether you want the form to be
saved. If it is a new form (a form that has not been saved before) you will have to
assign an ID and a name. The ID must be unique and follow the rules for numbering
objects — your local Microsoft Certified Business Solutions Partner will provide you
with this information.

Hint: if you enter ID and Name as form properties, these values will be used, and
you will not be prompted for ID and Name when you close the form.

Save As E
D | a
Mame. I
Compiled
u].4 I Cancel | Help |

2 The option field Compiled is by default set to TRUE (displayed as a check mark). If
your form is not yet ready to be compiled, remove the check mark by clicking in the
field.

3 Choose OK to save the form.

You can save a form without closing it by choosing Save or Save As... from the File
menu. You can use Save As... to give a form a new name.

Compiling a Form
Forms, like other objects in C/SIDE, must be compiled before they can be run. As
described above, you can choose to compile a form whenever you are saving it.

While you are designing a form, you may want to test-compile it to find possible errors.
This is useful when the form contains C/AL code in triggers, as described in Chapter
9. You can test-compile a form during design by clicking Tools, Compile.

113

Chapter 6. Form Fundamentals

Running a Form

114

In a finished application, your forms will be incorporated into menus or they will be
called from other forms. However, while you are designing forms, you will often want
to run them before they have been integrated into an application.

You can run a form from the list of forms in the Object Designer window by selecting
it and clicking Run. Note that forms can also be run from inside the Form Designer by
clicking File, Run.

&% Object Designer [_ (O] x|
| 1o [name [r.]wersion List 1
| 5050 iContact Card I NAYW13.69.990 |

& Table | - 5051 Contact Card Subform HAYY 13,60
] 5052 Contact List AW 13,639,990
=] 5053 Contact Statistics AW 13,00
=] Repork | - 5054 Company Details MAYW13.69,990
EyEe— |] 5055 MName Details MAYW13,10 =
- 5056 Contact Alt, Address Card Ay 13,00
3 Codeunit_| | 5057 Contact Alt. Address List MAVYW13.00
- 5058 Alt, Addr. Date Ranges MAYW 13,00
gl - 5059 Contact Alt, Addr, Date Ranges MAYW 13,00 _d
1| 3
Tew Design | Run | Help |

Chapter 7

This chapter describes how to design forms by adding
controls and by changing the properties of forms and
controls.

Form and Control Properties

Types of Controls

Adding Controls

Tools for Customizing Controls

Setting Control Properties

How to Use Controls in Applications

Chapter 7. Designing Forms

7.1 FORM AND CONTROL PROPERTIES

As described in Chapter 1 "C/SIDE Fundamentals", properties are a system-wide
feature and every application object has some properties. Properties for forms and
controls are edited by opening the Property Sheet in the Form Designer (by clicking
View, Properties). As you select the form or a control in the form, the Property Sheet
will display the properties for the selected object. The title bar of the Property Sheet
window shows what kind of object (form, text box, label, and so forth) is currently
selected. The first line of the sheet shows the ID if the object has one. Note that the
Property Sheet can be scrolled vertically.

Froperty Walue |

D 4 =
Marme <Mames 1%
#Poz 3850

rPos 930
‘width 5500
Height 440
HorzGlue <Leftx

YertGlue <Tops =]
isible <vesy j

Each field on the Property Sheet contains a value that you can set by entering a value
in the Value field on the Property Sheet. As soon as you leave the field (by pressing
Enter or by using the arrow keys) the property is updated. If what you entered contains
an error (for example, if you accidentally changed the ID of one control to be the same
as that of another control), the update will not be accepted.

Default values are displayed in angle brackets (<>). If a property has a default, you
can reset it to the default by deleting the current value and then moving out of the field.
Notice that some properties do not have defaults — mainly those that describe the
position of the control within the form. These properties are constantly updated by
C/SIDE when the control is moved.

How Properties Are Inherited

116

Controls that have a direct relationship to table fields will inherit the settings of those
properties that are common to the field and the control. You can still change the
settings of these properties for the control, but you cannot overrule the settings of
certain field properties, namely those that concern data validation. For example, if the
field property that determines which characters the user can enter is set to lowercase
only, you cannot use the properties of the control to reset it to also accept uppercase
characters. You can narrow the accepted range of characters but not broaden it. On
the other hand, you can change properties like the caption — as this property has
nothing to do with data validation.

When you design an application, you must consider whether these common

properties should be specified at the field level or at the control level. The advantage
of using the lowest level (the field level) is that whenever the field is used as the data
source of a control, these settings will be used as defaults. This ensures consistency.

Form Properties

7.1 Form and Control Properties

The table below briefly describes some of the more important form properties. All
properties are described in detail in the online C/SIDE Reference Guide. You can get
context-sensitive Help for a property by opening the Property Sheet for a form, placing
the cursor on a property and pressing F1.

Property Name

Use this property to...

ID set the numeric ID of the object. This property can also be set when you
save a form. The ID must be unique among forms. Your C/SIDE dealer will
inform you about the numbers you can use.

Name give the form a descriptive name. The name does not have to be unique,
but you should give your forms unique names anyway, as they will be a lot
easier to identify and find by name than by ID.

Minimizable specify whether the user can minimize the form window.

Maximizable specify whether the user can maximize the form window.

Sizeable specify whether the user can resize the form window.

SavePosAndSize specify whether information about the user-made changes to the size and
placement of a form window will be saved. If it is set to Yes, this
information will be saved, and the next time the window is opened, these
values will be used. Otherwise, the designed values will be used.

Editable specify whether the user is allowed to edit controls in the form. If it is set to
No, no controls may be edited, even when their individual Editable
properties are set to Yes.

InsertAllowed specify whether the form can be used to insert records in the database.

ModifyAllowed

specify whether the form can be used to modify records in the database.

DeleteAllowed

specify whether the form can be used to delete records from the database.

CalcFields specify a list of FlowFields that you want the system to calculate when the
form is updated. If the FlowField is a direct source expression, it is
automatically calculated. However, if it is indirect (part of an expression) it
is not.

UpdateOnActivate specify whether you want the system to update the form when it is

activated.

SourceTable

specify the source table of the form. Normally, you will have specified the
table when you first created the form. If you have created a form without an
underlying table, however, you can enter a table name here to bind the
form to a table.

SourceTableView

create a view (what the user can see) of the source table for this form. You
can specify the key, sorting order and filter that the system will use.

SaveTableView

specify whether the system will save information about which record the
user is viewing when the form is closed, the sorting order and the current
filter, and then reapply this information when the form is opened again.

117

Chapter 7. Designing Forms

General Properties for Controls

118

The table below briefly describes those properties that are common to several types of
controls. All properties are described in detail in the online Reference Guide. You can
get context-sensitive Help for a property by opening the Property Sheet for a form,
selecting a control, placing the cursor on a property and pressing F1.

Property Name

Use This Property to...

ID set the numeric ID of the control. The system assigns a sequential number
by default. If, however, you delete a control, and then add another in its
place, you may want to give the newly created control the number of the
one you deleted. The ID must be unique among controls and menu items
on the form.

Name give the control a descriptive name.

Caption specify the text that the system displays for this control.

HorzGlue to anchor a control horizontally on the form. You can choose Left, Right or
Both. If you choose Both, the control will be resized when the form is
resized.

VertGlue to anchor a control vertically on the form. You can choose Top, Bottom or
Both. If you choose Both, the control will be resized when the form is
resized.

Visible specify whether the control will be visible when the form is opened. This
property can be changed from C/AL at runtime.

Notice that if the control is a child control and the parent has Visible = No,
the child will not be visible, even if it has Visible = Yes.

ParentControl specify the ID of a parent control, thereby turning the control into a child.

7.2 Types of Controls

7.2 TYPES OF CONTROLS

Static controls

Data controls

Containers

This section provides a brief overview of all controls that can be added to a form. The
list below is structured according to the broad categories into which controls can be
grouped.

Static controls are controls that cannot change contents at run time.

Label A labelis used for displaying text, most commonly for displaying the caption of
another control. In this situation the label is normally—and conveniently—a child of the
other control, but labels can also be used as stand-alone controls.

Image An image control is used for displaying a bitmap picture.

Shape A shape is a graphical element (line, circle, rectangle).

Data controls are controls that can display the value of a C/AL expression, for
example, the value of a table field or a variable (perhaps the simplest expression is
just the name of a table field or a variable) or of a "real" expression. The valid
combinations of data control and data type are as follows

Control Valid data types

Check Box Booleans and BLOBs

Option Button All, except BLOBs

Text Box All

Picture Box Boolean, option, integer and bitmap BLOBs
Indicator Integer, decimal, date, time

Data controls must have a relation to data, defined as their SourceExpr property.

Container controls are used for grouping other controls. Some properties of the
container overrule the same property in the contained controls: if the container is not
editable, no single contained control can be edited (even if it individually has the
Editable property set to TRUE).

Frame A frame is simply a rectangle into which other controls can be "dropped".
While you are designing, the frame and its contained controls can be moved together,
and a frame can have different border styles and colors.

Tab Control A tab control can be thought of as a kind of book with several pages, or
as several frames, where only one is visible at a time. The user can switch between
pages by clicking on tabs with captions.

119

Chapter 7. Designing Forms

Data Containers

Other

120

Table Box A table box is a container, too, but a special kind. It contains repeated
data controls and is used to create columnar tables. Each data control contained by
the table box constitutes one column for which a static control is used as a heading.
The rows arise from vertically repeating each data control. If the table box displays
records from a table, each row displays one record.

Command Button A command button is not related to data — it performs an action
when it is "pushed", that is, when it is clicked, or when ENTER or the spacebar is
pressed while the button has focus.

Menu Button A menu button can be clicked just like a command button, but it does
not perform an action: when you click it, a menu opens containing a number of menu
items that you can choose.

Menu Item The lines in a menu that can be chosen are called menu items. Each
menu item resembles a command button: it can perform an action when you click it.

Subform A subform control is used to display a second form in a control on a form (a
main form), in order to show data from two different tables. For example, the main
form could be a card form and show records from a customer table, while the subform
could be a tabular form and show details about purchases the customer has made.

7.3 Adding Controls

7.3 ADDING CONTROLS

This section gives a few examples of how to add controls without using the form
wizards.

The Toolbox

You use the Toolbox to insert controls. The Toolbox is opened by choosing Toolbox
from the View menu. You select a specific tool by clicking the corresponding icon.

Pointer\ Text Box
Label\ / Option Button
Check BOX\ A |at] / Menu Button
1O}
=l

Command Button /
T Frame
(notinuse) |2 /
Image ———— —___|& -
Shape —_l
Tab Control - Subform
Table Box———
(not in use) |z

Lock — ﬂ"_l ————————— Add Label

Picture Box

Indicator

(not in use)

Note that some of these tools are not implemented in the present version of C/SIDE,
but that the icons are already present—they will, however, always appear disabled.

When you click the Pointer tool, the state changes from insertion to selection. You can
use this if, for example, you change your mind about inserting a control.

The Lock tool locks the current control selection. Normally, after you have inserted a
control, you have to select the type of control again before inserting the next control.
You can continue inserting controls of the same type without having to select the tool
again and again by turning Lock on (it is a toggle).

If Add Label is on (it is a toggle), all controls will have a label when you insert them.

Adding a Text Box

If text boxes are related to database table fields, the easiest way to add them to a form
is to use the Field Menu. The Field Menu is a list of all fields in the table that is defined
as the SourceTable for the form. You can open the Field Menu in the Form Designer
by clicking View, Field Menu. A text box that has a specific field in the table as its
SourceExpr (that is, has this field as its underlying table field) can be added to the
form as described in the following section.

121

Chapter 7. Designing Forms

122

To add a text box:

1 Open the form in the Form Designer.

2 Click View, Field Menu to open the Field Menu window:

Field Caption Data Type
» PrlmaryKe i Primary Key Codel0 .

Mame Mame Text50

Mame 2 Mame 2 Text50

Address Address Texts0 —

Address 2 Address 2 Texts0

Ciky Ciky Texks0

Phone No. Phone No. Textz0

Phone Mo, 2 Phone Mo, 2 Textz0

Telex No. Telex No. Textz0

Fax Mo. Fax Mo. Textzl LI
of] cancel | foply |

3 In the Field Menu window, select the field or fields. The Field field contains the
Name property, and the Caption field contains the Caption property. For more
information about these properties, see Chapter 18, "Multilanguage Functionality".

When you move the cursor into the design area, it will change into the Control
Insertion cursor.

You need to activate the Form Designer window, for example, by a mouse click,
before the cursor will change into the Control Insertion cursor.

4 Click in the design area for each selected field to insert a text box at the cursor
position.

If you selected more than one field, the text boxes will be inserted and aligned in a
column below the mouse position.

Each text box has these characteristics:

It has the table field as its SourceExpr.

The default settings for the Name and Caption properties are the same as the
setting for the Name property of the underlying table field.

In general, all properties that are both field properties and text box properties have
the value of the field property in the underlying table as a default value.

The text box has a label with a caption that defaults to the caption of the text box.

The advantage of using the Field Menu to add text boxes with labels is that you are
effortlessly assured that naming and properties are consistent.

Beware that if the data type is anything but boolean, a text box will be created
automatically. If the data type is in fact boolean, a check box will be created.

7.3 Adding Controls

Adding a Text Box without Using the Field Menu

Although the easiest way to add a text box is by using the Field Menu, you can add
text boxes without using the menu. This is the way to add a calculated text box, that is,
a text box that is used to display a calculated value. It is also possible to add an
unbound text box and then, later on, bind it to a table field.

To add an unbound text box:

1 Open the form in the Form Designer.
2 Select the Text Box tool.

3 Move the cursor into the design area.

4 Click to add a text box of the default size, or click and drag to create a text box with
a different size.

Now you have an unbound text box control on the form. Notice that no characteristics
were inherited and that the text box has no label.

The subsection Changing the Properties of a Control on page 125 explains how you
can bind the text box to a table field and add a label, and the subsection Displaying a
Calculated Value on page 129 tells how you can use the text box to display a value
that is calculated on the fly.

Creating Labels That Display Descriptive Text

You can add a label that is not the child of another control to a form. You can do this,
for example, if you want to have a descriptive text on the form — it could be instructions
about using the form or other information that is static and not related to any database
table field.

To add a label:

1 Open the form in the Form Designer.
2 Select the Label tool.

3 Move the cursor into the design area.

4 Click to create a label of the default size, or click and drag to create a label of a
different size.

5 As the label is not part of a control branch, it will be given a default name and
caption (like Control4). You can change the name and the caption on the Property
Sheet for the label (see Changing the Properties of a Control on page 125).

123

Chapter 7. Designing Forms

7.4 TooLS FOR CUSTOMIZING CONTROLS

In addition to the Property Sheet itself, there are two special tools available for setting
various properties of controls. They are: the Color tool, for selecting color properties
and border styles, and the Font tool, for setting font properties.

Using the Color Tool

To start using the Color tool, click View, Color. The tool looks like this:

Form - Color =]
Foreground . . NN oo o (o [l | |
Background . . T~ B N o (o [l | |
Border ™" I oo (o [l | |

When a control that has color properties is selected, you can pick colors for
foreground (text), background and border by clicking in the palette. The corresponding
properties are ForeColor, BackColor and BorderColor.

The check boxes Background and Border are used to toggle the display of
background color and display of the border on and off. The corresponding properties
are BackTransparent and Border (if these options are off, a background or border
color will not have any effect).

If the control has a border, the nine buttons at the bottom can be used to select border
style and border width.

Using the Font Tool

124

To start using the Font tool, click View, Font. The tool looks like this:

TextBox - Font =]

[Tahorna]

B|e‘|g|

When a control that can display text is selected, you can set the font properties by

using the tool. You can enter the font name, the font size, attributes (bold, italic and
underline) and the horizontal alignment of the text (left, center, right and general —

general meaning that text is left aligned and numbers are right aligned).

7.5 Setting Control Properties

7.5 SETTING CONTROL PROPERTIES

This section gives some examples of how to change the properties of a control, and
indicates some of the typical situations where this will be necessary.

Changing the Properties of a Control
If you have added controls without using the form wizards, you will often need to
change some properties of these controls. Even if you did use a wizard, you may want
to change some properties to meet specific requirements that the wizards cannot
consider.

Changing the Name and Caption of a Control

Every control has an ID and a Name. Controls that display data also have a
SourceExpr property. The SourceExpr — source expression — is a C/AL expression. It
can just be the name of a table field, or it can be a more complex expression, perhaps
with a field as an operand.

When you use a form wizard or the Field Menu to create a text box that has a direct
relationship to a table field, Name and Caption will be set by default to the name of the
table field (unless the table field has a Caption: in this case, this Caption is used). The
label has a Caption derived from the Caption of the parent control (the text box). You
can supply a Caption in either place if you want to have a different, perhaps more
descriptive, text than the field name as a caption.

Notice the following dependencies:

If you change the Caption property of the text box, the Caption property of the label
will be set to this value as a default (you will see that it is displayed in angle
brackets). If you change the Caption property of the text box again, the Caption
property of the label will also be changed again.

On the other hand, if you change the Caption property of the label directly, you will
notice that the value that you enter is displayed without angle brackets, signifying
that it is no longer a default value. This means that if you change the property of the
text box, the value here will no longer be updated.

Changing an Unbound Control into a Bound Control
An unbound text box — or other data control — can be changed into a bound control
quite easily.

All it takes is to change the SourceExpr into what you want. If it is the name of a field
in the database table, the values for Name and Caption automatically default to the
standard values for a bound control, that is, they default to the name of the table field.

This will not automatically add a label to the text box, but you can add one, as
described below.

125

Chapter 7. Designing Forms

Adding a Label to a Text Box

If you have created a bound text box by changing the SourceExpr for an unbound text
box, the bound text box will not automatically get an attached label. You can add a
label by adding a label control to the form and then change the ParentControl property
of the label from the default (undefined) to the ID of the text box (which you can see on
the first line of the Property Sheet for the text box).

The control branch resulting from this operation can be selected and moved as
described in section 6.3, Selecting, Moving and Adjusting Controls.

Display Properties

Controls that you add to a form — either by using a wizard or manually — will have a
default set of properties that define how the control itself and the data it displays are
formatted. While this ensures a consistent visual design throughout your applications,
it cannot provide for all needs. You may therefore have to change some properties
that affect the way your forms and their controls are displayed.

Controlling the Display of Numbers

This is a short description of properties that control the display of numbers. Refer to
the online C/SIDE Reference Guide for full descriptions.

DecimalPlaces This property (whose setting specifies both the minimum and
maximum allowed values) determines how many decimals are displayed and how
many can and must be entered. A typical situation where this property would be used
is when amounts are stored in the database with 5 decimal places for higher precision,
while you want the user to see only the customary number of decimal places for the
currency in question, for example, 2. The table field would then have the
DecimalPlaces property set to 2:5, while the DecimalPlaces property of the text box
should be set to 2:2.

BlankNumbers You can choose from an option list whether a range of numbers will
be displayed or they will be blanked.

BlankZero The default is No. If you change it to Yes, zero values and booleans that
would have been displayed as a No will be blanked out.

Divisor The default is Undefined. If a number is entered, numeric values will be
divided by this number when they are displayed. Any remainder will be discarded. You
could, for example, use the Divisor property to display only the thousands part of a
number by entering 1000 (then 16400 and 16800 would each be displayed as 16).

Formatting Data Display

126

This is a short description of properties that control formatting of data. Refer to the
online C/SIDE Reference Guide for full descriptions.

Format This property defines how the system formats the SourceExpr of a text box.
For each data type, there is a default. There is also a set of standard formats that you
can select. Finally, you can build your own formats to serve special needs.

7.5 Setting Control Properties

HorzAlign and VertAlign These properties define how data in a text box or a
caption on a label will be aligned horizontally and vertically, respectively.

MultiLine If this property is set to Yes, labels and text boxes can have multiple lines
of text. The default is No with one exception: the label of a column in a table box will

have this property set to Yes. See the subsection Displaying More Than One Line of

Text on page 129 for details.

PadChar This property specifies the character to be used to pad a string. The
character will be added to the left or right, or both, depending upon the text alignment
defined by the HorzAlign property.

LeaderDots This property specifies whether there will be leading dots before the
data. The dots are placed according to the horizontal alignment of the data: if left
aligned, the dots are placed to the right, if right aligned, the dots are placed to the left
— and if centered, there will be dots both before and after the data.

If this property is set to Yes, the setting of PadChar will be overruled.

Properties That Control Input

This group of properties can be used to control user input, that is, restrict user input to
certain values or a certain length.

Numeric This property restricts input to numeric values only if it is set to Yes.
MinValue, MaxValue Sets a minimum or maximum value that the user can enter.

ValuesAllowed Here you can specify the values that the user is allowed to enter.
Enter the values separated by semicolons, like 1; 7; 4711 or a; b; c.

CharAllowed Here you can enter characters that the user can enter. You can enter a
range, for example, AZ, to limit entry to uppercase characters only, or several ranges,
for example, anot , specifying two ranges: atom and o to t.

NotBlank If this is set to Yes, then an entry consisting of nothing, one blank or
several blanks (spaces) will not be accepted — though a blank can be part of string that
contains other characters.

MaxLength The maximum number of characters that can be entered in a text box.

AutoEnter If this is set to Yes, the system will accept a user entry when the
maximum number of characters allowed has been entered into a table box, and it will
then move the focus to the next control — that is, the user does not have to press
ENTER.

PasswordText If this is set to Yes, user input will not be displayed, but shown as
asterisks (******),

127

Chapter 7. Designing Forms

Assisting the User

128

The ToolTip property allows you to assist the user by displaying text that describes a
control. You can also control the captions used in the title bar of a form window.

ToolTip If you enter a text here, it will be displayed in a small pop-up window
whenever the mouse cursor rests on the control for a short while. The text is supposed
to be a short, perhaps just one word, description of what the control is used for.

DataCaptionField, DataCaptionExpr As mentioned in the table of form properties
above, you can control the label that is displayed on the caption bar of the form
window by using the Caption property. This is a static caption, usually the name of the
underlying table. By using DataCaptionField (either at table level or at form level), you
can select fields from the record whose contents are displayed (and updated) in the
caption bar as the user pages through the table. With DataCaptionExpr (form only)
you can create a C/AL expression to be displayed in the caption bar. The expression
is reevaluated when the user selects a new record or the present record is changed.
The online C/SIDE Reference Guide contains further explanations.

If the user-selectable option Status Bar (click View, Options) is set to Yes, the caption
of text boxes and check boxes will be displayed in the status bar together with the
current data contents of the control (if any) when the control gets the focus.

7.6 How to Use Controls in Applications

7.6 HOwW TO USE CONTROLS IN APPLICATIONS

Displaying More Than One Line of Text

If a database table contains very large fields, lengthy descriptive texts for example,
using the standard one-line text box is not a very good way to present this information.
Instead, you can customize a text box to wrap text into multiple lines.

mu 1 - Contacts [_ (O] =]

Moo oo m Phone | 11223344
Mame. |J0hn Doe Company. IAEME Corp
Addess. [17 Riverside Drive Title.o IManager
Comment. [lohn Doe joined the company in 1980

Since then he has steadily been

promated, and is now a manager,

Help |

To create a multiline text box:

1 Open the form in the Form Designer.

2 Select the text box and enlarge it vertically by resizing.

3 Open the Property Sheet for the text box and set the MultiLine option to Yes.

4 Run the form. Entering or editing text will still take place on one line that scrolls
horizontally. When the focus is not on the text box, the contents of the field will be
formatted in multiple lines. Automatic line breaks occur only after a space character,
and the user can insert line breaks ("hard newlines") by embedding a backslash
character ("\") in a text string. (To display a backslash, enter "\".)

5 You may have to experiment with the vertical resizing of the text box to find the size
that suits your purpose best.

Displaying a Calculated Value

A control can be used to display a value that is not stored in the database but
calculated as the form is displayed. One situation where this could be useful is when
all the information needed for the calculation is actually stored in the database, and —
conforming to the rules for a relational database system — the calculated value is not
stored separately. However, the users of the application do sometimes need this
value. Adding a calculated control can give this information, without violating the rules
for good database design.

To display a calculated value:
1 Open the form in the Form Designer.

2 Select a tool that inserts an appropriate data control (check box, text box, indicator)
in the Tool Box.

129

Chapter 7. Designing Forms

3 Move the cursor into the design area.
4 Click to add the control.

5 Open the Property Sheet for the control. Type the expression you want as the
SourceExpr property.
EXAMPLE

You have designed a table with a field that contains the Unit Price of an item, and another field that
contains the Employee Discount Rate. On the form, you want to see the price that an employee
actually has to pay. Add an unbound text box and enter as the SourceExpr:

"Unit Price" - ("Unit Price" * "Enployee Discount Rate" / 100)

Presenting a Set of Options

A recurring task in application programming is to present the user of the application
with a fixed set of options to choose from. For example, in a program where the user
frequently has to enter the title of a contact, it could be a list of titles. The field or
variable that is the SourceExpr of the control must have type Option, and the options
must have been entered as the OptionString property of the field or variable.

In C/SIDE, you can present these options in several ways. The following sections
show two different approaches.

Creating a Drop-Down List of Options

130

The list of options can be presented as a drop-down text box, as in the picture below:

mE 1 - Contacts [_ (O]
T | 1 Phone | 11223344
Mame. |J0hn Doe Company IACME Corp
Addess. ... [17 Riiversids Diive Title, [5ales Ti=]

Help

To create a drop-down option list:
1 Open the form in the Form Designer.

2 If the option text box is based on a table field, open the Field Menu and highlight the
field. Otherwise, proceed to create an unbound text box.

3 Select the text box tool; then click in the design area to create the text box (if the
text box is based on a field that you have selected on the Field Menu, just click in
the design area).

4 If the text box is unbound, bind it to the variable now by entering the name of the
variable as the SourceExpr of the text box.

7.6 How to Use Controls in Applications

When you run the form, the text box will have the AssistButton v attached, and you will
be able to open the list by clicking this AssistButton.

You can enter only options that have been defined on the Property Sheet of the field or
variable. The first option will be displayed in the text box. If the OptionString property
has a blank as the first option, the text box will accordingly be blank. This does not
mean that options that are not in the OptionString can be entered.

In the OptionString property of the control, you can select a subset of the options
already defined for the field — you cannot add options.

Creating an Option Button Group

Another way of presenting a set of options is as an option button group. The
functionality will not be any different from that provided by a drop-down list, but the
visual presentation is, of course, quite different. An option button group looks like this:

mE 2 - Contacts =] E3
Moo ... E Phone [23w
Mame. |Hichard Roe Company. W
Address. L [11 Caryor Road)
Title:

CEQ

(® Manager

7 Sales Clerk

Help

The advantage of using an option button group is that the user of the application can
see all the available options and the currently chosen option at a glance. The
disadvantage is that an option button group takes up more space on the form than a
drop-down text box does.

To add an option button group:

1 The OptionString property of the field or variable must be defined, as described
above.

2 Open the form in the Form Designer.

3 Add an option button for each option in the OptionString of the field or variable (the
option buttons must be added as unbound controls).

4 Enter the field or variable as SourceExpr in the Property Sheet for each button.

5 Enter one of the options from the OptionString as the OptionValue property for each
button.

Each button has the OptionValue as its caption. Because the option buttons have the
same source expression, only one of them can be chosen at a time. When you choose

131

Chapter 7. Designing Forms

an option by clicking on the button, any previously-chosen button will be marked as
not chosen.

EXAMPLE

In the previous illustration, the option button group has been embellished by adding two frames:
the group is contained by a frame with a raised border and no caption. The other frame is actually
the "Title" caption — with the TopLineOnly property set to Yes, and Caption property set to Title.

Using a Check Box to Display Booleans

A check box control is a handy way of displaying data of type Boolean. In a text box,
boolean values will be shown as Yes and No. In a check box, Yes will be displayed as
a check mark, while No will be displayed as a blank.

mE 1 - Contacts =] 3
Moo ... | 1 Phone | 11223344
Mame. |J0hn [oe Company. IAEME Corp
Address. L [17 Riverside Drive Title. . ..o ISaIes Clerk. |
Active L.
Help |

To add a check box:
1 Open the form in the Form Designer.

2 If the check box will have a direct relationship to a table field, select the field in the
Field Menu. Otherwise proceed to create an unbound check box.

3 If you want a label attached to the check box, click the Add Label tool (check boxes
do not by default have labels).

4 Choose the Check Box tool; then click in the design area to create the check box (if
you have selected a field of type Boolean from the Field Menu, you only have to
click in the design area).

5 If the check box is unbound, bind it to the variable now by entering the name of the
variable as the SourceExpr of the text box.

Creating and Using Command Buttons

132

Command buttons are useful for a number of purposes. If you have used a wizard to
create forms, you will have noticed that a Help button has been added to all forms.
Other common uses are Yes and No buttons in contexts where the user must decide
whether a certain task will be performed or not. Still another use is to launch another
form, or even another program.

7.6 How to Use Controls in Applications

To add a command button:
1 Open the form in the Form Designer.

2 Select the Command Button tool and click in the design area to add the command
button.

This will create the command button. The next step is to define the action
associated with the button.

3 Open the Property Sheet for the command button. The PushAction property
specifies what happens when the command button is pushed.

4 Open the drop-down list in the PushAction property value field. You will see this list
of possible actions:

B CommandButton - Properties !EI m
Propert: |
Pushaction ;I
InvalidactionAppearance
Bitmap
Ellipsis
ToolTip
ToolTipML J
Description
MexkContral
CaptionClass
RunChject <lndefined = LI

5 A common action would be to run another form. Choose RunObject.

6 In the RunObject property, open the look-up table of system objects, and choose
the object you want to run when the command button is pushed.

Not all settings of the PushAction property require additional information. Some do,
such as RunSystem, while others, such as Yes or No, do not.

While this method of adding an action to a command button is easy to use, it does
have some limitations. For example, you cannot pass parameters. A more powerful
method is to use the OnPush trigger for the button. Triggers are explored in Chapter 8,
"Extending the Functionality of Your Forms".

Containing Controls Within a Frame
A frame is used for containing other controls. When controls are contained in a frame,
you can perform some operations on these controls as a whole: during design, they
are moved when the frame is moved, with their relative positions intact; if the frame is
invisible, all contained controls will be invisible too.

133

Chapter 7. Designing Forms

A frame can have a border that can be raised or sunken. This feature can be used to
distinguish a group of controls (such as a group of option buttons) visually.

mE 2 - Contacts [_ (O]
Moo oo E Phone N
Mame. |F|ichard Roe Company W
Addess. ... [11 Carpan Foad)
Title

CEO

@ Manager

7 Sales Clerk.

Help

To create a frame with contained controls:
1 Open the form in the Form Designer.
2 Choose the Frame tool; then click and drag in the design area to create a frame.

3 Create the controls you want to be contained by the frame in the usual way, placing
them inside the frame as you add them to the form.

4 Set the properties of the frame to suit your purpose.

A common change will be inhibiting display of the caption by setting the ShowCaption
property to No. By default, the border style is Raised. If the purpose of the frame is not
to distinguish the contained controls, you can set the Border property to No, meaning
that no border will be displayed.

When an existing control is dragged inside a frame and dropped, it will be contained in
the frame. When a control is dragged outside a frame, it will no longer be considered
to be contained by the frame.

If a container is resized and thereby overlaps existing controls completely, these
controls will be contained.

If a frame is deleted, all controls contained by it are deleted. See Sizing and Resizing
Controls on page 111 for details on resizing container controls.

Adding Shapes and Pictures

Using Shapes

134

You can add shapes (graphical elements) and bitmap pictures to forms in order to
provide information (pictures of products, for example), in order to emphasize
information (by adding a shape that makes some controls stand out) — or for purely
decorative purposes.

The ShapeStyle property lets you choose from a number of shapes: rectangle,
rounded rectangle, oval, among others. You can adjust the width and the color of the

7.6 How to Use Controls in Applications

lines that the shapes are composed of by changing the BorderWidth and BorderColor

properties.

O
N

To create a shape:

1 Open the form in the Form Designer.

2 Choose the Shape tool from the Toolbox

3 Click and drag in the design area to add a shape of the desired size.

4 Choose a ShapeStyle and appropriate width and color in the Property Sheet for the
shape.

Adding a Static Picture as an Image

The simple way of adding a bitmap picture is to add it as a control of type image.

mE 1 - Contacts =] E3

L m Phone 11223344
Mame. |J0hn [oe Company. ACME Corp
Address. L [17 Riverside Dirive
fiens Corp
\V 'y
F 3
| -4
i

Help

To add an image:

1 Open the form in the Form Designer.

2 Select the Image tool from the Toolbox.

3 Click and drag in the design area to create an image control.

4 Open the Property Sheet for the image control, and enter the file name of the
bitmap in the Bitmap property.

135

Chapter 7. Designing Forms

Beware that the bitmap is not referenced but actually imported. This has the
advantage that you don’t need any external files for your application. On the other
hand, if you make any changes to the bitmap during application development, you
must update the imported copy by opening the Property Sheet, selecting the Value
field of the Bitmap property and pressing F2. This will cause a reevaluation of the field,
thus forcing the bitmap to be imported again. The bitmap can be up to 32 Kb.

Adding a Data Dependent Picture as a Picture Box

Adding a bitmap in a picture box control instead of in an image control provides some
advanced possibilities. While the image control is static, the picture box control is
dynamic: provided you create a list of bitmaps, a bitmap from this list can be chosen at
run time (the total size of all the bitmaps in the list can be 32 Kb).

A picture box provides another advantage: it can display pictures that are stored in
BLOB fields. A BLOB field can have a size of up to 2 Gb.

To add a picture box:

1 Open the form in the Form Designer.

2 Select the Picture Box tool from the Toolbox.

3 Click and drag in the design area to create a picture box control.

4 Open the Property Sheet for the picture box control.

To create a list of bitmaps from which one can be selected at run time for display,
follow these steps:

1 Enter a comma-separated list of the file names of the bitmaps you want to use. The
system provides a series of standard bitmaps that can be chosen by entering a
number — see the online C/SIDE Reference Guide entry on Bitmap for details.

2 The value of SourceExpr determines which bitmap will be chosen by the system:
the first in the list has number 0, the second number 1, and so forth. If SourceExpr
evaluates to a value outside the range of bitmaps, no bitmap will be displayed.

To display a picture stored in a BLOB field, do this:

Enter the field name of the BLOB field as the SourceExpr property. Do not enter a
BitmaplList property.

Pictures on Command, Menu and Option Buttons and in Check Boxes

136

Command buttons, menu buttons, option buttons and check boxes all have the
capability of displaying a bitmap picture instead of — or in combination with — a
caption.

They all have a property called Bitmap. Here you can enter the filename of a bitmap.
The maximum size of the bitmap is 32 Kb, and it is actually imported, not referenced
(thus if you change the original bitmap, you will have to reimport it).

7.6 How to Use Controls in Applications

They also have a property called BitmapPos, where you can select the alignment of
the bitmap within the control. This is especially useful when you are combining a
caption and a bitmap: then you could right align the caption and left align the bitmap,
like the command button in the picture below.

ma Help Button =1 E3

? Help

Using a bitmap on a button or a check box can in some situations make the user
interface more intuitive: a well-chosen picture may be easier to remember and use
than a label.

Using an Indicator to Display Values
The indicator control provides a way of displaying values graphically, as an analog
gauge. A minimum and a maximum value must be defined, to make it possible for the
system to calculate the scale of the indicator. If you do not provide these values, the
system uses default values (see the online C/SIDE Reference Guide for details).

mH Save =] 3

Save in progress...

s

To create an indicator:
1 Open the form in the Form Designer.

2 Select the indicator tool, and click and drag in the design area to create the
Indicator.

3 As the SourceExpr of the Indicator, enter the value you want to control the indicator.
4 Set the MinValue and MaxValue properties of the Indicator.

5 Set the Percentage property to choose whether or not the indicator will display
percentages. If this property is Yes, the “23%” shown in the picture above will be
displayed — otherwise, it will not. The gauge itself is the same when Percentage is
No and when it is Yes. (The percentage is calculated as ((value of SourceExpr) —
MinValue) / (MaxValue — MinValue))*100).

137

Chapter 7. Designing Forms

Creating a Tab Control

A tab control is useful when you are designing a form that is based on a table with
many fields. Instead of creating a large form, cluttered with controls, you can group
controls together on pages that the user can bring to the front by clicking the tabs.

You can use a form wizard to create a form with a tab control.
To create a tab control manually:
1 Open the form in the Form Designer.

2 Select the Tab Control tool and click and drag in the design area to create a tab
control.

3 Open the Property Sheet for the tab control, and create the pages you need by
entering a name for each page as a comma-separated list in the PageNames
property. The names will be used as captions on the tabs.

4 The tabs are created while you are in the Form Designer. You can select pages by
clicking the tabs.

5 Add controls on the pages. You can think of each page in a tab control as a frame
and add controls as you would in a frame.

Creating a Table Box

A table box is useful when you need to display many records from a database table at
the same time. A table box contains columns and rows, and the user can move
through the records, either by clicking navigation buttons (23) or by using arrow keys
and PageUp and PageDown. If the form is too narrow to display all columns, a
horizontal scroll bar will automatically be added to the control.

You can use a form wizard to create a form with a table box.
To create a table box manually:
1 Open the form in the Form Designer.

2 Select the table box tool, and click and drag in the design area to create a table
box.

3 If the form is not related to a table, you can establish a relation now, by setting the
SourceTable property of the form to the name of the table.

4 Open the Field Menu.

5 Select the fields you want in the table box from the Field Menu and click inside the
table box. A column will be added for each field, and each row will display a record
from the table. A label, derived in the same way as a label for any text box, is added
as a column heading.

138

Chapter 8

This chapter explores form design further, including
sections on forms related to multiple tables, on creating
menus and on writing C/AL code in triggers.

Main Forms and Subforms

Looking Up Values and Validating Entries
Drilling Down to the Underlying Transactions
Launching Another Form

Designing Menu Buttons

Form and Control Triggers

Chapter 8. Extending the Functionality of Your Forms

8.1 MAIN FORMS AND SUBFORMS

As described in Chapter 2, Designing a C/SIDE Application, a well-designed database
does not store redundant information but has a number of relationships between
tables. The typical relationship is a one-to-many relationship.

For example, suppose you are designing an application that handles sales orders.
There can be many items on one single sales order, but one specific item can only be
part of one sales order. Some of the information on a sales order, for example the
address of the customer, is per order, while other information, for example the item
number, is per item. In a well-designed database, with no redundant information, this
means that the information on a sales order is stored in two tables: one, a header
table, with the general order information, another, a lines table, with the information
about each item. There is a one-to-many relationship between the tables.

However, the users of the application need to view information from both tables at the
same time: the header information together with the lines, like this

& 101018 New Concepts Furniture - Sales Order !EI m
General | Irvoicing I Shipping I Foreign Trade I E - Commerce I
Nt e | 101018] & FostingDate |
Sell-to Customer Mo, . . m OrderDate I 26-01-01
Sell-ta Contack Mo, . . . | ZI Document Date I 26-01-01
Sell-to Customer Mame . [lew Concepts Furniture Requested Delivery Date |
Sel-to Address [705 west Peachtres Strest Promised Delivery Date . |
selto Address 2 . . L. | External Document Mo, . I
Sell-to Post CodefCity . . |US-GA 3177z 4| |Atlanta 4] salesperson Code. . . . IJR ZI
Sel-to Contact [rs. Tammy L. McDonald Campaign No.. I 2]
R ibility Center . . I ZI
Mo, of Archived Yersions. a T
SEabls T Open
T..|N0. |Descripti0n |L0cati0n ...|Quantit |Reserve... |Unit 0FM...|Unit Pric. .. |II
k(L. 1980-5 MOSCOMY Swivel Chair, red GREEN & PCS 190,036 =
-
| | »
COrder vl Line vl Functions vl Posting vl Print... | Help |

Although this looks like a normal form it is, in fact, two forms.

The main form is the one side of the one-to-many relationship; in the example, it is
based on the Sales Order Header table. The subform is the many side of the
relationship; in the example, it is based on the Sales Order Line table. When the user
selects a sales order header in the main form, the subform is updated to display only
sales order lines pertaining to this sales order header. There is therefore a link
between the main form and the subform that keeps the information synchronized.

Designing the Main Form

There are no special procedures involved in designing a form that will be used as the
main form in a main form/subform relationship: it is designed as any other form.

140

8.1 Main Forms and Subforms

In order to add a subform, you will add a subform control. The subform control
establishes the link between the main form and the subform, but it is not a form in
itself. You can, however, display any form in the subform control.

If you are going to use an existing form as the subform, follow the procedure
described below. If you are going to create a new form to use as a subform, it may be
more convenient to create the subform first. How to do this is described in the next
subsection.

To create the main form in a main form/subform relationship:
1 Open the existing form in the Form Designer.

2 Select the Subform tool, and click and drag in the design area to create the subform
control.

3 Open the Property Sheet for the subform control.

4 Enter the name of the form that you want to use as a subform as the SubFormID
property (or use the lookup button to choose from a list of all forms).

5 Enter the expression that links the two tables (for example the field that is common
for the tables) as the SubFormLink property. There is an assist-edit function
available to assist you (click the AssistButton ... to open the assist-edit window).
Choose the field name from the many side of the relationship (the subform table) as
the Field. Then choose FIELD as the Type of the relationship. Finally, choose the
field from the one side of the relation (the main form table) as the Value.

6 Inthe SubFormView property, you can specify the key, sort order and table filter you
want the system to apply to the table when it is displayed in the subform (it is not
mandatory to enter anything).

EXAMPLE

In the SubFormLink property, you can choose other types of link than FIELD. If you choose
CONST, Value must be a constant expression that selects records where the Field matches this
expression. If you choose FILTER, Value must be a filter expression (as, for example, 10|30..40).

Designing the Subform

There are no special requirements for a subform, that is, it is exactly like any other
form in the system. However, the form is going to be used to display the many side of
a one-to-many relationship, and not all forms are equally useful for this purpose.

The typical choice is a tabular form, that is, a form with a table box. See Creating a
Table Box on page 138. The table box should fill out the form completely, and the
HorzGlue and VertGlue properties of both the table box on the subform and the
subform control on the main form should be set to Both. In this way, the subform and
the table box will be resized when the main form is resized.

141

Chapter 8. Extending the Functionality of Your Forms

Hints and Advice

142

Even if creating a form with a subform is not different from creating controls on forms
in general, you may have to perform some experiments before you find the best way
to doit.

Here are some hints and advice to help you along:

It can be difficult to get the sizing of the subform control on the main form and the
size of the subform itself right. You should finish the design of the subform first. Get
the values for width and height of the form from the Property Sheet. Then, in the
main form, click and drag a subform control of any size. In the Property Sheet,
insert the width and height of the subfom as the width and height of the subform
control.

Generally, if the subform is a tabular form, it will look better if you let the table box
completely fill out the form vertically — this way there won’t be extra space around
the table inside the subform control — and set the HorzGlue and VertGlue properties
to Both.

If the subform is a tabular form, you should size the form to show only a few records
at a time. Then, in the main form, set the VertGlue and HorzGlue properties of the
subform control to Both. The user can resize the main form vertically and
horizontally, and the subform will be resized along with it: more records and fields
will be displayed.

8.2 Looking Up Values and Validating Entries

8.2 LOOKING UP VALUES AND VALIDATING ENTRIES

The previous section described how to create a main form and a subform in order to
display data from a one-to-many relationship. The main form was bound to the table
on the one side of the relationship; the subform was bound to the many side.

Suppose, instead, that you are designing a form that is bound to a table containing
information about customers. Some of this information is unique for each customer,
while other information is not. The names and addresses of the customers are unique,
but suppose you want to store information about the shipper that is normally used for
deliveries to each customer? There are only a few shippers, and it would be redundant
and in violation of relational database design rules to store information such as
addresses of these shippers in the customer records.

Instead, you would create a Shipper table, and use a Shipper Code field to create a
link between this table and the Customer table, storing only the shipper code in each
customer record, and storing all other information about the shippers in the Shipper

table.
Shipper Record Customer Record
Shipper Code Number
Name K Name
Address \ Cust Address
Phone \
\ Shipper Code
Ch§t Address
Shipper Code
Address
Shipper Code

This is, in fact, the many side of a one-to-many relationship: while each customer can
be associated with only one shipper, a shipper can be associated with many different
customers. A main form/subform is not applicable here (it would be, though, if you
were to design a form to display information about the shippers. The subform could
then display a list of customers that use each shipper).

There are two things you must consider when creating the Customer form and table:

Do you want to provide the user with an easy way of entering the shipper code?

Do you want to validate the Shipper Code field in the Customer table against the
Shipper table? That is, do you want the system to verify that the contents of the
Customer table field are present in the Shipper table?

143

Chapter 8. Extending the Functionality of Your Forms

If you do not establish a relationship to the Shipper table, the users will have to
memorize the shipper codes, and they may easily enter a code that does not exist in
the Shipper table. If the tables are related, the system provides a lookup function into
the Shipper table, so that the user can press F6 or click a lookup button (+) and
select the code from a list that displays the codes as well as other information such as
name and address. A control can be related to a field in another table by defining the
relationship, either at the table level, as a property of the Shipper Code field in the
Customer table, or at the form level, as a property of the text box displaying the
shipper code on the Customer (main) form.

If you want to make certain that the user does not enter non-existent shipper codes
into the Customer table, the system can validate the entries against the Shipper
table. The ValidateTableRelation property, either of the field (at table level) or of the
text box (at form level), governs whether entries are required to exist in the Shipper
table.

Apart from simply asserting that the entered codes exist in the Shipper table, you can
create more advanced validation rules that check the entered codes against
combinations of values of fields in both tables (for example, you can have the system
check whether the shipper allotted to a customer operates at all in the customer’s
country). To do this, you will have to create the validation rule by writing C/AL code in
the OnValidate trigger of the control on the main form.

A form with a lookup on the Shipping Agent field looks like this when the lookup
function has been activated:

ma 10000 Kontorforsyningen A/S - Customer Card]

Generall Invoicingl FPaymentz Foreign Trade |

Currency Code I fl WAT Registration Mo.. . . I
Language Code I fl WAT Category Code . . . I fl
Shipping Agent. I +1

mH Shippers =] 3

Shipper

Mame |Address

Code
ACME TruckiField 234 Sunzet Grove =
JJ Shipping BET Cypress Hill 1%
Longhaul Distributors 123 East Avenue

[I=

u].4 I Cancel Help |

Defining the Table Relation

144

As mentioned above, the relationship to a table can be defined in two different places.
In both places, as part of a table description or as part of a form description, the
relationship is defined in the TableRelation property of the field or control. For the
application user, there will be no functional difference between a table relationship
defined at the table level and a table relationship defined at the form level. There is a
difference, though, when you are designing an application. If the relationship is
defined at the table level, all text boxes in forms that have a direct relationship to the
field will have the lookup functionality — with no effort required from the person
designing the forms. You can suppress the function by setting the Lookup property of
the text box explicitly to No.

8.2 Looking Up Values and Validating Entries

To define a table relationship:
1 Open the Property Sheet for the field or the control.
2 In the Value field of the TableRelation property, click the assist-edit button.

3 In the assist-edit window, enter the name of the table to lookup into in the Table
field (or choose from the list that appears when you click the lookup button).

4 In the Field field, enter the name of the field in the table (or choose from the lookup
list).

You can use the Condition and the Table Filter fields to create a more advanced
relationship than this basic one.

By using the Condition field, you can, for example, lookup to different tables,
depending upon the value of a field in the current table. Each condition line
corresponds to a statement in an if then...else if sequence.

In the Table Filter field, you can set a filter on the lookup table.

Validating Entries

Entries can be validated against the contents of a field in a related table quite easily. If
you set the ValidateTableRelation property to Yes — either at field level or at control
level — only entries that exist in the related table will be accepted.

If you need a more advanced validation, you can write C/AL code in the OnValidate
trigger of either the control or the field.

Using the Default Lookup or Writing Your Own?

If you want more control over the way a lookup functions than you can achieve by
using conditions and filters, you can write C/AL code in the OnLookup trigger. In this
way you can bypass the default lookup function completely and write your own.

The rules for determining which lookup function is performed are these: a trigger at the
form level takes precedence over one at the table level. Both of these take
precedence over the system default action.

Defining a Lookup Form

When you are using the system lookup function, you will have to define which form to
use to display the results of the lookup. You can define the form in two ways: each
table can have a form defined that will be used for looking up into the table, by setting
the LookUpFormID table property — or a form can be defined by setting the
LookUpFormID of the control for which the lookup is provided. If both properties are
set, the form defined as a control property will be used.

Pay attention to the fact that if no lookup form is defined (either at table level or at form
level), then although the text box will have the lookup button (1) attached, a lookup will
not be performed when the button is clicked.

145

Chapter 8. Extending the Functionality of Your Forms

If you are writing your own lookup function in the OnLookup trigger, you will have to
explicitly run a form by using the RUNMODAL C/AL function.

If you always design a basic tabular form (fast and easy, using the wizard) for a table,
and enter this form as the LookupForm (and DrillDownForm) of the table, you will
never forget to provide a lookup form. If you later on decide that this form is not
adequate for some lookups, you can add customized forms as control properties.

Permanent Assist

This is a control property. If it is set to Yes, the lookup button will be permanently
displayed; otherwise, it will be displayed only when the control has the focus.

Looking Up in the Current Table

146

By setting the Lookup property of a text box to Yes, you can provide a lookup to the
same table (the source table of the form, that is). This is intended to provide the user
with an easy way of selecting a record to work with. In effect, the lookup provides a list
of all records in the table; the user can select a record from the list, which will then
become the current record.

A lookup form must be defined, either at table or at form level, just as when the lookup
is to another table. You cannot set conditions and filters, however (as you can when
the lookup is to another table). The default behavior is to display all records in the
table. If you need to change this, you will have to write your own lookup function in the
OnLookup trigger.

If a lookup into a related table is defined—regardless of how the relation is
defined—setting Lookup to Yes will be overruled. On the other hand, if Lookup is
(explicitly) set to No (as opposed to its default value <No>), no lookups, including to
related tables, will be performed.

You can provide the same functionality by using the LookupTable action (applicable to
command buttons and menu items). In this way you can provide both types of lookup
on the same form: lookups to related tables from text boxes, and lookups to the source
table from command button actions.

8.3 Dirilling Down to the Underlying Transactions

8.3 DRILLING DOWN TO THE UNDERLYING TRANSACTIONS

FlowFields were introduced in Chapter 3, Table Fundamentals. When a text box is
based on a FlowField, you will see that a drill-down button (3) automatically is
attached to the text box. When the user clicks this button (or presses SHIFT F6), the
transactions that the system used to calculate the value of the FlowField will be
displayed.

In the first picture below, the Chart of Accounts, you can execute a drill-down function
in the Net Change field — a FlowField that summarizes transactions in this account.
The next picture shows the form that is displayed when that particular drill-down is
performed — a detailed list of the transactions:

8 Chart of Accounts [_ (O] x|
Mo. |Name |I |A| Totaling |G| G..l G..l Met Change |Balance
- 7495 Total Cost of Resources 1. E.. 7405.74595 =
- 76200 Job Costs . P.. =
| 7995 Total Cost I... |E.. 7100.7995 380214533 3802149
- 8000 Dperating Expenses I... B..
- 8100 Building Maintenance E... |... B
| 8110 Cleaning l.. |P.. P M. M. 26.665.75 2E.6EY
- 8120 Electricity and Heating l... P.. F.. M. M 35,524
| 8130 Repaits and Maintenance L. | P... P M. M i 4| 234.008
| 8190 Total Bldg. Maint. Expe_.. ||.. E.. 8100.81390 296.202 53 296,204 7 |
- 8200 Administrative Expenses 1. E.. L
4] |
Account W Balance W Functions vI Help |
a8 8130 Repairs and Maintenance - General Ledger Entries
Posting D...|D..|D0c:umen...|G.-"LAc:c:... |Descﬂ:tion |G..|G..|G..|Amount
| »| 010100 20001 8130 Entries, January 2000 P M. M.
| | 010100 20001 8130 Entries, January 2000 P M. M.
| | 010100 20001 8130 Entries, January 2000 P M. M.
| | 010100 20001 8130 Entries, January 2000 P M. M. 2.234.74 G..
| | 010100 20001 8130 Entries, January 2000 P M. M. 335210 G..
| | 010100 20001 8130 Entries, January 2000 P M. M. 5.586.84 G..
| | 010200 2000-2 8130 Entries, February 2000 P M. M. 1.977.24 G.
| | 010200 2000-2 8130 Entries, February 2000 P M. M. 296586 G..
| | 010200 2000-2 8130 Entries, February 2000 P M. M. 494310 G.. 5
| | 010200 2000-2 8130 Entries, February 2000 P M. M. 2.033.20 G.. hd
4] | N
Havigate | Help |

The drill-down facility is provided whenever a text box is directly related to a
FlowField—you do not have to do anything special when designing the form except to
make certain that a DrillDownFormID is defined (as for lookups — see Defining a
Lookup Form on page 145), either at the table level or at the form level.

Drill-downs resemble lookups in many ways, and with them you can do most of the
things that you can do with lookups — one exception being that drill-downs pertain only
to FlowFields, which have to be defined when the table is designed.

You can customize a drill-down in these ways:

You can disable the drill-down altogether by setting the DrillDown property of the
text box explicitly to No.

147

Chapter 8. Extending the Functionality of Your Forms

Text boxes based on the same FlowField will have different drill-down forms if you
define separate DrillDownFormIDs at the form level.

You can decide whether the drill-down button should be displayed permanently or
only when the text box has the focus, by setting the PermanentAssist property of
the text box. Yes means that the button will always be displayed, and No means
that the button will be displayed only when the text box has the focus.

You can change the drill-down behavior altogether by writing C/AL code in the
OnDrillDown trigger of the table field or the control. In this case you have to run a
form explicitly from your trigger code, as the system does not perform any part of
the default drill-down and does not display a form automatically.

148

8.4 Launching Another Form

8.4 LAUNCHING ANOTHER FORM

When you provide a lookup function for selecting values in a related table, you will
typically display only a subset of the fields in the lookup table.

In some situations, however, it would be convenient to be able to update other fields
than those displayed on the lookup form in the related table without closing the current
form. Suppose a user is taking orders by phone. It is convenient to use a lookup
function on the sales order forms to find the customer numbers as customers call in.
But what if a customer calls in to order something — and mentions that he has moved
to a new address? It would be time consuming — and annoying — to have to close the
sales order form, select the customer form, find the customer, change the address,
and then return to the sales order form to start entering the order again.

A better solution is to provide a way to launch the customer form directly from the
sales order form, automatically select the appropriate customer record, update and
close the customer form, and continue filling out the sales order form.

In order to launch another form, you can add a control that has a PushAction property
and run the customer form with parameters to select the correct record from the
Customer table whenever the user "pushes" the control. You can use command
buttons, menu items, check boxes or option buttons.

To add a command button that launches a form, follow these steps:
1 Add a command button (the procedure is described in Chapter 7).
2 Set the PushAction property of the command button to RunObject.

3 Set the RunObject property of the command button to the name of the form you
want to launch. As you can use RunObiject to run any object, you have to specify
the type of object (Form, Codeunit, and so forth). You can choose the object from
the lookup list that is provided (in this case, the type of the object is inserted
automatically).

4 Set the RunFormLink property to establish the link to the form you want to launch.
Use assist-edit (click ...) to create the expression. First, select a field from the table
underlying the form you are going to launch. Choose FIELD as the type of the
relationship. Finally, as the Value parameter, select the field in the table underlying
the current form that must match the value in the other table.

149

Chapter 8. Extending the Functionality of Your Forms

8.5 DESIGNING MENU BUTTONS

While command buttons are a convenient way of adding functionality to forms, an
excess of buttons will clutter the forms and impair their visual design. If you need to
use many command buttons, you should consider creating menu buttons instead.

When a menu button is pushed, a menu is opened:

mm 01454545 New Concepts Furniture - Customer Card =1 E3

General | Invaicing | Fayments | Fareign Trade |

Moo ..o IE!EEE J Search Mame. INEW’ COMCEPTS FI
Mame. |Mew Concepts Furriture Balance 0.00
Address. L [705 west Peachtres Strest Credit Limit I 0.00
Addesz 2. | Salesperson Code IJH ZI
Post CodedCity | 4] [Atanta, Ga 31772 Blocked O
County Code. IE 1l Last Date Modified | 06/26/95
Phone Ma. I
FaxMo. I
Contact. [Ms. Cathy Kol
LCustomer Sales - Help

List (75

Statistics Fa

Entry Statistics

Comments

Sales

Ledger Entries Chil+F5
Ship-to Addresses

Each line in a menu is called a menu item. A menu item can:

Perform an action when clicked. This can be an action from the same set of actions
as command buttons (see the online C/SIDE Reference Guide for a list), or it can
be an action written in C/AL, as menu items have OnPush triggers just like
command buttons.

Contain a submenu that is opened when the line is clicked.

Be a separator — a line used for grouping items in a menu together.

A menu is created in two steps. First you add a menu button to your form. This part is
exactly the same procedure as adding a command button. Then you open the Menu
Designer for the menu button and create the menu items.

Adding a Menu Button to a Form
To add a menu button:

1 Open the form in the Form Designer.

2 Choose the Menu Button tool, then click in the design area to add the menu button.

150

8.5 Designing Menu Buttons

3 Select the menu button and open the Property Sheet for the menu button. As a
menu button does not have a relation to data — field or variable — Name and
Caption are set to default values (like Control7). Change the Caption to an
appropriate text. If the text contains an ampersand (&), the system interprets the
following letter as an access key.

Froperty Walue |
Height 5500 =]
HorzGlue Right 1%
WertGlue Battam

isible <vesy

Enabled <vesy

Focuzable <vesy

FocuzOnClick <M

ParentControl <Undefined:

InFrame <M

InPage <1
[Caption | &Customer
ShowCaption <esr

Harzdlign <Centers =]
Werthlign <Center> j

Adding a Menu Line to a Menu

When you have created and modified a menu button as described above, you can add

lines to the menu that is displayed when the button is pushed.

To add a menu line:

1 Select the button and open the Menu Designer while the button is selected.
(Choose View, Menu Items.)

8 MenuButton - Menu Designer [_ (O] x|
V.l Caption | ShortCutkey |Acti0n | RunObject
| b List F5 LookupT able =
| |¥ Ledger Edntries Chil+F5 FunObject Form Custamer Ledger Entries |2
| |v Cokmments FunObject Farm Comment Sheet
| |v Bank Accounts FunObject Farm Customer Bank Account C...
| |¥ Ship-kto Addresses FunObject Farm Ship-to Address
| |v Phrospect FunObject Form Progpect Card
[H
v Statistics Fa FunObject Farm Customer Statistics j
‘l‘l lrl Separator | Help |

2 The first field, Visible, is by default set to Yes. Leave it like this.

3 Add lines by filling out the Caption field. If you do not create an access key yourself
(by embedding an ampersand in the Caption text), the system will automatically use
the first letter of each Caption as an access key. If you add menu lines where some
captions start with the same letter, you must set the access keys yourself to avoid
overloading certain ones.

151

Chapter 8. Extending the Functionality of Your Forms

4 If you want, you can define a shortcut key (accelerator key) by entering the name of
the key in the ShortCutKey field. Keys are entered as follows:

Key Entered as

Function keys F1, F2, F3, ...

Control, Alt, Shift CTRL, ALT, SHIFT

Other keys A, B, C, ... (these keys must be part of a key combination with CTRL
or ALT).

Key combinations For example: CTRL+A, SHIFT+F2

An accelerator key is active as long as the focus is on the form that the menu button
is a child of. Beware of accidentally overloading some key combinations so that
they perform different actions when different forms have the focus — this could
confuse the user. Also beware of using accelerator keys that the system already
uses.

5 Enter the action for the menu item in the Action field. You can use the drop-down
list that is available to choose from among the same actions as for a command
button. You can also write C/AL code in the OnPush trigger of the menu item.

6 If you have chosen RunObiject, you can define the object (form, report, codeunit) in
the Object field. There is a lookup function available to help you select the object.
For other parametrized actions (for example, RunSystem) you have to set the
parameters in the Property Sheet of the menu item (see below for details).

Adding Other Menu Items

152

In addition to lines that perform actions, menus can contain separators and lines that
are submenus, that is, lines that open up another menu when you click them.

Separators A separator is a horizontal line in a menu that cannot be selected or
perform any action. It helps you group items on a menu.

To add a separator to a menu, click the Separator button in the Menu Designer. The
separator will be inserted after the currently selected line.

Submenus and Menu Levels Menu items can be nested, that is, when you click a
line on a menu, another menu can open.

Submenus are defined in the Menu Designer. When an item is selected, you can
indent it by clicking the right-arrow button. An indented item becomes a menu item on
a submenu. If you open the Property Sheet for a menu item, you will see that when
first created, menu items have the MenulLevel property set to a default value of zero.
As items are indented, the MenuLevel is set to 1, 2, 3 and so forth — one level for each
click on the indentation button (you can cancel indentation by clicking the left-arrow
button — each click cancels one level of indentation).

8.5 Designing Menu Buttons

There are a few logical rules you must follow when creating submenus:

If there are any items at all in a menu, there must be at least one item with
MenuLevel 0 (zero).

Each MenuLevel can be at most one higher than the preceding level in the list.

If a higher MenuLevel follows a lower one (for example, 1 follows 0), the menu item
with the MenuLevel 0 becomes a submenu, and the item with MenuLevel 1
becomes an item on this submenu. A menu line that is a submenu cannot have any
action associated with it.

There can be up to 10 menu levels (numbered from 0 to 9).

If the MenuLevel reverts to lower numbers (less indentation), menu items will from
then on become items in the previous menu at the level indicated by the
MenuLevel.

Separators cannot be submenus and separators have to separate items at the
same level, that is, you cannot put a separator as the first or last (or only) item in a
menu or submenu.

Check Marks on Menu Items

Menus in Windows programs habitually employ a special feature: for menu items that
act as toggles, the on/off state is indicated by the presence or the absence of a check
mark next to the item in the menu.

The SourceExpr property of a menu item is used for controlling whether a check mark
is displayed or not. Initially, the SourceExpr property is undefined. You can define it to
a valid C/AL expression that evaluates to a boolean. The check mark appears when
the value is TRUE.

You can see how this feature can be used in C/SIDE itself. In the Format menu, the
Snap to Grid menu item is a typical example: it can either be on or off. When it is On,
the check mark is displayed.

153

Chapter 8. Extending the Functionality of Your Forms

8.6 FORM AND CONTROL TRIGGERS

While the system interprets and acts upon many events in a predefined way, certain
actions — such as opening a form or pushing a command button — cause the system to
execute a user-definable C/AL function (the event triggers the function). You will
typically use triggers to do advanced validation, to initialize variables in a non-trivial
way or perhaps to format text boxes according to the value of a field or control. In
short, you use triggers whenever the system default behavior does not suit your

purpose.

Overview of Form Triggers

These triggers pertain to forms in C/SIDE

Form trigger name

Executed when...

Onlnit

the form is loaded, but before controls are available.

OnOpenForm

the form has been initialized (controls are available).

OnQueryCloseForm

the form is about to close, but before OnCloseForm. If this trigger
returns FALSE, the form is not closed. The intended use is for
asking the user if he or she really wants to close the form.

OnCloseForm

the form is about to close, and after OnQueryCloseForm.

OnActivateForm the form is activated, that is, when the form becomes the active
window.

OnDeactivateForm the form ceases being the active window.

OnFindRecord the form is opened and a record is retrieved—and also when the
user chooses to go to the first or the last record.

OnNextRecord the system determines how to select the next record, for example
after a user pressed PAGEDOWN (in a card form).

OnAfterGetRecord a record has been retrieved but not yet displayed.

OnAfterGetCurrRecord the current record is retrieved. In a table box. OnAfterGetRecord is
called for all the records displayed, while this trigger is called for
the current record.

OnBeforePutRecord a record is about to be saved.

OnNewRecord a new record has been initialized but not yet displayed.

OnlinsertRecord

a new record is about to be inserted in the table.

OnModifyRecord

a record is about to be modified in the table.

OnDeleteRecord

a record is about to be deleted from the table.

The table only sketches out the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for extensive descriptions and details.

8.6 Form and Control Triggers

The last three triggers in the table — OninsertRecord, OnModifyRecord,
OnDeleteRecord — correspond to triggers at table level. If you use triggers at both
form and table level, the triggers at form level will be executed first, then the triggers at
table level.

Overview of Control Triggers
Depending on the type of a control (see Chapter 7), controls have a varying number of
triggers. Static controls and container controls do not have any triggers at all, while
text boxes have a full range. Other data controls and data container controls have a
subset of the possible triggers. Controls that can be pushed — such as a command
button or menu item, and also a check box — have a special trigger to handle this.

The following table outlines the full range of triggers. The column at the right indicates
the controls for which the trigger is relevant.

Control trigger Executed when... Controls
name

OnActivate the control is activated. 1,2,3,4,5,6,7,8
OnDeactivate the control is deactivated. 1,2,3,4,5,6,7,8
OnFormat the control is about to be updated. 5
OnBeforelnput the control is selected for input and before any input 5

is actually entered.

OnlnputChange the user is entering data. This trigger is repeatedly 5
executed, after each keystroke.

OnAfterinput the user finishes input. 5

OnPush the control is pushed. 1,3,4,9

OnValidate the control loses focus. 3,4,56,7

OnAfterValidate the value entered has been validated. 3,4,5,6,7

OnLookup the user requests a lookup (by clicking a lookup 5

button or pressing F6).

OnDirillDown the user requests a drill-down (by clicking a drill- 5
down button or pressing SHIFT F6).

OnAssistEdit the user requests assist-edit (by clicking an assist- 5
edit button or pressing SHIFT F2).

CONTROLS ARE
1 - COMMAND BUTTON, 2 - MENU BUTTON, 3 - CHECK BOX, 4 - OPTION BUTTON, 5 - TEXT BOX, 6 -
PICTURE BOX, 7 - INDICATOR, 8 - SUBFORM, 9 - MENU ITEM

The table provides a sketch of the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for concise descriptions and details.

155

Chapter 8. Extending the Functionality of Your Forms

OnValidate is also a field trigger at the table level. If both triggers (field and control) are

defined, the field trigger is executed before the control trigger (and the system default
validation before anything else).

OnLookup is also a field trigger at the table level. The flow is different here: when a
lookup is requested, the system executes the control lookup trigger, if defined, in place
of the field lookup or system default. If no control lookup trigger is defined, a field
lookup trigger (if defined) replaces the system default lookup function.

How to Define and Modify Form and Control Triggers

156

When you want to define a function to be triggered by a form or control event — or
modify an existing function — follow these steps:

1 Open the form in the Form Designer.
2 Select the form itself or the control (or menu item) in question.

3 Open the C/AL Editor (choose C/AL Code from the View menu).

[Menu Item Post &Batch - C/AL Editor [_ (O]
Documentation{}

IL>X

OnPush{}
REPORT .RUNHODAL (REPORT : :"'Batch Post Sales Orders",TRUE,TRUE,Rec);
CurrForm.UPDATE{FALSE) ;

I |<|«

1| | i

4 In the editor, you will only have access to those triggers that are relevant for the
object that you selected. Enter C/AL code in those triggers you want to use, or
modify those existing triggers you want to.

5 You can test-compile the form, thus including the code, by choosing Compile from
the Tools menu.

If you are not familiar with the C/AL programming language, you should read Part 4,
Codeunits, in this guide.

Reports

Chapter 9

Reports are used to print information from a database. A
report can be used to structure and summarize information,
and reports can be used to print documents such as
invoices. Reports can also be used to process data without
printing anything.

This chapter introduces the fundamental concepts and
basic tasks involved in designing reports.

What Are Reports?

What Happens When a Report Runs?

The Report Designer

Saving, Compiling and Running Reports

Chapter 9. Report Fundamentals

9.1 WHAT ARE REPORTS?

Reports in C/SIDE have several purposes:

Reports are used to print information from a database in a structured way. For
example, in a sales order application, you can create a report that contains a list of
all customers and for each customer lists all orders placed by that customer.

All documents pertaining to an application must be created as reports. For
example, in order to print an invoice, you will create a report that is automatically
filled out with the relevant information.

Reports can be non-printing. While this may sound like a contradiction in terms, itis
not. A report can be used to automate many recurring tasks such as updating all
prices in an item list. This could be performed entirely from C/AL code in a codeunit,
but using a report makes it a lot easier because you can use the powerful data
modeling available for report design.

The following diagram shows the components of a report and their relationship. This
and the following chapters will explore all components in depth.

Report Description

Properties

Triggers

Data Items

Properties

Triggers

— Sections

Properties

Triggers

L— Controls
Properties

Request Form

- Properties
Triggers

L Controls
Properties
Triggers

The Report Components

160

The diagram above outlines how a report is composed from a number of different
components. Below you will find a short description of each component.

Report Description This is the total description of the report: how data is collected,
and how data is presented on paper when the report is run. The report description is
stored in the database.

Data ltem A data item corresponds to a table. In order to retrieve information from
the tables in the database, you define data items. When a report uses more than one
table, you set relations between the data items in order to retrieve and organize data
in the way that you want.

9.1 What Are Reports?

Section In a printing report, each data item has one or more sections. A section can
be thought of as a block of information to print on the paper. The complete report is
composed of a number of sections, some that are printed only once, for example a
header, and some that are printed for each record that is retrieved from the database.

Control The information that is printed in the sections is composed of controls. The
available controls are text boxes, for printing the result of the evaluation of any valid
C/AL expression such as the contents of a table field (but also complex calculations),
labels for printing static text such as a caption for a column of data, and shapes,
images and picture boxes, for printing graphical elements (lines, circles) and bitmap
pictures in a report.

Request Form A request form is a form that is run before the actual report begins
execution. It is used to gather requests and options from the user of the report—for
example, sort order or level of detail.

Property A property is an attribute of an object — report, data item, section, and so
forth—that characterizes the object in some way: color, size, whether it is displayed,
and much else. Properties are set on the Property Sheet of an object.

Trigger Certain predefined events that happen to a report cause the system to
execute a user-definable C/AL function — the event triggers the function. As you can
see in the diagram, the report itself, the data items, the sections, the request form and
the controls on the request form all have triggers. Triggers are edited in the C/AL
editor.

Logical and Visual Design

Data ltems

There are two sides to designing a report: defining the logical structure, the data
model, and designing the visual layout.

Defining the data model means defining how the data for the report is collected. This
includes
defining the tables the report will use by creating data items.
defining relationships between data items if the report uses more than one table.
defining the key, sort order and filters to use with the involved data items.
defining how data is to be grouped.
defining how subtotals and totals are to be calculated.

possibly writing C/AL code in data item triggers to obtain advanced functionality.

The data model of a report is built from data items. A data item corresponds to a table.
When the report is run (see the diagram on page 164) each data item is iterated for all
records in the underlying table. When a report is based on more than one table, you
establish a hierarchy of data items to control how the information is gathered by
indenting data items.

161

Chapter 9. Report Fundamentals

Sections

162

EXAMPLE

In order to make a report that prints out a list of customers and for each customer lists sales orders
placed by that customer, you will define two data items: one that corresponds to the Customer
table and one that corresponds to the Sales Order table. The second data item is indented: as the
report works its way through the records in the Customer table, for each customer all sales orders
that are related to this customer must be found by going through the records in the Sales Order
table.

The visual layout of a report includes the sections. In a printing report (remember that
reports do not have to print anything), one or more sections are attached to each data
item. There are several types of sections, each having a specific function. Normally,
the bulk of the data is printed out in the body section of a data item, while the header
section of the data item is used to print information before any record of the data item
is printed (for example, column captions), but there are reports — like some of the
examples in this guide — where the body section is not used at all, and all information
is printed in other sections.

The following picture shows a finished report.

Sales Statistics
CRONUS International Inc.
Customer: No.: 10000..30000
09/28/95 10/28/95 11/28/95
No. Name ..before 10/27/95 11/27/95 12/27/95 after...
10000 Kontorforsyningen A/S
Sales (LCY) 57,509.00 0.00 0.00 0.00 0.00
Profit (LCY) 12,655.00 0.00 0.00 0.00 0.00
Profit % 22.0 0.0 0.0 0.0 0.0
Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
20000 Ravel Mabler
Sales (LCY) 1,525.00 0.00 0.00 0.00 0.00
Profit (LCY) 335.00 0.00 0.00 0.00 0.00
Profit % 220 0.0 0.0 0.0 0.0
Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
30000 Lauritzen Kontormabler A/S
Sales (LCY) 13,676.20 0.00 0.00 0.00 0.00
Profit (LCY) 2,444.20 0.00 0.00 0.00 0.00
Profit % 17.9 0.0 0.0 0.0 0.0
Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
Total
Sales (LCY) 72,710.20 0.00 0.00 0.00 0.00
Profit (LCY) 15,434.20 0.00 0.00 0.00 0.00
Profit % 212 0.0 0.0 0.0 0.0
Inv. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00
Pmt. Discounts (LCY) 0.00 0.00 0.00 0.00 0.00

9.1 What Are Reports?

The report above prints sales statistics information and retrieves all its data from one
table. It demonstrates a range of the features that are available for designing reports.

Before any record from the table is printed, there is a header — containing a title and
information about the filter that was used on the customer numbers.

Each body section prints information about a customer on several lines. The "Profit
%" lines are calculated as the report is run.

After all records (all records that were selected by the filter, that is) have been
printed, a footer section is printed that contains totals for the selected customers.

In the body section and in the footer section, a filter has been applied to create
columns where data are collected and totalled for different periods.

163

Chapter 9. Report Fundamentals

9.2 WHAT HAPPENS WHEN A REPORT RUNS?

The two flow charts in this chapter are simplified versions of the flow charts in
Appendix B, Report Flow Charts, on page 480. If you want to acquaint yourself with all
details—including why and when triggers are executed—you should consult that
appendix. The focus here will be on describing in general terms the way a report is
run.

The Report Run

The flow chart below illustrates the events that take place when a report runs.

o— Entry point

(® Exi t

Report. Run

Call Init Trigger

ReqFor m Run

K/ Print / Preview

Cal | PreRepor
Trigger
Get Next Datal OK——»

No nore

Cal | Post Repoilt
@ (Trigger)

1 When the user initiates the report run, the OnlInitReport trigger is called. This trigger
can perform processing that would be necessary before any part of the report is
run—or stop the report.

Dat altem Ru

2 If the OnInitReport does not end the processing of the report, the request form for
the report is run, if it is defined. Here, the user can choose to cancel the report run.

3 If the user chooses to continue, the OnPreReport trigger is called. At this point, no
data has yet been processed.

4 When the OnPreReport trigger has been executed, the first data item is processed
(provided that the processing of the report was not ended in the OnPreReport
trigger).

164

9.2 What Happens When a Report Runs?

5 When the first data item has been processed, the next (if any) data item will be
processed in the same way.

6 When there are no more data items, the OnPostReport trigger is called. You can
use this trigger to do any post processing that is necessary, for example cleaning
up by removing temporary files.

The flow chart below further explores step 4 — how a data item is processed:

/ Dat al t em Run

oK GroupHeader . Run
® (Cal | PreDatal t)em
Tri gger
Get Record \ : Body. Run E

No nore

Cal | PostDataljem
Tri gger

Dataltem Ru

GroupFoot er. Run

1 Before the first record is retrieved, the OnPreDataltem trigger is called, and after
the last record has been processed, the OnPostDataltem trigger is called.

\

2 Between these two triggers, the records of the data item are processed. Processing
a record means executing the record triggers and outputting sections. C/SIDE also
determines whether the current record should cause outputting of a special section:
header, footer, group header or group footer.

165

Chapter 9. Report Fundamentals

3 If there is an indented data item, a data item run will be initiated for this data item
(data items can be nested 10 levels deep).

4 When there are no more records to be processed in a data item, control returns to
the point from which the processing was initiated. For an indented data item this will
be to the next record of the data item on the next higher level. If the data item is
already on the highest level (indentation is zero) control will return to the report — as
shown in the first flow chart (Report.Run).

166

9.3 The Report Designer

9.3 THE REPORT DESIGNER

The Report Designer contains two additional designers: the Section Designer, used

for designing the layout of reports, and the Request Options Form Designer, used for
designing request options forms.

The Report Designer

In the Report Designer window, you define the data model by adding data items and
indenting them appropriately:

i Report 60004 CRONUS Inventory - Report Designer [I[=] B3

[ataltem | Mame
| |ltem <Iternz =
|| ltem Ledger Entry <Itern Ledger Entryz =
e 2l
| k1
| -]
«|+| t|+] Hep |

Properties and triggers for each of the data items can be edited by opening the
Property Sheet or the C/AL editor, respectively, while the data item is selected.
Properties and triggers for the report can be edited by selecting an empty line in the
Report Designer window and then opening the Property Sheet or the C/AL editor, or
by choosing Select Object from the Edit menu.

The Section Designer

When one or more data items have been defined, you can design the visual layout of
the report in the Section Designer.

mm Report 60004 CRONUS Inventory - Section Designer =1 E3

-

A H 4

You can use the Field Menu to select fields and place them in the sections as controls
as described for forms on page 121. In the picture below, a number of text boxes and
labels have been placed in four sections.

167

Chapter 9. Report Fundamentals

mm Report 60004 CRONUS Inventory - Section Designer =1 E3

| E<COMPANYNAME+' Inventory and Locations '+ FORMAT{TODAY 0.7} |
foemier. |

=«hEmiler.
Item, Header [2]

R e T v

tem, Body (3]
[setors | [cenescript [[r<mon Purch[[=<Cnvon Sales| [=¢ @uantyon
> Item Ledger Entry, GroupFooter [1]
=«Locaton Mares | |=-cnzniy.
2 a7

You can think of each section as one or more lines on the paper that the report will
eventually be printed on. A header section is printed only once, while a body section
typically will be printed several times as the report loop is iterated. You can control
whether the header will be printed when a page break occurs while body sections of
the same data item are being printed.

You can edit properties and triggers for each section by opening the Property Sheet or
the C/AL editor, respectively, while the section is selected.

The controls you place in the sections have a subset of the properties that controls
have on forms (as not all properties are relevant on a report), and you can use the
same tools to modify the properties (the Font Tool, the Color Tool). You can see a list
of the properties on the Property Sheet, and you can read about them in chapter 7,
Designing Forms, or in the online C/SIDE Reference Guide.

The Request Options Form Designer

168

The Request Options Form Designer is used to create a form with fields that prompt
the user for options before the report is run. This designer works exactly like the Form
Designer.

mE Report 60004 CROMUS Inventory - Request Options F_.. [H[=] [E3
CPDesl. . 000

9.3 The Report Designer

You only have to use this designer if you want to prompt the user to select options.
When a report is run, the request form looks like this:

“ CRONUS Inventory =1 E3

Item | Item Ledger Entry | Options |

Field [Fiter |
Mo, +
Drescription

il

Print... | Eresies | Cancel | Help |

BB

=

As you can see, a form with a tab control has been created. The first two tabs
correspond to data items. They are created automatically (though you can control the
contents by setting properties of the data items), and they are used for setting filters
and defining the sort order.

The third tab, Options, only appears when the Request Options Form Designer has
been used to create a request options form.

“ CRONUS Inventory M= 3
Item | Item Ledger Entry Options |
Print Detail i
Print... | Eresies | Cancel | Help |

The form has the same properties and triggers as any other form, and the same
controls can be placed on it.

169

Chapter 9. Report Fundamentals

9.4 SAVING, COMPILING AND RUNNING REPORTS

After you have designed a report, you must save and compile it before it can be run.
Normally, you will do this when you are done designing the report. However, you may
want to save a report that is not yet finished and thus cannot be compiled, for
example, if the report is more complex than the reports described so far and contains
C/AL code. You can also test-compile a report without closing or saving it.

Saving and Closing a Report

A report is closed when the Report Designer window is closed. You can close this
window in the same ways that you can close any other window.

To save a report:

1 When you close a report, C/SIDE will ask whether the report should be saved. If it is
a new report (a report that has not been saved before) you will have to assign an ID
and a name. The ID must be unique and follow the rules for numbering objects —
your C/SIDE dealer will provide you with this information.

Hint: if you enter ID and Name as report properties, these values will be used, and
you will not be prompted for ID and Name when you close the report.

Save As E
D |i
Mame. |
Compiled
u].4 I Cancel | Help |

2 The option field Compiled is by default set to TRUE (displayed as a check mark). If
your report is not yet ready to be compiled, remove the check mark by clicking in
the field.

3 Choose OK to save the report.

You can save a report without closing it by choosing Save or Save As from the File
menu. By using Save As, you can rename an existing report (thereby in effect copying

it).

Compiling a Report

170

Reports, like other objects in C/SIDE, must be compiled before they can be run. As
described above, you can choose to compile a report whenever you are saving it.

While you are designing a report, you may want to test-compile a report, to find
possible errors (this possibility will be more important if the report contains C/AL code
in triggers, as described in chapter 11). You can test-compile a report during design by
choosing the Compile option from the Tools menu.

9.4 Saving, Compiling and Running Reports

Running a Report

In a finished application your reports will be incorporated into menus, or they will be
called from, for example, a command button on a form. However, while you are
designing reports, you will often want to run them before they have been integrated
into an application.

Test-running reports While designing a report, you can test-run the report by choosing Run from the File
menu. In this way, the report will be compiled and run in its current stage of
development. It will not be saved, which means that you can use this function to verify
that the changes you are making work as intended before you save them.

Running reports from You can run a report from the list of reports in the Object Designer main window by
the Object Designer selecting it and clicking the RUN button.

"-," Object Designer !EI m
1. |1D [name [r.]wersion List Il
p & 1 iChart of Accounts | NAYW13.00 =
3 Table | =] 2 General Journal - Test MAYW13,69,990 —
o | :| 3G Rfegl.ster MAVWI13,00
] 4 Detail Trial Balance MAYYW13,69,990
|E| Report =] 5 Receivables-Payables MW 13,00
Ey— | EI & Trial Balance MWW 13,00
=] 7 | Trial Balance/Previous Year MAYW 13,00
+4 Codeunit | = & Budget NAYW13.60
a =] 9 Trial Balance/Budget Ay 13,00
& =] 10 Closing Trial Balance Ay 13,00 -
1| | »
Tew | Design | Run | Help |

171

Chapter 9. Report Fundamentals

172

Chapter 10

This chapter describes the properties of reports, and then,
by creating two examples, shows the basic steps involved
in designing reports.

Report Properties

Designing a Simple Report

Designing a More Advanced Report

Chapter 10. Designing Reports

10.1 REPORT PROPERTIES

As described in Chapter 1, C/SIDE Fundamentals, properties are a system-wide
feature and every application object has some properties. All objects in a report have

properties:
The report itself
The data items
The sections
The controls in the section
The request form

The controls on the request form

Properties for reports can be set by opening the Property Sheet (choose Properties
from the View menu) while an object is selected.

Froperty Walue |

[ataltemlndent =
DatalternT able Sales Line 1%
[ratalternT ableView SORTIMG[Mo.]

D ataltemLinkReference <Customer:

[ataltembink <Undefined:
MewPagePerGoup Mo

MewPagePerR ecord Mo

ReqFitertHeading < =]
RegFilterFields <Undefined: j

You select objects as follows:

Select a data item in the Report Designer window by clicking it.
Select the report itself by clicking an empty line or by clicking Edit, Select Object.

Select a section in the Section Designer by clicking either the section bar or
somewhere in the section (not on a control, though).

Select a control by clicking it.

Use the Value field to set the value of each property. As soon as you leave this field
(by hitting ENTER or by moving with the arrow keys), the property will be updated. If
what you entered contains an error, the update will not be accepted.

Default values are displayed in angle brackets (<>). You can reset any property (for

which there is a default) to the default by deleting the current value and then moving
out of the field.

How Properties Are Inherited

174

Controls that have a direct relationship to table fields will inherit the settings of those
properties that are common to the field and the control. For example, in an accounting
application you will want to store some calculated amounts with five decimal places, to
obtain a high degree of precision. However, on a printed report, you will only want to
display currency amounts with the customary number of decimal places. You can then

10.1 Report Properties

change the DecimalPlaces property of the text box control to display fewer decimals
than the default (but not more, obviously).

Report Properties

The table below briefly describes the report properties. All properties are described in
detail in the online C/SIDE Reference Guide. You can get context-sensitive Help for a
property by opening the Property Sheet for a report, placing the cursor on a property

and pressing F1.

The Property Sheet for a report is opened by choosing View, Properties while an
empty line is selected in the Report Designer window, or by choosing Edit, Select

Object.

Property Meaning

ID ID of the report-must be unique among reports.

Name Name of the report.

Caption Caption (shown on request form window, for example—default is the
same as Name).

ShowPrintStatus Should the printing status window be displayed during printing (with
the opportunity to cancel printing)?

UseRegForm Should the request form be run before the report is run?

UseSystemPrinter

If Yes, then the system default printer is suggested as printer for
the report. If No, then the printer defined for the combination
User/Report in the setup of the system is suggested.

ProcessingOnly

No printing—only processing. If Yes, the report cannot have
sections.

Description Description—for internal purposes, as it is not user-visible.

TopMargin Topmargin in 1/100 mm.

BottomMargin Bottom margin in 1/100 mm.

LeftMargin Left margin in 1/100 mm.

RightMargin Right margin in 1/100 mm.

HorzGrid Distance between horizontal gridlines (1/100 mm).

VertGrid Distance between vertical gridlines (1/100 mm)

Permissions The permissions of the report to access database objects. (The
report can have wider permissions than the individual user, thereby
enabling the user to print reports that retrieve information from
tables that he or she cannot normally access.)

Orientation Use this property to set the page orientation for this report. Values
are Portrait and Landscape.

PaperSize Use this property to set the paper size for this report.

PaperSource Use this property to specify which paper source to use when

printing this report.

175

Chapter 10.

Designing Reports

Property

Meaning

DeviceFontName

Use this property for reports that are designed specifically for dot
matrix printers to prevent the printer from switching into graphics
mode when printing text. Specify the name of a device font (a font
that is built into a printer).

Data Item Properties

The table below briefly describes the data item properties. All properties are described
in detail in the online C/SIDE Reference Guide. You can get context-sensitive Help for
a property by opening the Property Sheet for a Data Item, placing the cursor on a

property and pressing F1.

Property

Meaning

DataltemIndent

Indentation level (can be set in the designer when creating data
items).

DataltemTable

Table of item (can be set in the designer when creating data items).

DataltemTableView

The key, sort order and filters to apply.

DataltemLinkReference

The DataltemVarName of a less-indented Data ltem that this
Dataltem will be linked to.

DataltemLink Link between the current Data Item and the Data Item specified by
DataltemLinkReference.

NewPagePerGroup Should each group be printed on a separate page?

NewPagePerRecord Should each record be printed on a separate page?

RegqgFilterHeading

Tab caption for this item on request form (default is name of
DataltemTable).

RegFilterFields

Names of the fields that will be included in the RegFilter form.

TotalFields Names of the fields for which totals will be calculated.
GroupTotalFields Names of the fields that will be used for grouping data.
CalcFields Names of the fields that will be calculated after a record has been

retrieved.

Maxlteration

Maximum number of data item loop iterations.

DataltemVarName

Name of record as variable (default is name of DataltemTable).

PrintOnlylfDetail

Print item only if sublevels generate output.

Section Properties

176

The table below briefly describes the section properties. All properties are described in
detail in the online C/SIDE Reference Guide. You can get context-sensitive Help for a
property by opening the Property Sheet for a Section, placing the cursor on a property
and pressing F1.

Property Meaning

PrintOnEveryPage Should header and footers be printed on all pages?

10.1 Report Properties

Property Meaning

PlacelnBottom Should footer be placed below last line or at bottom of page?
SectionWidth Width in 1/100 mm.

SectionHeight Height in 1/100 mm.

Control Properties
Controls in reports have exactly the same properties as controls on forms — that is,
those properties that it makes sense to set in a report. The Property Sheet of a control
shows the properties, and chapter 7, "Designing Forms", describes each property, as
does the online C/SIDE Reference Guide.

177

Chapter 10. Designing Reports

10.2 DESIGNING A SIMPLE REPORT

This section goes through the steps required to create a very simple report, in which a
list of customers is created, based on one table that contains customer information.

Defining the Data Model

The first step is to define the data model by creating the data items that you want to
use.

To create a data item:

1 Click Tools, Object Designer.

2 In the Object Designer, click Report.

3 Click New. C/SIDE opens the Report Designer.

4 In the New Report window, in the Table field, click the AssistButton ¢ to select a
table from the Table List window.

5 In the Report field, click Create a blank report and then click OK.

6 Inthe Report Designer window, in the first Data Item field, click the AssistButton +
and select a table from the Table List window. The Name is by default set to the
name of the table. You do not have to change it in this report. In this example, the
Customer table has been chosen, and the default for Name is "Customer”.

ma Report 0 - Report Designer =1 E3
| |Dataltern Mame
| ¥ |Customer =
|| k2
|| =]
«|+]| +|4] Hep |

7 Click View, Properties to open the Properties window for the data item.

Froperty | Walue

[ataltemlndent =
D ataltemT able Customer =
[ataltemnT abletiew <Undefined:

D ataltemLinkReference <Undefined:

[ataltembink <Undefined:
MewPagePerGoup Mo

MewPagePerR ecord Mo

FegFilterHeading £

RegFilterFields <Undefined:
TotalFields <Undefined:

GroupT otalFields <Undefined:
CalcFields <Undefined> Ed
I axlteration <0 j

178

10.2 Designing a Simple Report

8 Select the DataltemTableView property and click the AssistButton ... to open the
Table View window:

mn Table View

QK | Cancel | Help |

9 Select the key, sort order and filters that you want to use and then click OK. In the
example, a key (previously defined during table design) consisting only of the No.
field has been chosen, and the sort order is set to Ascending. The Table Filter field
has been left empty, meaning that a permanent filter is not defined on the table.

10Select the ReqgFilterFields property, and click the AssistButton ... to open the
following window:

i Field List [_ (O] x|

[BT

11 Select the fields on which the user will often need to set filters. You can use the
lookup function to select them. In the example, the fields No. and Country Code
have been selected. When you have selected the fields, press OK.

The picture below shows the request form the user will see when the report is run
(with the various choices made as in the steps above).

B Microsoft Business Solutions-Navision [_ (O] x|

Customer |

Field [Filker [11

Ma, | _I_I' =

Country Code

[
2
Print... | Preview | Cancel | Help |

As the key and sort order were established during report design, the only choice left
for the user involves setting filters. The fields that were defined as ReqFilterFields are
shown, but the user can also choose to put a filter on other fields by adding lines
below those that are already used.

Concerning ReqFilterFields, you should be aware that the user can choose to set
filters on other fields than those you specify. However, it will still be a good idea to add
the fields that those who use the report will often want to set filters on. If the table has

179

Chapter 10. Designing Reports

180

a lot of fields, the casual user may find it difficult to find the relevant fields to filter from
a lookup list of all the fields in the table.

You can remove the filter-selection tab altogether by not defining any ReqgFilterFields
for the data item and by setting the DataltemTableView to define a sort order. If you
create a request options form, it will still be shown.

If there is no request options form, an empty form will be displayed. On this, the user
can choose Print, Cancel, and so forth. Finally, if you set UseReqForm to No, the
report will start printing as soon as it is run. In this case, the user will not be able to
change his or her mind and cancel the report run altogether. (It will still be possible to
cancel printing, but some pages will probably be printed).

If a DataltemTableView is not defined, the user will be able to select key and sort order
at runtime. Then, the request form will look like this:

B Microsoft Business Solutions-Navision [_ (O] x]
Customer |
Field [Filker |
Ma. | -
Country Code |£)
k1
=]
ﬂ Sort,.. |
Print... | Preview | Cancel | Help |

When the user clicks Sort, they can choose the key and sort order from this form:

M Customer - Sort E

Key

H
Posting Group H
-]

Currency Code

Order

® Ascending
" Descending

u].4 I Cancel Appl Help

about what you allow the user to change. In a more complex report, where you work
with data from several tables, the functionality may well depend on a specific key and
sort order. On the other hand, letting the user choose filters freely will not interfere with
the logic of the report. In a very simple report like this one, you can select a key and
define a sort order if you want, or leave it up to the user.

10.2 Designing a Simple Report

Using the Wizards

In the New Report window, in the Report field, you could have chosen to use one of
the wizards, for example Form-Type Report Wizard, rather than creating the report
from scratch.

The wizard will guide you through the steps of selecting the fields that the report will
be based on and the sorting order.

Note that on the first page of the wizard, the contents of the Available Fields field are
the Caption properties of the fields — not the Name property. For more information
about captions, see Chapter 18.

Designing the Sections

So far, only the data model of the report has been defined. So far, nothing will be
printed. The next step, therefore, is to design the sections.

To design report sections:

1 Open the Section Designer by clicking View, Sections, while the Report Designer
window has the focus. Having created a data item as described above, the Section
Designer will look like this:

C ody [1]

-

4] | v

As you can see, a section named "Customer - Body" ("1" means that this is presently
the first section of this data item) has been inserted. By default, a Body section will be
inserted for each data item that has been created; these sections will be in the same
order as the data items in the Report Designer.

181

Chapter 10. Designing Reports

2 Now, insert a header section for the Customer data item. Choose Insert New from
the Edit menu. The following form appears:

Insert New Section E
Dataltem. Im
Section Type. (o
" GroupHeader
" TransHeadsr
" Body
" TransFooter
" GroupFooter
" Footer

Imsert Section. la Befare Eurent Section
(‘therEurrentSection

u].4 I Cancel | Help |

3 Choose Header as the Section Type and Before Current Section. Then press OK.
The Section Designer now looks like this:

]

Customer, Header [1]

ner, Body [2]

-

4] | v

4 Open the field menu by choosing Field Menu from the View menu. Select the fields
that you want in the report. (You can select multiple fields by holding down CTRL
while clicking in the selection bar.) In the following example, four fields have been

selected.

Field Caption
Mo, Mo,

Mame Mame

Search Name

Search Name

Mame 2
Address

Contact

Mame 2
Address

- Address 2 Address 2 Text30
[

Text30

ontact
Phone No. Phone No. Text30
Telex No. Telex No. Textz0
Qur Account Mo, Qur Account Mo, Textzl

0 I

Cance] Apply

5 Move the mouse cursor into the Body section of the data item. Click once to

+ activate the window—the cursor changes into the Control Insertion cursor. Place the

182

10.2 Designing a Simple Report

cursor at the left side of the section and click again. A text box with an attached
label will be inserted for each selected field.

Customer, Header [1] ;I
="N0 =4"Name"> =" Add ress" =<"Phione Mo
Eg | lNa_ | M [|Pl|nnelh_

1 | 4

6 Open the Property Sheet by choosing Properties from the View menu. Click in the
Header section. Look at the setting of SectionWidth (the unit of measure is 1/100
mm).

8 Customer, Header (1) - Properties m

Froperty | Walue

FrintOnE veryPage Mo =
Section'idth 15450 2 |
[SectionHeight 346
Keepiwitht ext <esr

[T«

All sections’ widths have been modified to make room for the inserted controls (the
default width, when no controls have been inserted, is 12000). In this case, the
resulting width is 15450, or 15.45 cm. If the report is going to be printed on A4 paper
this is perfectly acceptable — that paper is 21 cm wide.

7 Select all the labels as a multiple selection (hold down CTRL while clicking), and
move them all into the Header section in one move (in this way, the alignment of
labels and text boxes will be preserved).

183

Chapter 10. Designing Reports

184

Customer, Header [1]

4] | H oz

Now, the report is ready to be printed, but it still needs some work before it will look
good on paper.

8 If the report, when it is run, ends up consisting of more than one page, you will want
the Header section — containing the labels — to appear on every page. Open the
Property Sheet for the Header section and set the PrintOnEveryPage property to
Yes (see the picture in step 6 above).

9 Moving the labels out of the Body section has left this section too high — there will
be an empty line for each customer record that is printed. To resize the Body
section, move the mouse cursor into the Section Designer until it touches the lower
bound of the Body section and turns into the vertical resizing cursor. Then click and
drag the section upwards until it has the same height as the text boxes.

10Save and close the report, and run it from the Object Designer. The example
described so far gives this result with sample data:

No. Name Address Phone No.
10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344
20000 Ravel Mgbler Parkvej 44 22334455
30000 Lauritzen Kontormgbler A/S Jomfru Ane Gade 56 33445566
01121212 Spotsmeyer's Furnishings 612 South Sunset Drive 9998887771
01445544 Progressive Home Furnishings 3000 Roosevelt Blvd. 8887776661
01454545 New Concepts Furniture 705 West Peachtree Street 7776665551

As you can see, the label and the data in No. do not line up very nicely. This is
because both controls have their alignment set to General (the default). The label is
left aligned because it contains text, while the text boxes are right aligned because
they contain numbers.

A simple solution is to right align the label.

11 Select the No. label and open the Property Sheet. Set the HorzAlign property to
Right.

Now the report looks like this:

No.
10000

20000
30000
01121212
01445544
01454545

Name
Kontorforsyningen A/S

Ravel Mgbler

Lauritzen Kontormgbler A/S
Spotsmeyer's Furnishings
Progressive Home Furnishings

New Concepts Furniture

Address
Carl Blochs Gade 7

Parkvej 44

Jomfru Ane Gade 56

612 South Sunset Drive
3000 Roosevelt Bivd.

705 West Peachtree Street

Phone No.
11223344

22334455
33445566
9998887771
8887776661
7776665551

Designing a Simple Report

185

Chapter 10. Designing Reports

10.3 DESIGNING A MORE ADVANCED REPORT

The report designed in section 10.2 was very simple: it ran through one table and
printed out the records. In this section, you will learn to design reports that use more
than one table.

The sample report that will be created uses two tables: one is the customer table, as in
the preceding example. The other table contains sales lines, lines from not-yet-posted
sales orders that contain information about the actual items that have been ordered.
There is a one-to-many relationship between the two tables: while one customer can
have many items on order, a sales line can pertain to only one customer.

Defining the Data Model

186

The description of the steps involved in creating this report presumes that you are
familiar with the techniques explained in section 10.2 above.

To define the data model:

1 In the Report Designer window, choose the Customer table as the first data item,
and the Sales Line table as the second.

2 Indent the Sales Line data item by clicking the right-arrow button once while the
data item is selected:

xm Report D - Report Designer [_ (O] x|
[ataltem | Mame

|| Customer <Customer: =

|| Salesline <Sales Linex =

| 2

| k1

| -]
«|+| t|+] Hep |

The data model defined thus far will work like this:

The report will run through the Customer data item.

For each record in the Customer data item, the report will run through the entire
Sales Line data item.

This is clearly not the purpose of the report — you need a way to select only those
Sales Line records that are related to the current customer. This is accomplished by
the DataltemLink and DataltemLinkReference properties. The
DataltemLinkReference property points to a data item on a higher level (with less
indentation) and the DataltemLink property specifies a field in each data item: here,
records will be selected from the Sales Line table only when the Sell-to Customer No.
is the same as the No. in the Customer table.

10.3 Designing a More Advanced Report

3 Open the Property Sheet for the Sales Line data item.

4 Set the DataltemLinkReference property to the name of the less-indented data item
(Customer) that the more-indented data item (Sales Line) must be related to. In
most cases, including this one, this is the default.

Froperty Walue |

[ataltemlndent 1=
DatalternT able Sales Line 1%
[ataltemnT abletiew <Undefined:

D ataltemLinkReference |<Eust0mer>

[ataltembink <Undefined:
MewPagePerGoup Mo

MewPagePerR ecord Mo

ReqFitertHeading < =]
RegFilterFields <Undefined: j

5 In the value field of the DataltemLink property, open the form shown below by
clicking the AssistButton ... :

i Dataltem Link [_ (O] x|

Field | Reference Field |
4l

I»I»

LETTTTTTT [fe]
w

[T«

Ok | Cancel | Help |

6 In the Field field, enter the name of the field from Sales LIine (the more-indented
data item) that must correspond to a field from Customer (the less-indented data
item). You can use the lookup function to select the field.

7 In the Reference Field field, enter the name of the field from Customer that must
correspond to the field from Sales Line. Again, you can use the lookup function to
select the field. In the example below, the Sell-to Customer No. field from the
Sales Line data item and the No. field from the Customer data item have been
chosen.

i Dataltem Link [_ (O] x|
| [Fieid | Reference Field |
| #p | Sellto Customer No. N0.|]~
|| 2]
|| -]
Ok Cancel Help |

187

Chapter 10.

Designing Reports

8 Finally, open the Property Sheet for the Customer data item, and set the

PrintOnlylfDetail property to Yes. This will cause the Customer body sections to be
printed only if there is data to print from Sales Line.

The data model now works like this:

The Customer data item will be run through.

For each record in the Customer data item, records in the Sales Line data item will
be selected if the Sell-to Customer No. field has the same value as the No. field in
the Customer data item.

If there are no Sales Line records for a Customer, nothing will be printed — not even
the information from the Customer data item.

Designing The Sections

188

Presuming that you already know how to design the sections for a report with just one
data item, the description here concentrates on showing how to handle a situation with
two data items.

To design the sections:

1

When you first open the Section Designer, there will already be a Body section for
each data item. Add a Header section for the Customer data item.

Add fields to the Customer body section. Move the labels up into the Header
section.

So far, the procedure has been exactly the same as for creating the first, simple
report. Now, continue like this:

3 Add fields to the Sales Line body section.
Customer, Header [1] jl
o e ‘Lﬂm e

Customer, Body [2]

=N s miarrers | oaddreses | [z<Phone bars

4] | H oz

-

4 At this point, you need to make a decision about the labels for the controls of Sales

Line: if they stay where they are right now, they will be printed for each record of the
data item. If a header section is added for Sales Line, this header section will be
printed each time the data item loop is entered, which is for each record of the
Customer data item. As neither of these solutions seems very good, you can take a

10.3 Designing a More Advanced Report

third approach: you can move the labels into the header section of the Customer

data item, like this:

8 Report D - Section Designer

Customer, Header [1]

=

Customer, Body [2]

=" " |=4"Name">

=<"LhitPrice"s | |="

1 |

-

AN

Now, labels for both the Customer records and the Sales Line records will be

printed as column captions in the Customer Header section (remember to set the
PrintOnEveryPage property of this section to Yes). In order to make the connection
between labels and data clear, the labels for the Sales Line columns can be
changed to the normal font weight instead of the default bold. Also, the text boxes
of the Customer data item can be changed to bold, to make these records stand out
among the lines that are printed. (There are bound to be a lot more records from
Sales Line than from Customer.) Furthermore, the Sales Line labels have been
resized to occupy only one line, and an empty line has been added to the header

section.

Cuanid | Uit P rice:

Customer, Body [2]

=cHos> | [=chame>

| e addess > | [=¢Phone Hor> |

» Sales Line, Body (1]

= Dovurnient | [='Shiprmed =4 Deseripicn ™

| [eCuaniy | [ounitPrices | [=amounts |

189

Chapter 10. Designing Reports

6 Save and close the report, and run it from the Object Designer. The example
described gives this result with sample data:

No. Name Address Phone No.

Document No. Date Description Quantity Unit Price Amount
10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344

941016 05/11/95 ANTWERP Conference Table 1 3,599.00 3,599.00
20000 Ravel Mgbler Parkvej 44 22334455

941017 05/11/95 ST.MORITZ Storage Unit/Drawers 2 2,929.00 5,272.20
941017 05/11/95 INNSBRUCK Storage Unit/G.Door 1 2,500.00 2,250.00
941017 05/11/95 INNSBRUCK Storage Unit/W.Door 1 2,193.00 1,973.70
30000 Lauritzen Kontormgbler A/S Jomfru Ane Gade 56 33445566

941023 02/01/95 ANTWERP Conference Table 4 3,599.00 13,676.20
941023 02/01/95 BERLIN Guest Chair, yellow 23 1,265.00 20,366.50

190

Chapter 11

This chapter describes how to group and total data when
creating reports in C/SIDE. It also gives an overview of the
report triggers and, finally, uses some of the advanced
facilities of the Report Designer.

Grouping and Totaling

Triggers in Reports

Advanced Sample Reports

Chapter 11.

Extending the Functionality of Your Reports

11.1 GROUPING AND TOTALING

Grouping and totaling data are crucial to creating useful reports. By grouping and
totaling data your reports can provide information that is not otherwise readily
available.

The second report created in chapter 10 listed customers and those entries from the
Sales Line table that pertained to each customer. You can use grouping and totaling
to enhance this information in several ways.

First of all, if the report is to provide statistical information, it will be more useful to
have the sales lines grouped according to the items (grouping on the item number,
which identifies each item) instead of printing all lines from all sales documents. Each
line should then provide figures for the total quantity and the total amount for each
item per customer.

Second, it would be useful to have a total amount per customer, showing how much
this customer has on order all in all.

This is the report that will be created below.

Defining the Data Model

192

The first steps in creating this report involve designing a report similar to the report
created in Designing a More Advanced Report on page 186.

To add the grouping and totaling, follow these steps:

1 In the Property Sheet of Sales Line (the indented data item), enter as the value of
the GroupTotalField property, the name of the field you want to be used for grouping
the records. You can use the AssistButton ... to help you select the field. Here, the
No. field is used:

i Field List [_ (O] x|
-]
kd
-]
QK | Cancel | Help |

2 Use the AssistButton ... for the DataltemTableView property, and then select a key.
You have to select a key that contains the field you want to group by.

3 If the key you select is a composite key, the grouping can fail if there are other fields
in the key before the grouping field, and the contents of one of these fields change.
In other words: you may have to create a distinct key for reports that access data in
ways other those used by than your application in general.

11.1 Grouping and Totaling

For this report, a secondary key, consisting of the No. field only, was created for the
Sales Line table:

mH Sales Line - Key List =1 E3

Document Type, Type Mo, Drop Shipment Location
Document Type Bilto Customer Mo,
Mo

u].4 I Cancel | Help |

4 Enter the names of those fields for which totals should be calculated as the value of
the TotalFields property. You can use the AssistButton ... to help you select the
fields. Here, the fields named Quantity and Amount are selected:

i Field List [_ (O] x|
Bn
kd
-]
QK | Cancel | Help |

This data model is now defined. This is what has been accomplished:

For each record in the Customer data item, those records in the Sales Line data
item that are related to this customer are selected.

The records from the Sales Line data item are grouped according to the item
number.

Totals are maintained for the Quantity and Amount fields of the Sales Line data
item.

The Relationship between Totals and Sections

In the report being designed, a hierarchy of data items have been established, where
Customer is the highest level data item and Sales Line is an indented data item.
Further, the records of Sales Line will be grouped on the No. field, and totals will be
calculated for the Amount and Quantity fields.

What, then, is the relationship between these totals and the sections — that is, how
can these totals be printed?

193

Chapter 11.

194

Extending the Functionality of Your Reports

Until now, only Header and Body sections have been used. To print totals, you will
need to use some new sections. The table below gives an overview of all types of
sections:

Section Name Output

Header Before a data item loop begins and (if the PrintOnEveryPage property
of the section is Yes) also on each new page.

Body For each iteration of the data item loop. When there is an indented data
item, the complete loop for this data item begins after the Body section
of the higher level data item has been printed.

Footer After the loop has finished, and (if the PrintOnEveryPage property of
the section is Yes), also on each new page. Moreover, if the
PlacelnBottom property of the section is Yes, the Footer section is
printed at the bottom of the page, even if the data item loop ends in the
middle of a page.

GroupHeader A new group starts.

GroupFooter A group ends.

TransportHeader A page break occurs during a data item loop. Printed at top of the new
page. This section is printed after a possible Header section of the data
item.

TransportFooter A page break occurs during a data item loop. Printed before the page
break, This section is printed before a possible Footer section of the
data item.

In order to print out the totals, you will need to use both a GroupFooter and a Footer
section for the Sales Line (indented) data item.

In the GroupFooter section, the totals for Quantity and Amount will be for the defined
group — remember that the No. field was used for grouping.

When the entire data item has been iterated, the grand total can be printed in the
Footer section of the Sales Line data item.

The flow in this example can be summarized as follows:

1 For each record of the Customer data item, a loop for the Sales Line data item is
begun.

2 Whenever the contents of the No. field change, the GroupFooter is outputted.

3 When the Sales Line loop ends, the Footer will be outputted. As the Body section of
the Customer data item was printed before any section of the indented data item,
the Footer is also the last section that will be printed. Therefore, this section can be
used to print summary information about the customers.

That is, the Quantity and Amount totals for each item that a specific customer has on
order will be placed in a GroupFooter section of the Sales Line data item, while the
grand total for the Amount that the customer has on order will be placed in a Footer
section of the Sales Line data item (a Quantity total is also maintained, of course, but

11.1 Grouping and Totaling

this information is not too useful, since it will be a total of quantities for all kinds of
different items.)

Properties of sections, such as PrintinBottom and PrintOnEveryPage, apply to an
entire data item. This means that you cannot, for example, have two Footers for a data
item, one for the "normal" pages and one for the last page.

Designing the Sections

As usual, when you open the Section Designer, a Body section for each defined data
item has been inserted.

To design the sections:

1 Add a Header section for the Customer data item. This section will be used to print
headings for the columns in the report.

2 Add a GroupFooter section for the Sales Line data item. This section will be used to
print the summary information about each item.

3 Add a Footer section for the Sales Line data item. This section will be used to print
the summary information about each customer.

In this report, nothing will be printed in the Body section of the Sales Line data item.
Therefore, this section should be deleted. (You delete a section by clicking on the
section bar, then choosing Delete from the Edit menu. You will be prompted to confirm
the deletion.) The Section Designer will now look like this:

ma Report 0 - Section Designer =1 E3
|Customer, Header (1) -

-

A H 4

4 Select the Body section of the Customer data item (by clicking the section bar).
Then open the field menu by choosing Field Menu from the View menu.

195

Chapter 11. Extending the Functionality of Your Reports

5 Select fields from the field menu. Here, four fields have been selected:

i Field Menu [x|

Field Caption Diata T

Search Name Search Name

Mame 2
Address Address Ti
| [address2 _laddess2 Text3n |
W city City Textal
Contact Contact Text30

Phone No. Phone No. Text30
Telex No. Telex No. Textz0 T
Qur Account Mo, Qur Account Mo, Textzl =

o4] Cancel | Apply |

6 Click once in the Section Designer window to activate the window, then move the
cursor into the Body section of the Customer data item. Click to insert text boxes
and labels for the four selected fields.

7 Move the labels up into the Header section of the Customer data item and adjust
the vertical size of the Body section. Resize the labels vertically and move them up
to the top of the Header section. The Section Designer now looks like this:

ma Report 0 - Section Designer =1 E3
Customer, Header [1] ;I
™ Mame | ackiess [[prone Ho. ||

8 Select the GroupFooter section of the Sales Line data item (by clicking the section
bar) and open the field menu by clicking View, Field.

9 Select fields from the field menu. Here, the No., Description, Quantity and
Amount fields have been selected. Insert the fields in the GroupFooter section of
the Sales Line data item. Delete the labels, and resize the section vertically.

10Select the Footer section of the Sales Line data item. Insert the Amount field here
and remove the label. Let the section have its default size — this way, there will be
some empty space before each new customer.

196

11.1 Grouping and Totaling

ma Report 0 - Section Designer =1 E3
Customer, Header [1] ;I
™ Mame | ackiess [Iphone po. ||]
Customer, Body [2]
= |=4"Name"> | |=4"ﬁddla§'> | |=4"Ph0ne U3 I
i Sales Line, GroupFooter (1]

= =" Desipion™. = Canit . = Arnount’e |

A H 4

11 Save, close and run the report.

So far, the report will look like this when printed:

No. Name Address Phone No.
10000 Kontorforsyningen A/S Carl Blochs Gade 7 11223344
1920-S ANTWERP Conference Table 9 32,391.00
32,391.00
20000 Ravel Mgbler Parkvej 44 22334455
1928-W ST.MORITZ Storage Unit/Drawers 2 5,272.20
1964-W INNSBRUCK Storage Unit/G.Door 1 2,250.00
1976-W INNSBRUCK Storage Unit/W.Door 1 1,973.70
9,495.90
30000 Lauritzen Kontormgbler A/S Jomfru Ane Gade 56 33445566
1920-S ANTWERP Conference Table 4 13,676.20
1936-S BERLIN Guest Chair, yellow 23 20,366.50
34,042.70

Obviously, this report needs some work before it looks good and is truly functional. For
example, we need to devise a way to place captions for the columns from the indented

data item. But the logic works: for each customer, there is a list of items where
quantities and amounts have been summarized, and the total amount for each

customer is also calculated.

One desirable improvement is to add a line at the end of the report where the grand
total for all customers is printed. To do this, however, it is necessary to use C/AL code

in a report trigger. The Advanced Sample Reports section on page 200 gives

examples of how to do it.

197

Chapter 11. Extending the Functionality of Your Reports

11.2 TRIGGERS IN REPORTS

Report Triggers

While the system interprets and acts upon many events in a predefined way, certain
actions cause the system to execute a user-definable C/AL function (the event
triggers the function). In reports, triggers are typically used to perform calculations and
to control whether or not to output sections (depending, for example, on the value in a
field, or a choice the user made in the request form). Perhaps the most important point
about triggers, however, is that using them allows you to control how data is selected
and retrieved in a more complex ways than using properties would.

These triggers pertain to the report itself:

Trigger Executed

OnlnitReport When the report is loaded.

OnPreReport Before the report is run — but after the RequestForm has been run.
OnPostReport After the report has run — but not if the report was stopped manually or by

the Break function.

The table only describes the main purpose of each trigger. Refer to the online C/SIDE
Reference Guide for concise descriptions and details.

Data Item Triggers

Section Triggers

198

The following triggers pertain to each data item of the report:

Trigger Executed

OnPreDataltem Before the data item is processed, but after the associated variable has
been initialized.

OnAfterGetRecord When a record has been retrieved from the table.

OnPostDataltem When the data item has been iterated for the last time.

The table only sketches out the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for concise descriptions and details.

These triggers pertain to each of the sections of a data item:

Trigger Executed
OnPreSection Before processing a section.
OnPostSection After processing a section but before printing it.

11.2 Triggers in Reports

The table only sketches out the main purpose of each trigger. Refer to the online
C/SIDE Reference Guide for concise descriptions and details.

199

Chapter 11. Extending the Functionality of Your Reports

11.3 ADVANCED SAMPLE REPORTS

This final section will give examples of reports that are slightly more advanced than
those previously described. The examples are not intended to be complete or ready to
run, but are meant to give some ideas that you can use when designing reports.

Using Virtual Tables

C/SIDE includes a number of virtual tables, such as the Integer table and the Date
table. They are described in chapter 5, Special C/SIDE Tables. This section will show
you how to use one of these tables, the Date table, in a report.

Using the Date Table

The Date table consists of three fields, Period Type, Period Start and Period End.
Period Type can be Date, Week, Month, and so forth, while Period Start is the
starting date of each period and Period End is the last date in the period. (Period
End dates are closing dates.)

The Date table will be used to create a report that prints information from the Cust.
Ledger Entry table (the Customer Ledger Entry table, but the word Customer has
been abbreviated). For each day in a range of dates (that can be chosen by the user),
the report summarizes entries made on that date. For each type of document (Invoice,
Payment, and so forth), a line will be printed containing the number of documents of
this type and the sum of the amounts on these lines. After each date, the total number
of entries made on that day, along with the total amount of all these entries, will be
printed. Finally, the total number of entries and the total amount for the selected date
range will be printed at the end of the report.

You could create the report by grouping according to the Cust. Ledger Entry table
alone, but the field that contains the posting date in that table is not part of any key.
Creating a special key just for this report is not desirable, because it would slow down
all other transactions involving this table — in fact, all entries concerning sales would
be affected.

Defining the Data Model

There are two data items in this data model: one that is related to the Date table and
one that is related to the Cust. Ledger Entry table.

To define the data model:

1 Open the Report Designer and create two data items with the Date and the Cust.
Ledger Entry tables as the underlying tables. Indent the Customer Ledger Entry
data item.

200

11.3 Advanced Sample Reports

xm Report D - Report Designer [_ (O] x|
[ataltem | Mame

| |Date <Date =

|| Cust LedgerEntry <Cust. Ledger Entry =

]| 2

| k1

| -]
«|+| t|+] Hep |

2 Open the Property Sheet for the Date data item. Then use the assist-edit button to
help you set the value of the DataltemTableView property so that it selects records
whose Period Type is Date. This is an important step, as the iteration of the Date
data item would otherwise run through all records, including those for Weeks,
Quarters, Months and Years.

o Table Filter =] 3
| |Field |Type Walue |
| |Period Type CONST TEE -
14| | o
QK | Cancel | Help |

3 Enter the Period Start field as the ReqFilterFields property of the Date data item in
order to let the user select a range of dates at run time.

Froperty Walue |

D ataltemT able Cate =
D atalternT ableiiew <Undefined: 1%
D ataltemLinkReference <Undefined:

[ataltembink <Undefined:
MewPagePerGoup Mo

MewPagePerR ecord Mo

FegFilterHeading £

ReqFilterFields fFeriod Sta RS b
TotalFields <Undefined: j

4 Open the Property Sheet for the Cust. Ledger Entry data item. Then use the assist-
edit button to help you set the value of the DataltemTableView property to an
appropriate key. An appropriate key in this case is a key containing the Document
Type field, as the definition of a group will be based on this field. Here, a key is
selected that has this field as its first component. As the report is going to show only
summarized information, rather than all the entries, the other fields that are
included in the key are not significant. (No individual entries will be printed, so they
do not need to be sorted in any specific order.)

201

Chapter 11. Extending the Functionality of Your Reports

mH Cust. Ledger Entry - Key List [|O] x|

Entry Mo o
Customer Mo. D ate

Customer Mo, Open,Positive,Due Date
Open,Due Date

Document Type, Customer Mo, D ate
Salezperzon Code Date

Clozed by Entry Mo,

Trahsaction Mo

u].4 I Cancel | Help |

5 In the Property Sheet for the Cust. Ledger Entry data item, set the
DataltemLinkReference property to point to the Date data item (this is the default).
Then use the assist-edit button of the DataltemLink property to specify the field that
establishes the link between the two data items. Choose the Posting Date field
from the Cust. Ledger Entry data item, and the Period Start field from the Date

data item.
i Dataltem Link [_ (O] x|

| [Fieid | Reference Field |

| |Posting Date Period Start =

[2] H

|| k2

|| -]
Ok Cancel Help |

6 Enter the Document Type field as the value of the GroupTotalFields property of the
Cust. Ledger Entry data item, and enter the Amount field as the value of the
TotalFields property.

Froperty | Walue
MewPagePerGoup Mo =
MewPagePerR ecord Mo H
FegFilterHeading <>|

RegFilterFields <Undefined:
TotalFields Amont

GroupT otalFields Document Type
CalcFields <Undefined:

I axlteration <0 ﬂ
[rataltermart ame <Cust. Ledger En... j

Thus far, the report will work like this:

The user can select a range of dates from the request form of the report.

The report will run through the Date table, with a constant filter on the Period Type
field that selects only records whose type is Date. If the user selected a range, only
dates in the range will be selected; otherwise all dates will be used.

202

11.3 Advanced Sample Reports

For each selected date, records in the Cust. Ledger Entry data item that were
posted on that date will be selected.

The records of the Cust. Ledger Entry data item will be grouped according to the
value of the Document Type field, and totals will be maintained for the Amount
field.

Designing the Sections
The design of the sections is fairly straightforward. The final screen looks like this:

ma Report 0 - Section Designer =1 E3
Date, Header (1]

T e Lo] m.a‘j

:> Cust. Ledaer Entry, GraupFaater [1]
=<' Document Type" | =TS | [s<amount= ||

> Cust Ledg_x_e_r Entry, GroupFootEr [2]

TN ST —— T Faw | Feamants | |
> Cust. Ledger Entry, Footer [3]
— [=TomlCny | [=<Tol Amount] |
] ;T [Tomlcme | [=TomlAmeund
-
2 a7

The sections contain some controls that do not have fields from the data items as
source expressions (Qty, TotalQty, TotalAmount and DateFilter). The purpose of these
controls will be explained below.

Otherwise, the design of the sections is as follows:

There is a Header section for the Date data item, containing captions for the
columns of data in the report.

There is a Footer section for the Date data item, used for printing totals for all
printed records.

There are two GroupFooter sections for the Cust. Ledger Entry data item, one with
a text box for the Date field, one without. The reason for this construction—and how
to use it—will be explained below. Both sections will print summarized information
about the groups of this data item (remember that the Document Type field was
used for grouping here).

There is a Footer section for the Cust. Ledger Entry data item, used for printing
totals.

Neither data item has a Body section.

Refining the Design by Using Triggers

To make this report work as desired, we will need to write a small amount of C/AL
code in triggers and to define a few variables. The report still needs four things to
make it work the way we want:

1 The number of entries must be counted for each document type, for each date and
for the complete range of dates in the report.

203

Chapter 11. Extending the Functionality of Your Reports

2 The total amount for all entries in the report must be calculated.

3 The date for a group of entries (with different document types) should be printed
only once, when the first record in the group is printed.

4 At the end of the report, when the total number of entries and the total amount are
printed, the date range that was selected by the user should be printed.

Counting the Number of Entries

The records in the Cust. Ledger Entry data item contain an amount — which is totaled
by using properties, as described in step 6 on page 202. The number of entries cannot
be calculated in the same way, as no field in the data item record contains this
information.

However, each record corresponds to exactly one entry. This means that the number
of entries can be counted by simply counting the records. It can be done in this way

1 Create a global variable (here it is called Qty) of type Decimal.

8 Cust. Ledger Entry - C/AL Globals !Elm
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
||ty Decimal =
|| Tatalamaunt Diecimal |£)
|| TotalQty Integer
| |IsDatePrinted Boolean
| |DateFilker Text 100
kid
Help |

2 Add the following C/AL code to the triggers of the Cust. Ledger Entry data item:

mH Cust. Ledger Entry - C/AL Editor [_ (O]
Documentation(}

[l 1%

OnPreDataltem(}
CurrReport .CREATETOTALS(Qty);

OnAfterGetRecord()
Qty = 1;

OnPostDataltem{)

| T+]«

K i

The statement in the OnPreDataltem trigger causes totals to be maintained for the Qty
variable in the same way as when you use the TotalFields property to specify that
totals will be maintained for a field in a record. The statement in the OnAfterGetRecord
trigger simply assigns a value of one to the Qty variable each time a record is
retrieved.

204

11.3 Advanced Sample Reports

The CREATETOTALS function will maintain totals for each group and a grand total for
the iteration of the data item loop. As data items are grouped according to the
Document Type field, Qty will contain the sum of all entries with the same document
type each time the Cust. Ledger Entry GroupFooter section is printed. When the
Footer section is printed, Qty will contain the sum of all entries (that were selected,
that is, all entries that pertain to the same date).

The argument of the CREATETOTALS function must be of the Decimal type (because
the function will usually be used to sum amounts). Therefore, the Qty variable was
declared to be of Decimal type rather than Integer (which perhaps would have been
the intuitive choice). This means that the Qty text boxes in the sections have to be
formatted not to show any decimal places, as they by default will have the format
<2:2> when the SourceExpr is of the Decimal data type.

Calculating the Total Amount and the Total Quantity

You want to print the total amount for all selected records from the Cust. Ledger Entry
data item at the end of the report, in the Footer section of the Date data item. The
value you want to print is, of course, the sum of all the amounts that are printed in the
report. However, these amounts come from the Cust. Ledger Entry data item, not the
Date data item. This means that you cannot use the TotalFields property to do the
totaling.

Correspondingly, the total number of posted entries should be printed in the Footer
section of the Date data item.

The solution is simple:

1 Declare two global variables: TotalAmount and TotalQty (refer to the picture on
page 204).

2 Add these lines to the OnAfterGetRecord trigger of the Cust. Ledger Entry data
item:

Total @y := Total Qy + 1;
Tot al Anrount : = Tot al Ambunt + Anpunt;

The first line simply adds one to the TotalQty variable whenever a record is retrieved,
while the second line adds the retrieved Amount to the TotalAmount. When the Date
data item loop ends and the Footer section is printed, TotalQty and TotalAmount will
contain the wanted values.

Printing the Date in the First Iteration Only

For each iteration of the Date data item loop, you want to print the Date to which the
information selected from the Cust. Ledger Entry data item pertains. You could, of
course, just create a Body section for the Date data item and print the date there (the
Period Start field of the data item), but this date would be printed on a line by itself.
Instead, the date should be printed along with other information on the first line that
comes from the Cust. Ledger Entry data item.

205

Chapter 11.

206

Extending the Functionality of Your Reports

One solution is not to print a Body section for the Date data item at all, but to print the
Date field from the Cust. Ledger Entry data item. This creates another problem,
though: if it is added to the GroupFooter section, the date will be printed on every line.
While this could be an easy way to solve the problem, the finished report will not be
very attractive. Besides, it will be difficult to read the report if it is cluttered with
redundant information.

A better solution is to define two GroupFooter sections for the Cust. Ledger Entry data
item—one that includes the Date field and one that does not — and then control when
they are output.

To do so, follow these steps:
1 Design two GroupFooter sections as shown in the picture on page 203.
2 Declare a global variable of type Boolean and call it IsDatePrinted.

3 Add the following line to the OnPreDataltem trigger of the Cust. Ledger Entry data
item in order to initialize the IsDatePrinted variable before each iteration of the data
item loop:

| sDatePrinted : = FALSE;

4 Add the following lines to the OnPreSection trigger of the first GroupFooter section
of the Cust. Ledger Entry section:

| F I sDatePrinted THEN

Cur r Repor t . SHOANOUTPUT(TRUE)
ELSE

Cur r Repor t . SHONOUTPUT(FALSE) ;

5 Add the following lines to the OnPreSection trigger of the second GroupFooter
section of the Cust. Ledger Entry section:

| F I sDatePrinted THEN
Cur r Repor t . SHONOUTPUT(FALSE)
ELSE BEG N
Cur r Repor t . SHOANOUTPUT(TRUE) ;
| sDat ePrinted : = TRUE;
END

What happens is:
1 When a new iteration of the Cust. Ledger begins, a date has not yet been printed.

2 If the loop generates any output at all, only the second GroupFooter section
(containing the Date text box) will be included as output in the first iteration.

3 If additional output is generated, only the first GroupFooter section (without the
Date text box) will be printed.

11.3 Advanced Sample Reports

Printing the Selected Range of Dates

The final touch to the report is to add a line at the end of the report that shows the total
number of entries and the total amount of these entries. How to calculate the figures
has already been described. The posting dates are used as a kind of header in the left
margin of the report, however, so the report would look good if the final line of this
header could display the range of dates that the user selected. This is easy to
implement:

1 Create a variable of type Text, with a length of 100, and call it DateFilter.
2 Add the following line to the OnPreReport trigger of the report:

DateFilter := Date. GETFILTER("Period Start");

3 Add a text box to the footer section of the Date data item that has DateFilter as
source expression.

When the OnPreReport trigger is executed, the RequestForm will already have been
run. The GETFILTER function returns any filters on the field that is passed as an
argument as a text string.

The Final Report

The report will look like this with sample data:

Date Document Type Qty Amount
01/15/95 Payment 3 -1,655,252.48
Invoice 1 1,906.25
Credit Memo 1 -2,640.00
Total 5 -1,555,986.23
01/16/95 Invoice 1 10,101.25
Total 1 10,101.25
01/17/95 Credit Memo 1 -6,950.00
Total 1 -6,950.00
01/18/95 Invoice 1 74,658.58
Total 1 74,658.58
01/19/95 Invoice 1 12,162.65
Total 1 12,162.65
01/20/95 Invoice 2 420,327.98
Credit Memo 2 -12,109.57
Total 4 408,218.41
01/22/95 Invoice 1 27,027.30
Total 1 27,027.30
01/23/95 Payment 1 -17,095.25
Invoice 2 149,167.22
Credit Memo 1 -2,230.00
Total 4 129,841.97
01/15/95..01/23/95 Total 18 -900,926.07

207

Chapter 11.

Extending the Functionality of Your Reports

Creating a Simple Document

This section will describe how to create a document by using the Report Designer.
The example is a skeletal sales invoice, that is, an invoice that does not take the
complexities of VAT calculations into account and does not test for a number of
conditions that will have to be tested in a real-life situation. Furthermore, it does not
print out all the information you would expect to find on an invoice.

Defining the Data Model

208

The two primary tables involved in creating a sales invoice are the Sales Invoice
Header and the Sales Invoice Line tables. Some supporting tables are used to
expand the codes used in the invoice tables to more descriptive texts (Payment
Terms, Shipment Method), and the Company Information table is used to retrieve
information about the company that is preparing the invoice.

The Sales Invoice Header table contains general information about each posted
sales invoice, while the Sales Invoice Line table contains the individual lines that are
part of each invoice. The tables are related through a field that is called No. in the
header table (and is the primary key of this table) and Document No. in the lines
table.

In order to define the data model, follow these steps:
1 Create a data item, based on the Sales Invoice Header table.

2 Create another data item, based on the Sales Invoice Line table, and indent this
data item one level.

3 By default, the DataltemLinkReference of the Sales Invoice Line data item points to
the Sales Invoice Header data item. Leave it like this, and set the value of
DataltemLink property to Docunment No. =FI ELD(No.) .

4 Enter the Amount field as the value of the TotalFields property of the Sales Invoice
Line data item, in order to calculate the total amount for all lines on the invoice.

5 Finally, in order to let the users of the report select a posted invoice to print, enter
the No. field as the value of the ReqFilterFields of the Sales Invoice Header data
item.

This completes the definition of the data model itself. In this report, some supporting
variables are needed in order to access information from tables that cannot be fitted
into the data model.

To create the variables, follow these steps:

1 Choose C/AL Globals from the View menu. This will open the form where you can
declare variables.

11.3 Advanced Sample Reports

2 Declare the variables like this:

& Sales Invoice Header - C/AL Globals !Elm

Variables | Text Constants I Functions I

| [Mame |DataT pe |Subt pe |Length

| |CompInfo Record Company Information =
| |PaymentTerms Record Payrnent Terms | £)
|| ShipmentMethod Record Shipment Method

| |Custaddr Text 30
| |Compaddr Text 30
|

| 5|
|| =]

Help |

3 The two last variables must be declared as arrays. Open the Property Sheet for
each variable and set Dimensions to 6 for the variable called CustAddr, and to 4 for
the variable called CompAddr.

M CustAddr - Properties E

BB

k2
-]

This concludes the definition of the data model. Next, a small amount of C/AL code
must be added to the report triggers.

Using the Triggers

This report, in this basic version, needs a very limited amount of C/AL code in order to
function. The picture below actually contains all the code that is needed:

mE Sales Invoice Header - C/AL Editor H=] E3

iDocumentationd) =
B

OnPreDataltem(}

CompInfo.GET;

CompAddr[1] := CompInfo.Mame;

CompAddr[2] := CompInfo.Address;

CompAddr[3] := CompInfo."Address 2";

CompAddr[4] := CompInfo.City;

COMPRESSARRAY(CompAddr);

OnAfterGetRecord()

CustAddr[1] := Hame;

CustAddr[2] := "MHame 2";

CustAddr[3] := Contact;

CustAddr[4] := Address;

CustAddr[5] := "Address 2";

CustAddr[6] := City;

COMPRESSARRAY(CustAddr);

PaymentTerms .GET("Payment Terms Code"};

ShipmentHethod .GET{"Shipment Method Code"); 1=

K 2l

209

Chapter 11. Extending the Functionality of Your Reports

The entire code is in the triggers of the first data item, Sales Invoice Header. In the
OnPreDataltem trigger, the statements work like this:

The first line, Conpl nf 0. GET, retrieves a record — in fact, the only record — from the
Company Information table.

The next four lines assign the contents of a field in the record in the Company
Information table to an element of the CompAddr array.

The final line of that trigger uses the COMPRESSARRAY function with the
CompAddr array as an argument, in order to eliminate empty elements from the
array. The reason for doing this is that you cannot be certain that all fields in the
retrieved record have values assigned. If you just printed each field on a separate
line, an empty field would cause an empty line to be printed.

The code in the OnAfterGetRecord works like this:

The first six lines assign values from the record in the Sales Invoice Line data item
to elements of the CustAddr array.

After this, COMPRESSARRAY is used for the reasons described above.

The last two lines use the GET function (with the codes for Payment Terms and
Shipment Method from the Sales Invoice Header record as arguments) to retrieve
the related records from the Payment Terms and Shipment Method tables. When
you design the sections, the full text descriptions can then be extracted from these
records.

Designing the Sections
Now that you have defined the data model and written C/AL code to retrieve
supporting information, you can design the sections. The picture below shows the
Section Designer after the necessary sections have been inserted and the relevant
controls added to the sections:

ma Report 0 - Section Designer =1 E3

L o =<CompAdihfi]>
= Custaddiz]- =diarnpAdd 2]
= Custaddifa]- =diarnpAdd 2]
=Custhdd 4]~ =-CorrpAdd 4]
Custidd 3]
e B R Fastng Do)

"> Sales Invaice Line, Headsr [1]

R | | e

> Sales Invoice Line, Body [2]
=Moe | s+ Deseripion™s | [Fcuaniys [[etnitpiice’s | [=<'lne Disoound [=amounts ||

> Sales Invoice Line, Footer [3]

[Toral =-Ameunt's
PaymentTems |=<Fawnenfems Descipion- |
g e H
-
KI| oy

210

11.3 Advanced Sample Reports

In the Header section of the Sales Invoice Header data item, you should notice these
points:

Six text boxes have been inserted with CustAddr[1]..CustAddr[6] as source
expressions. If you compare it with the document reproduced below, you will see
that in this particular invoice, only four of these array elements contain data. Using
COMPRESSARRAY has moved the data up, so to speak.

Likewise, in the invoice shown below only three of the four elements of the
CompAddr array contain data.

The text box that prints the posting date does not have the Posting Date as its
direct source expression. Instead, the source expression is the C/AL expression
FORMAT(" Posting Date", 0, 4), which, in the example here, formats the date as
January 19, 1995.

In the Footer section of the Sales Invoice Line data item, the Amount field is a
totaled field, containing the total of all amounts printed in the Body sections.

In the same section, the full text descriptions of Payment Terms and Shipment
Method are printed using Paynent Ter ns. Descri pti on and
Shi pment Met hod. Descr i pti on as source expressions, respectively.

This is how the invoice document looks when sample data is used:

Invoice
Englunds Kontorsmébler AB CRONUS International Inc.
Box 3319 5 The Ring
Kungsgatan 18 9999 Kugleby
600 03 Norrkébing
January 19, 1995
Due Date 01/31/95
No. 943028
Order No. 941013
No. Description Quantity Unit Price Discount % Amount
1952-W OSLO Storage Unit/Shelf 1 1,589.62771 15 1,351.19
1928-wW ST.MORITZ Storage Unit/Drawers 2 3,431.11242 15 5,832.89
1964-W INNSBRUCK Storage Unit/G.Door 2 2,928.56984 15 4,978.57
Total 12,162.65
Payment Terms Current month
Shipment Method Cost Insurance and Freight

211

Chapter 11. Extending the Functionality of Your Reports

A Nonprinting Report

To complete the examples, we will create a non-printing report. Although you can
achieve the same functionality by writing a codeunit, there are several good reasons
for using non-printing reports whenever you can:

The functionality that is available through a request form (prompting for options,
setting filters) is achieved with little effort, while recreating this functionality in a
codeunit is a considerable task.

Using the features of the Report Designer to prompt for options and to set filters
ensures consistency, not only in the application that you are creating, but also with
the Navision application and add-on products.

Instead of writing C/AL code to open tables and retrieve records, you just define a
data item.

The report we will create is a simple one: it adjusts prices in the Item table. The user
can set filters on some of the fields in the table in order to select a range of items by

number, by posting group or by vendor, and, of course, can choose the factor to adjust
the prices by.

Defining the Data Model
This report has one data item, based on the Item table.
To define the data model:
1 Create a data item based on the ltem table.
2 Set the value of the ProcessingOnly property of the report to Yes.

3 Set the value of the DataltemTableView property of the Item data item to No. (by
using the assist-edit button). Though this is not strictly necessary for the
functionality of the report, it does serve one purpose: it removes the Sort ... button
from the request form that will be presented to the user of the report. As the report
will not print anything, the order in which data items will be run through is irrelevant.

4 Select the fields that the user will be able to filter, by using the assist-edit button in
the ReqgFilterFields property:

i Field List [_ (O] x|

|»
[T« BT

212

11.3 Advanced Sample Reports

5 Declare three variables, like this:

i Item - C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
|| window Dialog =
|| Adjustment Diecimal |£)
| |MewPrice Decimal
E3j

Help |

The Window variable, declared as a Dialog type, will be used for printing a
message on the screen while the report runs.

The Adjustment variable will be used for the value that the user enters in the
request form.

NewPrice will be used to store an intermediate result.

Creating the Request Form

Step 4 of Defining the Data Model above has already taken care of creating a request
form with a tab where the user can set filters on some of the fields of the data item.
You must add an Options tab, where the user can define the adjustment factor.

To create an Options tab:

1 Open the Request Options Form Designer by choosing Request Form from the
View menu.

2 Add a text box with a label to the form (to have the label added automatically, press
the Add Label button in the Toolbox before selecting the Text Box tool).

3 In the Property Sheet of the text box, set the source expression to Adjustment, the
newly created variable.

ma Report 0 - Request Options Form Designer [|O] x|
: Control2 . . . J=<Adiustments j
A H oz

Using the Triggers

Now that you have defined the data model and designed the request form, you must
add a small amount of C/AL code to the triggers of the ltem data item in order to

213

Chapter 11.

214

Extending the Functionality of Your Reports

perform the actual price adjustment. The picture below shows all the C/AL code that is

necessary:

mH Item - C/AL Editor
Documentation(}

OnPreDataltem(}

[l 1%

Window.OPEN('Processing item #1#HE") ;
If Adjustment = @ THEN
CurrReport.QUIT;

OnAfterGetRecord()

Window.UPDATE{1,"Ho."};

NewPrice := Adjustment = "Unit Price";
UALIDATE("Unit Price" ,HewPrice};
HODIFY ;

OnPostDataltem{)

K

| T+]«

The code functions like this:

The first statement in the OnPreDataltem trigger opens a window, intended to show
the progress of the report as it is run. (Because the report is non-printing, the usual
window that shows printing progress is not shown. If the table is very large, the
report may run for a while. Therefore, it is a good idea to indicate to the user that
something is actually happening.)

The first statement in the OnAfterGetRecord trigger enters the item number in the
window each time a new record has been retrieved.

The second statement in the OnPreDataltem simply causes the report to end
without doing any processing if the adjustment factor is O (zero). If the adjustment
factor were allowed to be zero, then all prices in the table would be set to zero,
which would certainly never be the intention. The statement used here is a very
crude way of handling this situation: in a more polished version, the user should, for
example, have an opportunity to reenter the adjustment factor (or at least be
notified of the reason for quitting the report run).

The last three lines in the OnAfterGetRecord trigger actually update the prices.
First, the adjusted value is assigned to the NewPrice variable. Then, the VALIDATE
function of the Unit Price field is used to update the price. In this way, any special
processing (for example, updating of other fields that are related to this field) in the
OnValidate trigger of the table field will be performed. Finally, the MODIFY function
is used to commit the change.

Codeunits

Chapter 12

This chapter explains what a codeunit is and how to create
one. It also shows you how to use the functions in a
codeunit from other application objects.

What Is a C/SIDE Codeunit?
Creating Codeunits

Using Codeunits

Chapter 12. Codeunit Fundamentals

12.1 WHAT Is A C/SIDE CODEUNIT?

218

In the previous parts of this book you have seen examples of C/AL code in forms and
reports. This code was always stored in a form or report object. In simple applications
the normal approach is to place the code in the object that calls the functions, but as
your application grows you will often find that you use the same functions repeatedly.
Instead of declaring the same functions over and over again, it would be useful if you
only had to define them once. This is where the codeunit comes in. Think of a
codeunit as a container for C/AL code that you want to use in many application
objects.

In a codeunit you can

Tables Forms store general

N functions that are not

directly associated
with any of your other

Codeuni o)
odeunits - application objects
4’>

Reports Dataports

In codeunits you can define:

Functions A function is a sequence of C/AL statements, which you define in order to
create new functionality. Within each function you can define local variables, that is,
variables whose scope is limited to the function in which they are defined.

Global variables A global variable is a variable whose scope covers all the functions
in the codeunit.

Temporary tables A temporary table is a table that is not stored in the database.
Temporary tables are mainly used as structured variables that hold data temporarily
while you work on it. Refer to Defining and Using a Temporary Table on page 72 for a
description of how to create a temporary table.

Each function you add to a codeunit will be shown in a separate section when you
view the file in the C/AL Editor.

12.1 What Is a C/SIDE Codeunit?

Codeunit 2 Company-Initialize - C/AL Editor *
iDocumentation() =
2] When you add your
OnRun{) own functions they
Window.0OPEN(' Initializing company...'); will be shown here

AccountingSetup.INIT;
AccountingSetup.INSERT;

IF HOT (SourceCodeSetup.FIND({'-') OR SourceCode.FIND{ "
WITH SourceCodeSetup DO BEGIN

INIT;
InsertSourceCode{Sales, "SALES',"Sales");
InsertSourceCode{Purchases, 'PURCHASES ', 'Purchases’
InsertSourceCode (" Inventory Post Cost™,'INUTPCOST®
InsertSourceCode{"Exchange Rate Adjmt.",'EXCHRATAD.
InsertSourceCode{"Post Recognition",'POSTRECOG',Ref
InsertSourceCode("Post Value™,'POSTVALUE' ,ReportHan
InsertSourceCode{"Close Income Statement",'CLSIHCON
InsertSourceCode{Consolidation, 'CONSOLID', 'Consolid
InsertSourceCode{ " General Journal",'GENJNL',FormNa[i
InsertSourceCode({"Sales Journal®, 'SALESJHL® ,FormH4

K 2l

4

All codeunits include two default sections called Documentation and OnRun. In the
Documentation section, you can add optional information about the code such as the
purpose of the codeunit, a version number and so on. In the OnRun section, you can
include code that you want the system to execute when the codeunit is run.

Codeunits Contain Functions But Can Also Be Run

Besides being a container for functions that can be run individually, a codeunit can
itself be run by writing <Codeunitname>.Run. When you run a codeunit, it is the code
in the OnRun section of the codeunit that will be run.

219

Chapter 12. Codeunit Fundamentals

12.2 CREATING CODEUNITS

You create a new codeunit or modify an existing codeunit in the same way you create
and modify other application objects, that is, by using the Object Designer.

To create a codeunit:

1 From the menu bar, choose Tools, Object Designer. C/SIDE will open the Object
Designer.

"-," Object Designer !EI m
1. |1D [name [r.]wersion List Il
ks ! MAYY13,69,990 =
3 Table | = MAYW13.69,990 —
= E 3| GJL Account-Indent MAYW 13,00
Form —
- A & Fiscal Year-Close Ay 13,00
=] Repork | = 7 GLEudget-Open MW 13,00
o R | = g AccSchedManagement MNAVW13.69.990
= 11 Gen. Inl.-Check Line YW1 3,639,990
[+ Codeunit S 12| Gen. Inl.-Post Line MAVI13.69.950
4l J - A 13 Gen. Jnl.-Post Batch MAYYW13,69,990
— - B 14 Gen. Inl.-Show Entries Ay 13,00 -
1| | 3
Tew Design | Run | Help |
Select codeunit. Click New to create a Click Design to modify
new codeunit. an existing codeunit.

2 Click the Codeunit button in the Object Designer.

3 Click New to create a new codeunit. C/SIDE will open the C/AL Editor, where you
can create functions.

To modify an existing codeunit:
1 Click the Codeunit button in the Object Designer.
2 Select the codeunit you want to modify.

3 Click the Design button. C/SIDE will open the C/AL Editor, where you can modify
the codeunit by changing existing functions or adding new functions.

Using the C/AL Editor

220

The C/AL Editor is where you view and edit your code. This editor is designed to make
it easy for you to create and modify C/AL code. When you are in the C/AL Editor, you
have access to the C/AL Symbol Menu that helps you define C/AL functions. When
you use the C/AL Symbol Menu, you can get help about all C/AL commands. Select
the C/AL function name in the column to the right and press F1. Read more about the
C/AL Symbols Menu in the section "Using the C/AL Symbol Menu" on page 226.

When you create a codeunit, the window shows the two default sections described
above (the Documentation and the OnRun section).

12.2 Creating Codeunits

From the Object Designer you can open as many codeunits as you like. Each time you
create a new codeunit or open an existing one, it will be displayed in a separate
window. This makes it easy to cut and paste lines of code between the codeunits.

If you have tried to use other Windows editors, you'll find the C/AL Editor easy to use.
You can access the editing functions either from the Edit menu:

¥ CRONUS International Ltd. - Microsoft Business Solutions-
File | Edit View Tools ‘Window Help

5 Undo Chrl+2

& T == F Use the Cut, Copy

Ut hrl and Paste functions
Copy, Chrl+C to edit the C/AL
Paste |4 Documentation()

Clear; e

Copy Link OnRBunt) \

Write
documentation for

Insert Mew
Delete

Select
Select All Chrl+a
Select Gbject

Add your own
functions here.

Chrl+F
Chrl+H

Eind...
Replace...

Or you can access the editing functions from the toolbar:

¥ CRONUS International Ltd. - Microsoft Business Solutions-Navision

File Edit Yiew Tools Window Help

& & By = = ¢ = E = A M4 M
|
’ Paste
Cut Copy

When you are working in the C/AL Editor, you can use a number of shortcut keys:

To... Press...
cut the selected text to the clipboard. CTRL+X
copy the selected text to clipboard. CTRL+C

paste the text at the clipboard into the codeunit CTRL+V
at the cursor position.

open the Find dialog to search for trigger CTRL+F
names.

Defining Variables, Text Constants and Functions in Codeunits

When you have created a new codeunit, the next step is to define the global variables,
text constants and functions you need in the codeunit. You use the C/AL Globals tool
for this.

221

Chapter 12. Codeunit Fundamentals

To access the C/AL Globals tool:

Make sure that focus is on the C/AL Editor. From the View menu, choose
C/AL Globals. C/SIDE will display the C/AL Globals window:

s Form - C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
4] | 1]
Help |

In the C/AL Globals window, you select whether you want to add a global variable, a
text constant or a function.

Global variables To add a global variable:
1 Click the Variables tab in the C/AL Globals window.

2 Add a name and a type. If the type you select corresponds to an application object,
you also have to add a subtype, that is, the name of a specific object in the
database. If you select text or code you have to define a length for the variable (the
default length is 10 characters for code, and 30 for text). If you select OCX or
Automation, you also have to add a subtype as described in the chapter Extending
C/AL. Refer to Defining and Using a Temporary Table on page 72 for information
about how to create temporary tables.

Text constants To add a text constant:

When you are about to create a message for the user in the C/AL Editor you must do
the following:

1 Click the Text Constants tab in the C/AL Globals window:

s Form - C/AL Globals A= &3
Variables Text Constants | Functions I
| [Mame |C0nstVaIue
| L
|| L]
Help |

2 In the first available Name field, enter the name of the new text constant.

222

12.2 Creating Codeunits

There is no naming convention for the text constants. Using the unique ID for the
name is a suggestion but not a requirement.

3 Open the property sheet for the text constant.

A unique ID number has been automatically assigned to the text constant in the ID
field.

4 Copy the ID number to the Name field in the C/AL Globals window, for example
Text1000, if the ID number in the ID field is 1000.

The C/AL Globals window will look like this:

i Form - C/AL Globals A= &3
Variables Text Constants |Functi0ns I
| [Mame |C0nstVaIue
| #» | Text1000] |-
Help |

5 Inthe ConstValue field, click the AssistButton ... to open the Multilanguage Editor
window.

6 In the Language field, enter ENU for English (United States).
7 In the Value field, enter the message string that this text constant will represent.
8 Click OK to exit. If you do not click OK, the information is not saved.

9 In the C/AL Editor, copy the ID number to the place where you want the message or
error message to appear.

EXAMPLE

IF FileNane = ' ' THEN
ERROR(Text 1000) ;

Text1000 is an available number in the text constants number series for that object.

When you move the cursor over the new text constant, you will see its contents on the
message line.

223

Chapter 12. Codeunit Fundamentals

If you remembered to set the application language to English (United States) before
entering the Object Designer, you can enter the message string directly into the
ConstValue field in the C/AL Globals window. Then you should open the
Multilanguage Editor to make sure that the text is saved as English (United States).

Functions To add a function:

1 Click the Functions tab in the C/AL Globals window. C/SIDE will open the following

window:
s Form - C/AL Globals A= &3
Variables I Text Constants Functions |
ame Locals |

[ENE

Help |

2 Enter a name for each function you want to add.

3 Click Locals to define the parameters, return value, local variables and text
constants for each function. C/SIDE will display the C/AL Locals window:

8 FindCustomer - C/AL Locals A= &3
Parameters | Return Yalue I Variables I Text Constants I
‘ar |Name |DataT pe |Subt pe |Length
Ed | =
4] | 1]
Help |

4 For each parameter you have to specify the calling method, a name, and a data
type. You can specify a subtype and a length, but this is optional.

The calling method can be specified as Var, which means that the parameter is
passed by reference rather than by value. The value of a variable can only be
changed by a function when it is passed to the function by reference. When the
parameter is not specified as Var, only a copy of the variable is passed to the
function. If the function changes that value, the change affects only the copy and
not the variable itself.

224

12.2 Creating Codeunits

If the type you select corresponds to an application object, you also have to add a
subtype, that is, the name of a specific object in the database. If you select text or
code you have to define a length for it (the default length is 10 characters for code,

and 30 for text).

Click the Return Value tab to define the return value for your new function. C/SIDE

will display:
8 FindCustomer - C/AL Locals A= &3
Parameters Return Yalue | Variables I Text Constants I
Mame. I
Return Type I VI
Length I
Help |

Enter a name for the return value and select a data type from the drop-down list.
You can also select a length, but only if the type is text or code.

7 Click the Variables tab in order to define local variables. C/SIDE will display:

8 FindCustomer - C/AL Locals A= &3
Parameters I Return Value Variables | Text Constants I
| [Mame |DataT pe |Subt pe |Length
[E|
| %]
|| =]
Help |

For each local variable, you must add a name and a type. If the type you select
corresponds to an application object, you also have to add a subtype, that is, the
name of a specific object in the database. If you select text or code, you have to
define a length for the variable (the default length is 10 characters for code and 30

for text).

225

Chapter 12. Codeunit Fundamentals

9 Click the Text Constants tab in order to define text constants for the function.
C/SIDE will display:

8 FindCustomer - C/AL Locals !Elm

Parameters I Return Yalue I Variables Text Constants |

ame | Constyalue

[]

LITTTTTT [
w

[l

Help |

See page 222 about text constants for a description on how to fill in the Name field
and the ConstValue field.

Using the C/AL Symbol Menu
When you write C/AL code in the C/AL Editor, you can use the C/AL Symbol Menu
window to get an overview of the following:
All variables defined in the codeunit
All C/AL functions

The information in the C/AL Symbol Menu window is divided into three or more
columns:

The column to the left shows variable names (if you have defined any) and function
categories.
The second column shows the subcategories.

The third column shows the functions in the category you have selected.

226

12.2 Creating Codeunits

You can see the syntax and other information, such as the Caption property
corresponding to the field name you have selected, in the bottom left-hand corner of
the window. For more information about the FieldCaption subcategory, see page 382.

i C/AL Symbol Menu A= &3
CurrDataport j = | Code *
CurrFile ﬂ FieldZaption B Due Date Caloulation B

Miscellaneous Discount: Dake Calculation
Modification Discount %
SYSTEM Filter Description
FILE Mark.
TRANSACTIONTYPE ﬂ Field
DIALOG | |Functions |- |-
r Paste Arguments +- | =+ |
Code

OF I Cancel | Apply | Help |

| J
Click OK or Apply to paste the Isyntax description into the editor

In some cases, for example, when a control on a form is a subform or when a field is a
BLOB field, there are more than three columns. You can use the right-arrow button to
scroll the symbol menu columns to the right and the left-arrow button to scroll them
back.

Click OK or Apply to make C/SIDE insert this string in the C/AL Editor. If you click OK,
the C/AL Symbol Menu window is closed automatically; if you click Apply, the
window stays open.

If you need help with any of the C/AL functions shown in the column to the right, select
the function name and press F1 to activate the context-sensitive online Help: C/SIDE
Reference Guide.

Compiling and Saving Codeunits

Before the functions in a codeunit can be run, the code has to be compiled and saved.
When you compile the code, the system checks the syntax of the statements. If the
compiler finds any errors in the code it will display a message.

To compile the code in a codeunit:
1 From the Tools menu, choose Compile.

2 If the system finds any errors in your code it will display a message. Correct the
errors and choose Compile from the Tools menu again.

227

Chapter 12. Codeunit Fundamentals

228

To save the codeunit:

1 From the File menu, choose Save. C/SIDE will display:

Save As [X] Enter a unique ID
/ and a Name.
Do @
Name. | Select whether you
Compiled want the system to
compile the code
Ok | Cencel | Help | before it is saved.

2 Enter an ID number and a name. The number is used as a unique identification,
while the name serves as a label. If you save the codeunit without compiling it, you
won't be able to run it or call any of its functions.

Why Save without Compiling?

If you are working on a large and complicated codeunit, you will want to save you work
at regular intervals, even though it is not yet finished and cannot yet be compiled. In
this case, you have to remove the check mark from the Compiled box before you
save.

12.3 Using Codeunits

12.3 USING CODEUNITS

When you use codeunits, you eliminate the need to duplicate code and at the same
time make the code easier to maintain. If you use the same code repeatedly in your
forms or reports, you should create a function in a codeunit. When you have created a
function in a codeunit you can access it as:

<Codeuni t Nane>. <Funct i onNane>

EXAMPLE

Assume that you have created a codeunit containing two statistical functions named F and G. The
illustration below shows how to access these functions from a form.

Codeunit naned StatFun
F(x:integer)

Begi n

G(x:integer)
Begi n

End

Any form

Result :=
St at Fun. F(3425) +St at Fun. G(346) ;

This method is generally applicable. That is, from any application object you can
access functions in other application objects by prefixing the function name with the
name of the application object containing the function.

You can access codeunits through codeunit variables — either by explicitly declaring a
variable with the data type codeunit or by setting the RunObject property on forms to a
codeunit. A codeunit variable does not contain a codeunit, but only a reference to a
codeunit. More than one codeunit variable may refer to the same codeunit as shown in
the following figure:

CU Variable 1 CU Variable 2

cu Global
variables

Codeunits contain internal variables that are defined as global variables. These
variables are not accessible directly from code outside the codeunit, but they can be
accessed through user-defined functions on the codeunit. Whenever a codeunit

229

Chapter 12. Codeunit Fundamentals

variable is used for the first time, a new instance of the codeunit is created, that is, a
new set of internal variables is initialized so that different codeunit variables use
different sets of internal variables.

Codeunit Codeunits can be treated as objects — one codeunit variable can be assigned to
assignment another codeunit variable, which creates a new reference to the same codeunit
instance. In other words, the codeunit variables then use the same set of internal
variables.
EXAMPLE

Codeunit 50000 has two functions Set and Get . Set sets an internal variable to the value of the
parameter given. Get returns the value of the internal variable.

VAR
CoM C1: Codeunit 50000;
CoM C2: Codeunit 50000;
/I codeunit 50000 is a standard codeunit

BEG N
CoM Cl1. Set (1);
CoM C2. Set (2);
//both codeunit variables are instantiated - they have different
//instances
CoM Cl1. Get ();
CoM C2. Get () ;
//CoMCl returns 1; CoMC2 returns 2
CoM C2 : = CoM C1;
/I CoMC2 is assigned to CoMCl and they now both use the sane
i nst ance
CoM Cl1. Get ();
CoM C2. Get () ;
/1 both codeunit variables return 1
END;

CLEAR on codeunits When you use the function CLEAR on a codeunit variable that has a reference to a
codeunit instance with two or more references, CLEAR only deletes the reference to
the codeunit and not the actual codeunit instance. In other words, the codeunit stays
intact and can still be used by other codeunit variables that may have been assigned a
reference to this codeunit. To delete a codeunit instance, you must clear all references
to the codeunit with the function CLEAR. If you need to clear the internal variables in a
codeunit, you must call CLEARALL from a user-defined function within the codeunit.
When a local codeunit variable goes out of scope, meaning that it is no longer used by
the codeunit, it is automatically cleared.

Single Instance In some cases, the situation requires that only one instance of a codeunit exists. This

Codeunit means that all codeunit variables of a particular codeunit will use the same set of
variables. By setting the Singlelnstance property for the codeunit to Yes, all codeunit
variables of that codeunit will use the same instance, thus allowing the developer to
create global variables.

230

12.3 Using Codeunits

It is recommended that you avoid using global variables for most types of code.
However, in certain situations, it may be necessary to use them, for example, to make
sure that you are only using one instance of an external variable.

A single instance codeunit is instantiated when you use it for the first time. Normal
codeunit instances (codeunits that do not have the Singlelnstance property set) are
deleted whenever the last codeunit variable that uses that codeunit instance goes out
of scope. However, single instance codeunits remain instantiated until you close the
company.

EXAMPLE

Codeunit 50001 has two functions Set and Get . Set sets an internal variable to the value of the
parameter given. Get returns the value of the internal variable. Codeunit 50001 has the
Singlelnstance property set.

VAR
CoSI C1l: Codeunit 50001;
CoSI C2: Codeunit 50001;
// codeunit 50001 is a single instance codeunit

BEG N
CoSI CL. Set (7);
/la codeunit instance is created if one did not exist
CoSl C2. Get () ;
//returns 7 - CoSIC2 uses the sane instance as CoSICl, so //they use
the same internal variables
END,;

It is possible to use a single instance codeunit across objects and not only within the
same object.

Limitations on Codeunits
Global variables and temporary tables in a codeunit cannot be accessed directly from
other application objects. The only way to access these values is through the
functions you have created in the codeunit.

All C/AL functions can be used in a codeunit. Notice, however, that you cannot create
a function with the same name as a built-in function. Neither can two or more user-
defined functions have the same name (unless they are part of different application
objects).

231

Chapter 12. Codeunit Fundamentals

232

Chapter 13

This chapter introduces the C/AL language. It describes
how you can use the language to create functions, and it
describes the syntactical rules of the language.

What Can You Do with C/AL?
What Are Statements, Expressions, and Operators?
Introducing the Elements of C/AL Expressions

The C/AL Control Language

Chapter 13.

Introducing the C/AL Language

13.1 WHAT CAN You Do wiTH C/AL?

234

The previous parts of this book have shown you how to design various database
objects such as tables, forms and reports. But simply getting these individual objects
up and running is not enough. To turn these objects into a coherent application you
have to make the database objects work together. C/AL code is the glue that does this
for you. When you are designing professional applications you will often need
specialized functions. C/AL makes it possible to go beyond what C/SIDE does
automatically. For example, you can create special functions for use anywhere in the
database.

Here are the most important things C/AL lets you do:

Design Your Own Functions Although C/SIDE has a large number of intrinsic
functions, you will sometimes find it convenient or necessary to add your own
functions, for example, if the application you are developing repeatedly uses the same
non-trivial processing.

Connect Database Objects C/AL code glues your database objects together. C/AL
includes a number of commands that control how the individual database objects in
your application interact.

Read, Write and Modify Data C/AL includes standard functions for reading, writing
and modifying table data.

13.2 What Are Statements, Expressions, and Operators?

13.2 WHAT ARE STATEMENTS, EXPRESSIONS, AND OPERATORS?

In this section the following terms are introduced:

Statements
Expressions
Data types
Operators

Consider the following C/AL code sample:

Amount = 34 + Total;

This individual code line is also called a statement. The table below illustrates how the
statement can be broken into smaller elements.

Element Description

34 + Total An expression. In this case the expression consists of an arithmetic
operator (+) and two arguments (34 and Total), which also could be called
sub-expressions. All valid C/AL expressions can be evaluated to a specific
value.

= The assignment operator. When the right-hand side expression has been
evaluated, this operator is used to assign (store) the value in the variable
Amount.

Amount This is called a variable. It is used to reference a memory location where
data is stored.

What Is a C/AL Expression?

An expression is a fundamental C/AL concept. This section describes expressions
and how they are used.

An expression can be used as an argument of a C/AL function. Consider the C/AL
statement below:

Date : = DMY2DATE(31, 12, 1996);
This function takes three simple expressions as arguments, 31, 12 and 1996.

A C/AL expression is a group of characters (data values, variables, arrays, operators
and functions) that can be evaluated, with the result having an associated data type.

All expressions in C/AL are built from:

Constants
Variables
Operators

Functions

235

Chapter 13.

Introducing the C/AL Language

Depending on the elements in the expression, the evaluation will result in a value with
a C/AL data type. The table below shows some typical expressions.

Expression Evaluates to:

'Welcome to Hawaii' The string 'Welcome to Hawaii'

'Welcome' + ' to Hawaii' The string 'Welcome to Hawaii'

43.234 The number 43.234

ABS(-7234) The number 7234

len1 <618 TRUE or FALSE depending on the value of len1

The first row shows a text string which is evaluated to itself. The second row evaluates
into a concatenation of the two strings. The third row shows a decimal number, which
is evaluated to itself. The expression in the fourth row contains a function, with which
the given argument is evaluated to the number 7234. The last row shows a
comparison between a variable and a numerical constant.

The above examples show that when C/AL expressions are evaluated, the results
have a specific data type. The next section explains the C/AL data types in more
detail.

Introducing the C/AL Data Types

236

As you have already seen, variables can be used to store data of various types. By
declaring variables to be of the proper type, you:

create faster code.
save space.

avoid runtime errors due to overflow or impossible type conversions.

For example, if you know that a variable will always contain an integer number
between 0 and 700, you should use an integer variable instead of a decimal variable.
All calculations will be faster because the system uses 4 bytes per integer operation
instead of the 12 bytes that decimal variables require. On the other hand, you will
have to use a data type that can hold all possible values needed in your calculations.
For example, if you try to store the value 1233.345 in an integer variable you will get a
runtime error. C/AL contains a wide range of data types.

13.2 What Are Statements, Expressions, and Operators?

These data types can be divided into the following categories:

C/AL Data Types

— Fundamental ——— Option

T Integer ____ Numeric
—— Decimal

——- Char

—— Biglnteger
—Duration

— Text
—— Code
—— Date
—— Time
—— DateTime
— Boolean

L — Binary

——— String

Complex ———— BLOB
I Table
Form
Codeunit
—— File

Automation
InStream

——— OutStream
—— Variant
——— DateFormula
—— GUID

— TableFilter
I Record

— RecordID
— RecordRef
— FieldRef
—— KeyRef

Fundamental Data Types

In C/AL, there are a number of fundamental data types, which are designed to store
boolean values, numbers, text, time and dates.

boolean The values TRUE or FALSE.

integer Used to store integers between -2,147,483,647 and 2,147,483,647.
biginteger Used to store very large whole numbers.

duration Used to represent the difference between two datetimes, in milliseconds.

option This denotes an option value. Option values can freely be converted to
numeric ones. The values range from -2,147,483,647 to 2,147,483,647.

EXAMPLE

Assume that Number is a numeric variable and that Type denotes a field of type Option in the
Purchase Header table. In the statement below the option value is converted to a number:

Nurmber : = "Purchase Header". Type;

237

Chapter 13.

238

Introducing the C/AL Language

EXAMPLE

This example illustrates how the possible values of an option field can be used as constants in
your C/AL code:

"Purchase Header". Type := "Purchase Header". Type::Invoice;

decimal Denotes decimal numbers ranging from -10+E63 to +10+E63. The
exponent ranges from -63 to +63. Decimal numbers are held in memory with 18
significant digits.

date Denotes dates ranging from January 1, 0 (the year zero) to December 31,
9999. An undefined date is expressed as 0D. All dates have a corresponding closing
date. The closing date for a given date is regarded by the system as a period following
the given date but before the next normal date. Thus a closing date is sorted
immediately after the corresponding normal date but before the next normal date.

time Denotes a time. An undefined time is expressed as OT. Any time in the range
00:00:00 to 23:59:59.999 is valid.

datetime Use this data type to denote the date and time of day.

The datetime is stored in the database as Coordinated Universal Time (UTC). UTC is
the international time standard (formerly Greenwich Mean Time, or GMT). Zero hours
UTC is midnight at O degrees longitude. The datetime is always displayed as local
time in Navision. Local time is determined by the time zone regional settings used by
your computer.

You must always enter datetimes as local time. When you enter a datetime as local
time, it is converted to UTC using the current settings for the time zone and daylight
saving time.

There is only one constant available when you use this data type: undefined datetime.
DateTime := 0DT

Navision Database Server

The earliest permitted datetime is January 1, 0000, 00:00:00.000.
The latest permitted datetime is December 31, 9999, 23:59:59.999.

SQL Server

The earliest permitted datetime is January 1, 1754, 00:00:00.000.
The latest permitted datetime is December 31, 9999, 23:59:59.999.

Any datetimes that are not within this range and that you try to enter or construct by,
for example, adding a datetime to a duration, are regarded as undefined datetimes
and give an error message.

Undefined dates are stored as January 1, 1753, 00:00:00.000.

13.2 What Are Statements, Expressions, and Operators?

char Stores a single character as a value in the range 0 to 255. This data type can
be freely converted between a number and a character. This means that you can use
the same mathematical operators as with a number type variable.

EXAMPLE
You can assign a constant string of the length 1 to a char variable:

Cc:="A"Y

EXAMPLE
You can also assign a single char in a text, code or binary type variable to a char variable:

C:=92];

When you use the text and code data types, it is important to distinguish between the
maximum length of the string and the actual length of the string. The maximum length
can be seen as the upper limit for the number of characters in the string, while the
actual length describes the number of characters used in the string.

text Denotes a text string. The maximum length of the string ranges from 1 to 1024
characters. You can index any character position in a string — for example A[65] refers
to the 65th character in the variable called A. The resulting values will be of type char.
The length of a variable of type text corresponds to the number of characters in the
text. An empty text string thus has the length 0.

The table below illustrates some typical examples of text strings. In these examples it
is assumed that the variable t is of type text and has a maximum length of 6.

Assignment Results in...

t:='AbC"; The variable t now contains "AbC".

t :='123456abx'"; Results in a runtime error because the length (9) exceeds the maximum
length (6).

code Denotes a special type of text string. When a given text is assigned to a code
type variable, the text is transformed to uppercase, and leading and trailing spaces
are removed. You can index any character position in a string — for example, A[65].
The resulting values will be of type char. The maximum length of a code type variable
ranges from 1 to 250 characters. The length of a code type variable always
corresponds to the number of characters in the text without leading and trailing
spaces.

239

Chapter 13.

Introducing the C/AL Language

EXAMPLE

The table below shows some typical examples of code string assignments. In the examples, it is
assumed that the variable c has the type code, and the maximum length 4.

Assignment The variable c now contains... The length is...
¢ :='AbC"; 'ABC' 3

c:="1" "' 1

ci=" " (empty string) 0 (zero)

c:="'2"% '2' 1

c:="12"4 12 3

Descriptive Data types

In order to describe the syntax of the C/AL language, some descriptive data types are
used. It is important to stress that these are not real system data types, but are used in
the C/SIDE documentation for descriptive purposes only.

The table below summarizes the correspondence between the descriptive data types
and the simple C/AL data types.

Descriptive data type Includes these system data types...
Numeric char, integer, biginteger, duration, option, and decimal
String text and code

Complex Data Types

240

C/AL also contains a number of complex data types. Complex data types are used
when you need to work with, for example, records in tables, pictures (bitmaps) or disk
files. As C/AL is object oriented, each complex data type can include both member
variables and member functions.

BLOB This is a Binary Large Object. Variables of this data type differ from normal
numeric and string data type variables in that they have a variable length. BLOBs are
used to store memos (text), bitmaps (pictures) or user-defined types. The maximum
size of a BLOB is normally determined by your system’s disk storage capacity, as the
upper limit is 2GB.

record This is a complex data type, consisting of a number of simpler elements
called fields. A record corresponds to a row in a table. Each field of the record is used
to store values of a certain data type. The fields are accessed using the variable name
of the record (often the same as the name of the corresponding table), a dot (a period)
and the field name. A record is typically used to hold information about a fixed number
of properties.

form Variables of this data type are used to store forms. This is a complex data type
which can contain a number of simpler elements called controls. Controls are used to
display information to the user or to receive user input.

13.2 What Are Statements, Expressions, and Operators?

codeunit Variables of this data type are used to store codeunits. This is a complex
data type which can contain a number of user-defined functions.

file Variables of this data type give you access to operating system files.

dialog Variables of this type are used to store dialog windows. A number of functions
are available for manipulating dialogs.

report Variables of this data type are used to store reports. This is a complex data
type that can contain a number of simpler elements called controls. Controls are used
to display information to the user.

dateformula Use this data type to contain a date formula that has the same
capabilities as an ordinary input string for the CALCDATE function. The DateFormula
data type is used to provide multilanguage capabilities to the CALCDATE function.

GUID Use this data type to give a unique identifying number to any database object.

The Globally Unique Identifier (GUID) data type is a 16 byte binary data type. This
data type is used for the global identification of objects, programs, records and so on.
The important property of a GUID is that each value is globally unique. The value is
generated by an algorithm, developed by Microsoft, which assures this uniqueness.

The GUID is a 16 byte binary data type and can be logically grouped into the following
subgroups: 4byte-2byte-2byte-2byte-6byte. The standard textual representation is
{12345678-1234-1234-1234-1234567890AB}.

tablefilter Use this data type to apply a filter to another table. At the moment, this
data type can only be used when you are setting security filters from the Permission
table.

recordref This complex data type identifies a row in a table. Each record consist of
fields (which form the columns of the table). A record is typically used to hold
information about a fixed number of properties.

The RecordRef object can refer to any table in the database. Use the
RecordRef.OPEN function to select the table you want to access. When you use the
RecordRef.OPEN function a new object is created. This object contains references to
the open table, filters and the record itself and all the fields it contains.

If one RecordRef variable is assigned to another RecordRef variable, they both refer
to the same table instance.

recordlD This complex data type contains the table number and the primary key of a
table. You can store a RecordID in the database but you cannot set filters on a
RecordID.

fieldref This complex data type identifies a field in a table and gives you access to
this field. The fieldref object can refer to any field in any table in the database.

keyref This complex data type identifies a key in a table and the fields in this key.
This gives you access to the key and the fields it contains. The keyref object can refer
to any key in any table in the database

241

Chapter 13.

Introducing the C/AL Language

InStream and OutStream Variables of these data types enable you to read from or
write to files and BLOBSs. In addition, you can use InStream and OutStream to read
from and write to objects of the types Automation and OCX.

Variant This data type can contain the following C/AL data types: record, file, action,
codeunit, Automation, boolean, option, integer, decimal, char, text, code, date, time,
binary, DateFormula, TransactionType, InStream and OutStream. For more
information about this data type, see the online C/SIDE Reference Guide.

OCX and Automation See the chapter Infroducing the C/AL Language, on page
299.

Creating Arrays of Variables

242

It is possible to create 10-dimensional variables, using the simple and complex data
types presented above. There are no limitations on how many elements a dimension
can contain but an array variable can never have more than 1,000,000 elements in all.
The physical size of an array is limited to 2 GB (or available memory). Arrays are
always indexed with a number for each dimension that ranges from 1 to (and
including) the size of the dimension. If you accidently index outside the range of the
dimensions of an array, a runtime error will occur.

EXAMPLE

Assume that Foo is a one-dimensional array variable of the Integer type, with the dimension 10.
To index the first element, use Foo[1]. To index the last element, use Foo[10].

EXAMPLE

Assume that Bar is an array variable of type Date with the dimensions 2x3x4. Then Bar has 24
elements.

To index the first element, use Bar[1,1,1]. To index the last element, use Bar[2,3,4].

13.3 Introducing the Elements of C/AL Expressions

13.3 INTRODUCING THE ELEMENTS OF C/AL EXPRESSIONS

Constants

The previous sections have introduced you to C/AL expressions and data types. The
aim of this section is to present the basic elements of C/AL expressions. The following
subsections will briefly discuss:

Constants
Variables
Operators

Functions

We start by defining ranges and properties of constants in C/AL.

A constant is the simplest type of operand used in C/AL. The value of a constant
cannot be changed during the execution of the code. Constants can be defined for
each of the simple data types in C/AL.

Entering Values in C/SIDE

Beware that in the examples below, numbers such as 2,147,483,647 and
999,999,999,999,999.99 cannot be entered in the C/AL system in this form. The
commas are only used to increase the legibility of this document. If you use commas
when you enter numbers in the C/AL editor, a compilation error will occur.

boolean constant A boolean constant may have either the value TRUE or FALSE.

integer constant An integer constant has a value in the range
-2,147,483,647 to 2,147,483,647.

decimal constant A decimal constant must contain a decimal point "." and have at
least one digit to the right of the decimal point (for example the digit "0"). A constant of
type decimal can be used to represent decimal numbers between -
999,999,999,999,999.99 and 999,999,999,999,999.99 with 18 significant digits.

date constant A date constant is written as six or eight digits followed by the letter
"D" (the date constant expressing "undefined date" is, however, entered as "0D"). The
digits specify the date in the format MMDDYY or MMDDYYYY.

time constant A time constant is written as six or nine digits followed by the letter 'T'
(the "undefined time" constant is, however, entered as "0T"). The nine digits specify
the time in the format HHMMSS[.XXX], that is, a 24 hour format with an optional part
specifying thousandths of a second.

text constant A text constant is a character string. C/SIDE assigns unique IDs to
text constants, so that an ID number represents a specific text constant. Examples of
text constants are error messages, messages and warnings.

243

Chapter 13. Introducing the C/AL Language

The table below illustrates different types of C/AL constants:

Constant Description

TRUE boolean constant

50000 integer constant

-23.7 decimal constant

122196D date constant (December 21, 1996)
141230T time constant (the time 14:12:30)
ABC text constant

Using Variables in C/AL

Variable Names

244

There are two types of variables in the C/AL system: user-defined variables and
system-defined variables.

User-defined variables are ones you define when you create new C/AL code. You can
define variables that are global to all functions within a codeunit and variables that are
local to each function in a codeunit. Both types of user-defined variables are local to
the codeunit in which they are defined. These variables can be used to store
information at runtime, and the values can be changed as desired.

In addition, a number of predefined variables are provided by the system. These
variables are automatically maintained by the system and are called system-defined
variables. The system-defined variables are, for example, Rec, xRec, CurrForm and
CurrReport.

When the system is running, it executes code in functions and triggers, for example
entry-processing code for a table. Before the code is executed, the system
automatically assigns values to the associated system-defined variables, and the
values of these variables can be used in the triggers and the local functions.

During the execution of triggers and functions, the system-defined variables can be
used just like normal variables (new values can be assigned to them). That is, the
values of the system-defined variables are not updated by the system while the C/AL
code is being executed, but only before the function or trigger is executed.

The value in a system-defined variable does not propagate backwards. In other words
the user cannot use a system-defined variable to modify the state of the system.

Variable names must be unique, that is, two user-defined variables with the same
name are not allowed in a C/AL codeunit. Furthermore, you cannot have user-defined
and system-defined variables with the same name. Uppercase and lowercase letters
are not distinct, that is Smith and SMITH refer to the same variable. In standard
Pascal notation, a variable name (an identifier) can only be written as an unbroken

13.3 Introducing the Elements of C/AL Expressions

word. This restriction is relaxed in C/AL: here it is also possible to use special
characters (for example, spaces) in a variable name.

Observe the following basic restrictions:

The maximum length of a variable name is 30 characters.

A variable name must not be the same as the name of a C/AL function name or a
reserved word. Please note that this rule applies to both uppercase and lowercase
spellings. For example, neither BEGIN nor begin is valid.

All ASCII characters are valid in variable names, except the following:

Control characters (ASCII 0-31, 255)
The character " (ASCII 34)

When naming a variable, be careful to note that characters cannot be combined freely
unless you encapsulate the variable name in double quotes, as in " Cust oner No.". If
you don’t, you should name variables like this:

The first character must be:

a letter in the range: a..z, A..Z (ASCII 97-122, 65-90), or
an underscore (ASCII 95),

...followed by a maximum of 29 characters, which can be either

a letter a..z, A..Z (ASCII 97-122, 65-90)
an underscore (ASCII 95), or
digits in the range 0..9 (ASCII 48-57).

As mentioned, it is also possible to include one or more special characters (spaces,
and so on) in a variable name in C/AL, but then the entire variable name must be put
in double quotes. In this case, the name can contain any mix of letters, digits and
special characters.

The double quotes are not part of the variable name, but are necessary in order to
avoid a compile-time error.

Here are a number of examples showing valid variable names:

Customer
StockGroup1
"@Vendor"

"1st AddressLine"
"Purchase/Sales"
"Sales In GBP"

245

Chapter 13. Introducing the C/AL Language

" YesCrazy Name1N3"

...and the following are examples of invalid variable names

34467
23"Tubes

Stock Group4
"Sale"s in GBP"
)-Names

END

Initialization

Variables are automatically initialized before C/AL code is executed. A boolean
variable is set to FALSE and numeric variables are set to the default value zero, while
strings (text and code) are initialized to the value " (the empty string) and date and
time variables are set to the undefined time OT and the undefined date 0D,
respectively.

As previously mentioned, the system automatically handles the system-defined
variables. This also includes the necessary initialization. This means that no actions
are required by the user before the system-defined variables can be used.

Assignment and Type Conversion

Assignment of values can be performed in one of two ways:

As parameter assignment, for example FUNCTION(Expression). The resulting data
type of the evaluation of the expression must correspond to a specific data type or
have a type which can be converted automatically to the correct type. (For a
detailed discussion about evaluation and type conversion in expressions, refer to
the chapter Type Conversion on page 389.)

By using the assignment operator ":=" (for example Variable := Expression).
Generally, the resulting data type of the evaluation of the right-hand side expression
must be of the same type as the variable (left operand) or have a type which can be
converted automatically to the type of the left operand.

Automatic type conversion in assignments takes place when:

A parameter in a function call does not have the correct type. This occurs for
instance if a function that is supposed to be called with an integer argument is
called with, for example, a decimal argument.

The evaluation of the expression on the right-hand side of an assignment operator
(:=) results in a type that differs from the type of the variable on the left-hand side.

The automatic type conversion in assignments can freely take place between the
following numeric data types, provided overflow does not occur:

char «— integer «— decimal

246

13.3 Introducing the Elements of C/AL Expressions

The automatic type conversion in assignments can also freely take place between the
String data types:

code , text

All of the above has been based on simple variables. Nevertheless, the same
assignment rules apply for arrays in C/AL. Furthermore, if the left operand in an
assignment (the variable) is an array, the dimension(s) of the right-hand expression
must correspond to the dimension(s) of the variable.

The type conversion that takes place in assignments can cause runtime errors even
though the types are convertible. A runtime error can occur in an assignment if the
converted value is outside the valid range for the left-hand side variable.
Correspondingly a runtime error can occur if the converted value is outside the valid
range for a parameter in a function call.

EXAMPLE

Let the variable A be defined as a one-dimensional array with four text type elements with the
maximum length 15. A value could be assigned to the second element in the array as shown
below:

A[2]:= '"Enter your nane';

EXAMPLE

Result is an option variable, while Amount and Total both are decimal variables.
Consider the following assignment statements:

Anount : = 10;
Total := 4;

Result := Anmount + Total;

The above code can always be compiled, but a runtime error will occur if the result of the right-
hand side expression "Amount + Total" exceeds the valid range of the data type of the left-hand
side variable Result, that is, outside the range -2,147,483,647 to 2,147,483,647.

Valid Assignments

The following tables shows whether it is possible to assign the value of an expression
of a given type to a variable of the same type or to a variable of a different type. These
tables only cover the numeric and string data types.

247

Chapter 13. Introducing the C/AL Language

Numeric Data Types:

Variable Expression Type

Type char option integer biginteger duration decimal
char) © © © © ©
option))) © © ©
integer)))) © ©
biginteger o [) [[® ()
duration)))) ° ©
decimal))) © © °

String Data Types:

Expression Type

Variable Type text code
text © ©
code) ©

® THE ASSIGNMENT IS VALID
© THE ASSIGNMENT IS VALID, BUT OVERFLOW MAY OCCUR

Using Operators in C/AL

Operators can be used in expressions to combine, investigate and manipulate values
and data elements. This section describes the function of the operators in C/AL. The
table below shows the valid operators in C/AL:

C/AL operator Meaning

Fields in records, controls in forms and reports

() Parentheses

[Indexing
Scope

+ Addition

- Subtraction or negation

* Multiplication

/ Division

DIV Integer division
MOD Modulus

> Greater than

248

13.3 Introducing the Elements of C/AL Expressions

C/AL operator Meaning

>= Greater than or equal to

< Less than

<= Less than or equal to

= Equal to

<> Not equal to

IN In range

AND Logical conjunction

OR Logical disjunction

NOT Logical negation

XOR Exclusive logical disjunction
Range

The "+" and the "-" operators can be used both as unary and binary operators, the
"NOT" operator only as an unary operator, while all other operators are binary.

Most of the above operators can be used on different data types. The action of these
operators may depend upon the data type of expression they are used on. Below are
some typical examples

EXAMPLE
The "+" operator used as a binary operator:

nunber + nunber

This returns the sum of the numbers, that is, a result of the type number.
EXAMPLE
The "+" operator used as a binary operator:

string + string

This returns the concatenation of the strings, that is, a result of the type string.
EXAMPLE

The "+" operator can be used as an unary operator to indicate sign, for instance:
+ 34545

You can read more about the function of each operator in the chapter Type
Conversion, on page 389, which explains the type conversion mechanisms in C/AL.

249

Chapter 13. Introducing the C/AL Language

Operator Hierarchy

Function Calls

250

The operators just discussed are organized in a hierarchy that determines the order in
which the operands in a given expression will be evaluated. The following list shows
the precedence order of the C/AL operators:

1 .(fields in records), [] (indexing), () (parentheses), :: (scope)
2 NOT, - (unary), + (unary)

3 *,/,DIV, MOD, AND, XOR

4 + - 0OR

5 > <,>= <= =<>IN

6 .. (range)

The example below illustrates the effect of the operator hierarchy. The expressions,
which apparently are the same, will produce different results.
EXAMPLE

The expression

2+3 * 4

is evaluated to 14, whereas the expression

(2 +3) * 4

is evaluated to 20.

C/AL has a number of functions for different purposes, such as string handling, text
formatting, database handling and so on. Some of these functions differ from standard
Pascal, as it is possible to use a variable number of parameters. In a function call, the
parameters are separated by commas, and the optional parameters may be omitted
from the right.

This means that if the function has, for instance, 3 optional parameters, then it is not
possible to omit the second without omitting the third.

EXAMPLE
The fictitious function

FUNCTI ON([Optional 1] [, Optional 2] [, Optional 3])

can be called as

FUNCTI ON(Opt i onal 1, Opti onal 2)

but not as

FUNCTI ON(, Optional 2, Optional 3)

13.3 Introducing the Elements of C/AL Expressions

EXAMPLE
ABS is a typical example of a C/AL function with a fixed number of parameters (1).

Val ue : = -1033; {A negative integer val ue}
Posi tiveVal ue : = ABS(Val ue);{Cal cul ate the positive value 1033}

EXAMPLE

The function DMY2DATE is a typical example of a function which can be called with a variable
number of parameters

NewDat e : = DMY2DATE(5, 11, 1992);{Returns the date Novenber 5, 1992}
Depending on the use of the DMY2DATE function, 1, 2 or 3 parameters can be passed to the

function, as the second and third parameter are optional. When the second and third parameters
are not used, the system uses values from the system date as default.

251

Chapter 13.

Introducing the C/AL Language

13.4 THE C/AL CONTROL LANGUAGE

This section describes the basic structures in the control language in C/AL and how to
use them. All the C/AL programs you create consist of one or more statements, which
are executed sequentially in top-down order. However, you will often need to control
the direct top-down flow of the execution. You may have to repeat the execution of
one or more statements a number of times, and in another situation you may have to
make the execution of a certain statement conditional.

The control structures in C/AL are divided into the following main groups:

Compound Statements
Conditional Statements
Repetitive Statements
WITH Statements

Using Compound Statements

In some cases, the C/AL syntax will only allow use of a single statement. If you have
to execute more than one simple statement in such a case, the statements can be
turned into a compound statement, by "encapsulating" the statements between the
keywords BEG N and END. The syntax is

BEG N
<St at ement 1>
<St at ement 2>;

<St at ement n>;
END

The individual statements are separated by a semicolon. In C/AL and Pascal a
semicolon is used to separate statements, and not, as in other programming
languages, as a terminator symbol for a statement. Nevertheless, an extra semicolon
before an END does not cause an error because it is interpreted by the compiler as an
empty statement.

The above BEG N END structure is also called a block. Blocks can be very useful in
connection with the other control structures to be discussed in the following.

Conditional Statements

252

By using a conditional statement, you can specify a condition and one or more
commands to be executed, according to the evaluation of the condition: TRUE or
FALSE. There are two types of conditional statements in C/AL:

1 | F THEN [ELSE], when there are 2 choices.

2 CASE, when there are more than 2 choices.

13.4 The C/AL Control Language

The IF THEN ELSE Control Structure

This statement type has the following syntax:

I F <Condi tion> THEN <Statenment1> [ELSE <Statenent 2>]

which means

If <Condi ti on> is true, <St at ement 1> is executed. If <Condi ti on> is false,
<St at enent 2> is executed.

As defined earlier, the square brackets around ELSE <St at enent 2> mean that this
part of the statement is optional.

This statement is used when different actions are to be executed, depending on the
evaluation of the <Condi ti on>.

It is possible to build even more complex control structures by nesting | F THEN ELSE
statements. A typical example is

| F <Conditionl> THEN | F <Condition2> THEN <St at enent 1> ELSE
<St at enent 2>

If <Condi ti onl> is false, nothing is executed. If <Condi ti on1> and <Condi ti on2>
are both true, <St at enent 1> is executed. If <Condi ti onl> is true, and

<Condi ti on2> is false, <St at enent 2> is executed. Please note that a semicolon
preceding an ELSE is not allowed.

Several nested | F THEN ELSE statements may seem confusing but a general rule is
that an ELSE belongs to the last | F that lacks an ELSE.

Here are some examples of | F THEN ELSE statements:
EXAMPLE
lllustration of an | F statement without the optional ELSE part:

| F Ambunt < 1000 THEN Total := Total + Anpunt;

EXAMPLE

(1)...
(2) I'F Amount < 1000
(3) THEN BEG N

(4) IF1 >J THEN Max : = |
(5) ELSE Max : = J;
(6) Anpbunt : = Anmount * Max;
(6) END

(7) ELSE

(8)...

A common error for the C/AL newcomer is to put an extraneous semicolon at the end of a line
before an ELSE (line 4). As mentioned above, this is not valid according to the syntax of C/AL, as
the semicolon is used as a statement separator. (The end of line 4 is inside the inner IF statement).

253

Chapter 13. Introducing the C/AL Language

The CASE Control Structure
The syntax of the CASE statement is

CASE <Expression> OF
<Val ue set 1> : <Statenent 1>
<Val ue set 2> : <Statement 2>,

<Val ue set n> : <Statenent n>;
[ELSE <St at ement n+1>]
END;

In the above definition, the <Expr essi on> cannot be a record, and the <val ue set >
must be an expression or a range.

CASE statements are also called multiple option statements and are typically used
when a selection between more than two different actions is to be made. The function
of the CASE statement is as follows:

The <Expr essi on> is evaluated, and the first matching value set causes the
associated statement, if any, to be executed.

If none of the value sets matches the value of the expression, and the ELSE part
has been omitted, no action will be taken; but if the optional ELSE part is used, then
the associated statement will be executed.

The type of the value sets must be the same as the type of <Expr essi on> or at least
convertible to the same type.

The data type of the value sets will be converted to the same data type as the
evaluated <Expr essi on>, if necessary. This type conversion may cause an overflow
at run time if the resulting data type cannot hold the values of the value sets.

EXAMPLE

This C/AL code sample will print various messages depending on the value of Number. If the value
of Number does not match any of the entries in the CASE structure, the EL SE entry will be used as
default.

CASE Number OF

1,2,9: MESSAGE('1, 2 or 9.");

10..100: MESSAGE('In the range from 10 to 100.');
ELSE MESSACE(' Neither 1, 2, 9, nor in the range from10 to 100."');
END

254

13.4 The C/AL Control Language

Using Repetitive Statements
A repetitive statement is also known as a loop. The looping mechanisms in C/AL are:

FOR, which repeats the inner statement until a counter variable equals the
maximum or minimum value specified.

WHI LE, which repeats the inner statement while the specified condition is TRUE.
The statement in a loop of this type is repeated 0 or more times.

REPEAT, which repeats the inner statements until the specified conditions evaluate
to TRUE. The statements in a loop of this type are always executed at least once.

The FOR TO/DOWNTO Control Structure
The syntax of the FOR TO (and FOR DOWNTO) statement is

FOR <Control Variable> := <Start Nunber> TO <End Nunber > DO
<St at enent >

<Control Variabl e> <Start Nunber>and <End Nunber > must be boolean,
number, time or date data types.

FOR statements are used when a code block is to be executed a specific number of
times. A control variable is used to control the number of times the code block is
executed. The <Control Vari abl e> may be increased or decreased by one,
according to whether TOor DOWNTO s used.

When declaring the type of the <Control Variable>...

it should be noticed that when the system executes the FOR statement, the <St ar t
Nunber > and <End Nunber > will be converted to the same datatype as <Cont r ol
Vari abl e>, if necessary. This type conversion may cause a runtime error.

When using a FOR TOloop, the <St at ement > will not be executed if the <START
NUMBER> is greater than the end value. Correspondingly, the <St at enent > will not be
executed in the FOR DOAWNTOloop if the start value is less than the end value.

If the value of the control variable is changed inside the FOR loop, the behavior of the
system is not predictable. Furthermore, the value of the control variable is undefined
outside the scope of the FOR loop.

EXAMPLE
The following FOR loop uses an integer control variable named Count.

FOR Count := 1000 TO 10000000000000000 DO

When the above statement is executed, a runtime error will occur because the system tries to
convert the start and end values to the same type as the control variable; but as Count has been

255

Chapter 13.

Introducing the C/AL Language

declared as an Integer variable, an error will occur when 10000000000000000 is to be
converted, because this end value is outside the valid range for Integers.

EXAMPLE

This example illustrates nesting of FOR statements:

FOR1 :=1 TO5 DO
FORJ :=1 TO 7 DO
Al,J] := 23

The two FOR statements above could be used to initialize every element in a 5 x 7 array with the
value 23.

The VWH LE DO Control Structure

The WH LE DO statement has the following syntax:

VWHI LE <Condi ti on> DO <St at enent >

If <Condi ti on>is TRUE, <St at enent > is executed repeatedly, until <Condi ti on>
becomes FALSE. If <Condi t i on> is FALSE from the start, <St at enent > is never
executed.

When a block of code is to be repeated as long as an expression is TRUE, the WHI LE
DO statement may come in handy.

EXAMPLE
The C/AL code below increases the variable i until it equals 1000:

VWH LE i < 1000 DOi :=1i + 1;

The REPEAT UNTI L Control Structure

256

The syntax for the REPEAT UNTI L statement is:

REPEAT <St at ement s> UNTIL <Condition>

<St at enent s> will be executed repeatedly until <Condi ti on>is TRUE.

This might at first glance seem to function just like a WHI LE control structure, but as
the REPEAT UNTI L statement is executed from left to right, it is easily seen that the
<St at enent s> always will be executed at least once, no matter what the

<Condi t i on> is evaluated to. This contrasts with the WHI LE control structure, which
performs the evaluation before the <St at enent > is executed—implying that if the first
evaluation of <Condi t i on> returns FALSE, then no statements will be executed.

EXAMPLE

This is a typical example of a REPEAT UNTI L control structure:

13.4 The C/AL Control Language

Count := 0;
I F Customer. FIND("-') THEN
REPEAT

Count := Count + 1;
UNTI L Custoner. NEXT <= O;

This code uses a REPEAT UNTI L loop to count the number of entries in the Customer table. The
FI ND function finds the first entry in the table. Each time NEXT is called, it steps one record
forward. When NEXT = O there are no more entries in the table and the system exits the loop.

The EXI T Statement

The EXI T statement is used to control the flow of the execution. The syntax of an EXIT
statement is:

EXI T([<Vval ue>])

An EXI T statement is used to interrupt the execution of a C/AL trigger. The interruption
will take place even when the execution is inside a loop or a similar structure. The
EXI T statement is also used when a local function is to return a value: EXI T(Val ue) .

Using EXI T without a parameter in a local function corresponds to using the parameter
value 0. That is, the C/AL function will return the value 0 or " (empty string).

A compile-time error will occur if EXI T is called with a return parameter from:

system-defined triggers.

local functions that are not supposed to return a value.

EXAMPLE

The following illustrates the use of the EXI T statement in an arbitrary local function. Assume that
the | F statement is used to detect an error. If the error condition is met, the execution is stopped
and the local function returns the error-code 1.

FOR1 := 1 TO 1000 DO

BEG N
IF Anmount[I] < Total [I] THEN EXIT(1);
Al] := Amount[I] + Total[I];

END;

The W TH Statement
The syntax for the W TH statement is:

W TH <Recor d> DO <St at enent >

When you work with records, addressing is carried out as record name, dot (period)
and field name: <Recor d>. <Fi el d>

If you work continuously with the same record, you can use W TH statements. When
you use a W TH statement, it is only necessary to specify the record name once.

257

Chapter 13. Introducing the C/AL Language

Within the scope of <St at enent >, fields in <Recor d> may be addressed without
specification of the record name.

Several nested W TH statements may be used. In case of identical names, the inner
W TH will overrule the outer W TH-statements.

EXAMPLE

This example shows two ways of writing the same code:

CustomerRec. No : = '1234";

Cust oner Rec. Conpany := 'Wndy City Solutions';
Cust oner Rec. Manager := 'Joe Blow ;

Cust omer Rec. Address : = '1241 East Druid Avenue';
CustonerRec. "State and Zip":= "'Chicago, IL 60079";

Another way of expressing the same is:

W TH Cust onmrer Rec DO

BEG N
No := '1234';
Conpany := 'Wndy Cty Solutions';
Manager := 'Joe Blow ;
Address := '1241 East Druid Avenue';
"State and Zip" := 'Chicago, IL 60079 ;
END;

How to Annotate Your Programs

You can insert comments about the code or "outcomment" parts of your code to
prevent execution.

There are two ways to insert comments:

Use "/[" to insert a single line comment. When the compiler encounters the "//"
symbol in your code, it interprets the rest of the line as a comment.

Use "{' and '}" to mark the beginning and end, respectively, of a block of comments.

Any number of nested comments may occur. In such cases, the comment runs from
the first comment start to the last comment end.

EXAMPLE

{
This is a sanple conment which is ignored by the G AL conpil er

}

EXAMPLE

/1 This is also a sanple conment which is ignored by the ¢ AL
conpi |l er

258

13.4 The C/AL Control Language

EXAMPLE

{ This coment { is partly inside } another coment }

EXAMPLE

The final example illustrates what you shouldn’t do:

A = 34,
B :: 56‘ {******************
C : = 345; * Don’t do this! *

Because the comment is to the right of the C/AL statements, the system assumes that the third
and fourth lines are part of the comment. That is, only A and B are assigned values, while C and D
are not. Instead you should use single line comments:

A = 34;

B T = 56’ //*******************
C := 345; /1* Do it this way! *
D T = 781, //*******************

259

Chapter 13. Introducing the C/AL Language

260

Chapter 14

This chapter describes some aspects of using C/AL. The
first section gives advice on using the system-defined
variables. The second describes how to handle functions
that may or may not generate runtime errors, depending on
how they are used. The last, and largest, section provides
an overview of a subset of C/AL functions and examples of
how to use them. The functions in this subset are the most
commonly used, and if you understand how to use them,
you will be able to create quite sophisticated C/SIDE
applications.

Overview
System-Defined Variables
Handling Runtime Errors

The Essential C/AL Functions

Chapter 14. Using C/AL

14.1 OVERVIEW

This chapter describes how to use C/AL. The first sections concentrate on giving
some advice on the things you should consider when you use C/AL—the most
important subject being where you place the code.

The concepts of system-defined variables and runtime errors are explained, and the
final, larger, section describes and gives examples on how to use a subset of C/AL
functions — a subset that experience has shown will be the set of functions that
developers will use most often.

Where to Write C/AL Code

262

As described in previous chapters, almost every object in C/SIDE has triggers where
C/AL code can be placed. In summary, you have triggers for:

Tables

Table fields

Forms, including request options forms

Form controls

Reports

Data items

Sections

The execution of C/AL can also be initiated from:

Command buttons

Menu items

You can also place C/AL code in codeunits and call it from code in any of the locations
mentioned above.

As you can see, you can put C/AL code in a large number of places and initiate or
trigger its execution in many ways. You should not, however, choose a location for
your C/AL code at random. A few simple guidelines should be followed:

In general, place the code as close as possible to the object it operates on. This
implies that code that modifies records in the database should normally be placed
in triggers of the table fields that are involved.

In reports, there should always be a clear distinction between logical and visual
processing, and you should position C/AL code accordingly. This implies that it is
acceptable to have C/AL code in a section trigger — if that code controls either the
visual appearance of controls or whether the section should be printed. On the
other hand, you should never place data-manipulating code in section triggers.

The principle of placing code near to the object it operates on can be overruled in

some situations. One very good reason is security. Users do not have direct access
to tables with sensitive data — such as the general ledger entry and register tables.
If you place the code that operates on the general ledger in a codeunit and give the

Reusing Code

14.1 Overview

codeunit access to the table and the user the right to execute the codeunit, you will
not compromise the security of the table, and the user will still be able to access the
table.

There are other reasons than security for putting a posting function like the one
described in the item above in a codeunit. A function that is placed in a codeunit
can be called from many places in the application — perhaps including some that
you did not have in mind when you first designed the application.

Perhaps the most important reason for placing C/AL code consistently, and as close to
the objects it manipulates as possible, is that it lets you reuse code. Reusing code
makes it faster and easier to develop applications, but this alone is not the most
important reason for reusing code whenever you can. If you place your C/AL code as
suggested, your applications will be less prone to errors.

By centralizing the code, you will not inadvertently create inconsistencies by
performing essentially the same calculation in many places, for example in a number
of control triggers that have the same table field as their source expression. If the code
has to be changed, you could easily either forget about some of these controls or
make a mistake when editing one of them.

263

Chapter 14. Using C/AL

14.2 SYSTEM-DEFINED VARIABLES

264

C/SIDE automatically declares and initializes a number of variables for use in
application development. These are the system-defined variables

Variable Comments

Rec When a record is modified, the Rec variable contains the current

«Rec record (including the changes that are made), while the xRec
variable contains the original values (before the changes).

CurrForm Refers to the current form. You can access the controls of the form
through this variable and set the dynamic properties of the form
and its controls.

CurrReport Refers to the current report in the same way as CurrForm refers to
the current form.

RequestOptionsForm Refers to the request options form of the current report.

CurrFieldNo The field number of the current field in the current form—retained for

compatibility reasons.

In addition, some triggers (for example, the OnFormat trigger of a control) have a
parameter that is defined as a local variable by the system.

EXAMPLE

You could put the Rec/xRec pair of records to use in a situation like this: in an application, data is
stored in two tables, a header table and a line table. The header table contains general information
about, for example, sales orders, while the line table contains the specific order lines. On the form
where the user enters information in the header table there are fields that contain the customer’s
address. These fields are related to a Customer table, and can be filled out by using a lookup
function in the field that establishes the relationship. In the header table, only the customer number
is stored, and the other fields with customer information (name, address, and so forth) are
retrieved from the Customer table when the Customer No. field is validated.

Now, should the user be able to change the customer number? In some situations the answer
would be yes, in others no. If the order has already been shipped, the answer should definitely be
no, but there could be situations where it would be yes—it should, for example, be possible to
correct an erroneous number on an order that has not been processed any further.

You could do something along these lines:
- When validating the customer number field, check whether the order has been shipped.

- If it has, compare the customer number fields in the xRec and Rec records. If they differ, reject
the change.

In real life, you would certainly add some more checks and some user dialog, but this is the basic
idea.

14.3 Handling Runtime Errors

14.3 HANDLING RUNTIME ERRORS

In the chapter on debugging (chapter 15, Debugging C/AL Code), the section Other
Runtime Errors on page 284 describes how to handle functions that return a boolean
value that can be processed or ignored.

When you use these functions, four different scenarios are possible, as depicted in

this table:

Return value is ignored Return value is processed
Function succeeds Execution continues Execution continues
Functions fails A runtime occurs Execution continues, and you must

handle the situation yourself

A typical example of a function that will or will not produce a runtime error, depending
on how you handle the return value. is GET. The syntax is:

[:=] Record.GET([Valuel], [Value2],...)

Ok is a boolean value, which will be TRUE if the record is found and FALSE otherwise.
If GET is used as below, and no record is found,

Cust omer . GET(" Cust oner Nunber™);

a runtime error will occur. If, on the other hand, GET is used as below, and no record is
found,

I F Customer. GET(" Cust oner Number") THEN

ELSE

execution will continue. In this case you will need to handle the situation yourself in the
ELSE part of the statement.

265

Chapter 14. Using C/AL

14.4 THE ESSENTIAL C/AL FUNCTIONS

Although there are more than 100 functions in C/AL, you will find that you use a limited
set of these functions repeatedly, while you use the rest of the functions only
occasionally. That is to say: during basic application development you use perhaps no
more than 20 different functions. This does not mean that the rest of functions are
obsolete or that you will never use them — but it does mean that if you are comfortable
with this set of essential functions, you will be able to go a long way in C/AL
programming. As you need to add more specialized functionality to your
applications—or you want to round them off by adding "bells and whistles"-you can
familiarize yourself with the full set of functions.

Below are some examples of how to use this set of essential functions. You should,
however, always refer to the online C/SIDE Reference Guide for full and updated
information on any C/AL function.

Searching For Records

FI ND

266

The three functions described in this section are used to search for records. When you
are going to search for records, it is important to remember the difference between
GET and FI ND— and how you can use FI ND and NEXT in conjunction.

GET retrieves one record, based on the value of the primary key. That is, if the No. field
is the primary key of the Customer table, GET can be used like this:

GET(Cust orer, ' 4711');

The result will be that the record of customer 4711 will be retrieved. GET is one of
those functions that will produce a runtime error if it fails and the return value is not
inspected by the code, and otherwise not. This means that your actual code would
probably look more like this:

| F GET(Customer,'4711') THEN
/! do sonme processing
ELSE
/1 do sone error processing

GET searches for records, regardless of current filters, and it does not change any
filters. In other words: GET always searches among all records in a table.

An important difference between GET and FI NDis that FI ND respects (and is limited
by) the current setting of filters. Further differences are that FI ND can be instructed to
look for records where the key value is equal to, larger than or smaller than the search
string, and finally, FI ND can find the first or the last record (given the sorting order
defined by the current key).

You can use these features in various ways. When developing applications under a
relational database management system, you will often have one-to-many
relationships between tables. An example could be the relations between an Item
table, which registers items, and a Sales Line table, which registers the detail lines

NEXT

14.4 The Essential C/AL Functions

from sales orders. Obviously, one record in the Sales Line table can only be related to
one item, but each item can be related to any number of sales line records.

You would not want an Item record deleted while there are still open sales order
records that include the item. You can use FI ND to check this.

To do this, insert the following code in the OnDelete trigger of the Item table:

Sal esOr der Li ne. SETCURRENTKEY(" Docunent Type", Type, "No.");

Sal esOr der Li ne. SETRANGE(
"Docunent Type", Sal esOrder Li ne. "Docunent Type":: O der);

Sal esOr der Li ne. SETRANGE(Type, Sal esOr der Li ne. Type: : 1tenm;

Sal esOr der Li ne. SETRANGE(" No. ", "No. ") ;

I F Sal esOrderLine. FIND('-') THEN

ERROR(
"You cannot del ete because there are one or nore outstandi ng
sales orders that include this item');

NEXT is often used with FI ND to step through records of a table, as in this fragment:

FIND("-");
REPEAT

/1 process record
UNTI L NEXT = O;

Here, FI NDis used to go to the first record of the table. Afterwards, NEXT is used to
step through every record, until there are no more (then, NEXT returns 0 (zero)).

Sorting and Filtering Records

SETCURRENTKEY

These functions are used to filter records in a table, that is: to set limits on the value of
one or more specified fields, so that only a subset of the records are displayed,
modified, deleted, and so forth. You will also find a description of how to change the
sorting of the records in a table.

This function is used to select a key for a record, thereby setting the sorting order that
will be used for the associated table. SETCURRENTKEY has this syntax:

[k :=] Record. SETCURRENTKEY(Fieldl, [Field2],...)

You should have these points in mind when you use SETCURRENTKEY:
1 Fields that are not active are ignored

2 When searching for a key, C/SIDE selects the first occurrence of the specified
field(s).

For example, even if you specify only one field as a parameter when calling
SETCURRENTKEY, the key that is actually selected may consist of more fields; if several
keys have as their first component the field that you specified, you may not get the key
that you think you will.

267

Chapter 14. Using C/AL

SETRANGE

SETFI LTER

GETRANGEM N

268

If no keys can be found that include the specified field(s), a runtime error will occur
unless you test the boolean return value of SETCURRENTKEY in your code. If you do
test the return value, you will have to decide what to have the program do if the
function returns FALSE, because without a runtime error, the program will continue to
run even though no key has been found.

This function is used to set a delimitation on a field — that is, a simple filter. The syntax
is:

Record. SETRANGE(Fi el d [, From Val ue] [, To-Val ue]);

as in this example:

Cust omer . SETRANGE(" No. ", ' 10000' , ' 90000') ;

which would limit the Customer table by selecting only those records where the No.
field has a value between 10000 and 90000.

SETRANGE will remove previous filters. If used without the From-Value/To-Value
parameters, the function can be used to remove any filters that might already be set.
And, finally, if only From-Value is used, To-Value will be set to the same value as
From-Value.

SETFI LTER sets a filter in a more general way than SETRANGE. SETFI LTER has this
syntax:

Record. SETFI LTER(Field, String [, Value], ...];

where Field is the name of the field to set a delimitation on. String is a filter
expression that may contain %1, %2 and so on to indicate locations where the system
will insert values (but not operators) given as the Value parameter(s) in a filter
expression.

Here are two examples of using SETFI LTER:

Cust oner . SETFI LTER("No. ", '>10000 & <> 20000');

This statement would select records where the No. is larger than 10000 and not equal
to 20000.

Custoner. SETFI LTER("No. ", ' >9%4&<>9%2' , Val uel, Val ue2);

If the variables V1 and V2 have been assigned "10000" and "20000", respectively, this
statement will have the same effect as the first one.

This function retrieves the minimum value of the delimitation currently in effect for a
field. GETRANGEM N has this syntax:

Recor d. GETRANGEM N(Fi el d) ;

GETRANGEMAX

14.4 The Essential C/AL Functions

CETRANGEM N will cause a runtime error if the filter currently in effect is not a range.
That is, if a filter has been set like this:

Cust oner. SETFI LTER(" No. ", ' 10000| 20000| 30000') ;

then

Bot t omVal ue : = Customer. GETRANGEM N("No. ") ;
will fail, since the filter is not a range.

GETRANGEMAX works like GETRANGEM N, except that it retrieves the maximum value of
the delimitation currently in effect.

Inserting, Modifying and Deleting Records

I NSERT

MODI FY

These function are used to maintain the database by adding, modifying and removing
records.

Generally, these functions return a boolean value that indicates whether they
succeed. If you do not handle the return value in your code, a runtime error will occur
when a function returns FALSE. If you handle the return value — by testing its value in
an IF statement — no error will occur, and you must take corrective action yourself
(knowing that the function did not succeed, of course).

This function inserts a record in a table, as in this example:

Customer. INT;
Custoner."No." := "4711";
Custoner. Name : = 'John Doe';
Cust omer . | NSERT;

These statement will insert a new record, with No. and Name having the assigned
values, while other fields will have their default values. Supposing that No. is the
primary key of the Customer table, the record will be inserted in the Customer table
unless there already is a record in the table with the same primary key. In that case, as
the return value is not tested, this error message would be displayed:

Microsoft Business Solutions-Navision

& Customer No. '4711' already exists

This function is used to modify an already-existing record. Like | NSERT, it returns a
boolean — TRUE, if the record to be modified exists, FALSE otherwise.

MODI FY is used like this:

Cust omer . GET(' 4711");
Custoner. Nane := 'Richard Roe';
Cust orrer . MODI FY;

269

Chapter 14. Using C/AL

MODI FYALL

DELETE

DELETEALL

270

The statements above would change the name of customer 4711 to Richard Roe.

This function is used to do a bulk update of records. MODI FYALL respects the current
filters, meaning that you can perform the update on a specified set of records within a
table. MODI FYALL does not return any value, nor does it cause an error if the set of
records to be changed is empty.

You could use MODI FYALL like this:

Cust oner . SETRANGE(" Sal esper son Code",' PS' ,' PS');
Cust oner . MODI FYALL(" Sal esperson Code",'JR);

The SETRANGE statement selects the records where Salesperson Code is PS, and
MODI FYALL changes these records to have Salesperson Code set to JR.

This function is used to delete a record from the database. The record to delete must
be specified (using the value(s) in the primary key fields) before calling the function.
(This means that DELETE does take filters into consideration.) Here is an example in
which DELETE is used to delete the record with customer number 4711:

Customer."No." := '4711";
Cust omrer . DELETE;

DELETE returns a boolean value: TRUE if the record could be found, FALSE
otherwise. Unless you test this value yourself, a runtime error will occur when DELETE
fails (returns FALSE).

When developing your application, your should consider this scenario:
1 You retrieve a record from the database.
2 You perform various checks to determine whether the record should be deleted.

3 You delete the record, if step 2 indicated that you should.

Now, this can cause problems if, in a multiuser environment, another user modifies or
deletes the record between steps 2 and 3. If the record is modified, then perhaps the
new contents of the record would have changed your decision to delete it. If it has
been deleted by the other user, you can get a seemingly inexplicable runtime error if
you have just verified that the record existed (in step 1).

If the design of your application indicates that you can encounter this problem, you
should consider using the LOCKTABLE function (described below) — but LOCKTABLE
should be used as sparingly as possible, since this function effectively short-circuits
the concept of optimistic concurrency, thereby degrading performance.

This function is used to delete all records that are selected by the filter settings — if no
filters are set, all records in the table will be deleted.

Transactions

LOCKTABLE

14.4 The Essential C/AL Functions

The following statements would delete all records where Salesperson Code is PS
from the Customer table:

Cust omer . SETRANGE(" Sal esperson Code", 'PS , 'PS');
Cust onmer . DELETEALL;

Normally, you do not need to be concerned with transactions and table locking when
developing applications in C/SIDE. Chapter 22, C/SIDE in Multiuser Environments,
explains the details.

There are, however, some situations where you will have to lock a table explicitly. For
example, if you, in the beginning of a function, inspect data in a table, then use this
data to perform various checks and calculations and finally want to write back a
record, based upon the result of this processing, you will want the values that you
retrieved at the beginning to be consistent with the data in the table now. In short, you
cannot allow other users to update the table while your function is busy doing its
calculations.

The solution is to lock the table yourself, at the beginning of your function, by using the
LOCKTABLE function.

Working with Fields

CALCFI ELDS

CALCSUNMS

These functions perform various actions on fields.

The CALCFI ELDS function is used to update FlowFields. As described in Form and
Control Properties on page 116, FlowFields are automatically updated when they are
direct source expressions of controls, but they must be explicitly calculated when they
are not (that is, are part of a more complicated expression).

When you use FlowFields in C/AL functions, you have to update them yourself, and
this is what you use the CALCFI ELDS function for. In the statements below, the
SETRANGE function sets a filter, and then CALCFI ELDS is called. CALCFI ELDS will
calculate the Balance and Balance Due fields by taking account of the filter setting and
performing the calculations that are defined as the CalcFormula properties of the
FlowFields.

SETRANGE("Date Filter", OD, TODAY);
CALCFI ELDS(Bal ance, "Bal ance Due");

The CALCSUMS function is used to calculate the sum of one or more fields that are
SumindexFields in the record. For CALCSUVS to work, a key that contains the
SumlindexFields must be selected as the current key. Like CALCFI ELDS, CALCSUVMS
takes the current filter settings into account when performing the calculation.

In the statements below, an appropriate key is selected. Then filters are set, and finally
the summation is performed.

271

Chapter 14. Using C/AL

FI ELDERROR

272

SETCURRENTKEY(" Cust oner No. ")

SETRANGE(" Custonmer No.",' 10000', ' 50000');
SETRANGE(Dat e, 0D, TODAY) ;

CALCSUMS(Anmount) ;

The FI ELDERROR function triggers a runtime error after having displayed a field-related
error message. The function is very similar to the ERROR function, described on page
276, but is has some benefits. For one thing, it is easier to use. The more important
reason, however, is that if the name of a field is changed (for example translated to
another language) in the Table Designer, the message from the FI ELDERROR function
will reflect the current name of the field.

FI ELDERRCR can be called simply as:

Item GET(' 70000");
I F dass <> ' HARDWARE' THEN
FI ELDERROR(Cl ass) ;

This will cause an appropriate message to be displayed, depending on whether Class
currently is empty or has a value.

A message like this will appear when a field has a "wrong" value:

Microsoft Business Solutions-Navision <]

& Class must not be FOOD in [tern Mo.="70000"

You will see a message like this when a text or code field contains the empty string:

Microsoft Business Solutions-Navision <]

& “r'ou mugt specify Class in ltem Mo.="70000",

(When a numeric field is empty, it is considered as having the value 0 (zero) — and will
produce a message like the first one shown, with "0" instead of "FOOD".)

Finally, you can add your own text if the default texts don’t suit your application. Then,
you call FI ELDERRCR like this:

IF dass < '4711' THEN
FI ELDERROR(d ass, ' nust be greater than 4711');

and the message will look like this:

Microsoft Business Solutions-Navision

& Clazz must be greater than 4711 in Item Mo, ="70000"

FI ELDNAMVE

INIT

TESTFI ELD

VAL| DATE

14.4 The Essential C/AL Functions

The FI ELDNAME function returns the name of a field. Again, you could simply use the
name, as you probably know it when you are writing the code, but by using

FI ELDNAME, you can create messages that will still be meaningful if the field name is
later changed. FI ELDNAME could be used together with FI ELDERROR, in a construction
like this:

FI EL DERROR(
Quantity, ' nust not be | ess than
FI ELDNAVE(" Quantity Shipped"));

Yo+

The I NI T function initializes a record. If a default value for a field has been defined (by
the InitValue property), this value will be used for the initialization — otherwise, there is
a default value for each data type (see the online C/SIDE Reference Guide entry for

I NIT).

Note that INIT does not initialize the fields of the primary key.

This function is used to test a field against a value. If the test fails, that is if the values
are not the same, an error message is displayed, and a runtime error is triggered,
meaning that any changes made to the record will be discarded. If the value to test
against is the empty string, the field has to have a value other than blank or 0 (zero).

The following statements:

Code : = 'DK
TESTFI ELD(Code, ' ZX') ;

would give this error message:

Microsoft Business Solutions-Navision]

& Code must be £ in Language Code="TIK".

The VALI DATE function is used to call the OnValidate trigger of a field, as in this
example, where it will call the OnValidate trigger of the Total Amount field:

VALI DATE(" Tot al Amount");

The function is useful for centralizing processing — thus making your application easier
to maintain. Suppose that the OnValidate trigger of the Total Amount field performs a
calculation with values from three other fields as operands.

If the contents of any of these fields changes, the calculation must be performed. You
should avoid entering the calculation formula in the OnValidate triggers of each field —
there will be all sorts of possibilities for errors if the calculation formula later has to be
changed.

Instead, you should perform the calculation in the OnValidate trigger in only one of the
fields and call this trigger code from the OnValidate triggers of the other fields.

273

Chapter 14. Using C/AL

User Messages And Dialogs

There are several specialized functions available for displaying messages and
gathering input — but generally, you should use forms whenever it is possible. When
you use forms, your application will have a much more consistent user interface.

There are, however, situations where it is reasonable to use the dialog functions. The
two most important uses are to display a window that indicates the progress of some
processing that may take a long time and to halt execution (in order to display an error
message or get the user to confirm a choice before the program continues execution).
You will also find the STRVENU function useful for creating forms to present options to
the user — it is much faster to use this function than to design a form solely to present
a limited set of options to the user.

Creating a Window to Indicate Progress

274

When you have written an application where some processing may — for perfectly
good reasons — take a long time, you should consider displaying a window that
informs the user of the progress that is being made. The information itself may be
superfluous, but it is a good idea to indicate to the user that something is actually
going on and the program is still running.

Using a dialog window will also give the user an opportunity to stop the processing —a
Cancel button is automatically part of a dialog window.

In some applications, you can create an indicator control to do this. How to do it is
described in the section Using an Indicator to Display Values on page 137. In other
applications, you can create a window like this instead:

mE Microsoft Business Solutions-Navision

| Order 47113 Invoice 4712

Postinglines |37

Posting sales and VAT, I‘Ii

Posting to customer L li

Posting to bal. &ccount00 li
Cancel |

The idea is that each field is updated while the program is running. In the example
here, the fields are used to count the number of postings being made. In another
situation you could display, for example, the number of the account that is currently
being processed, like this:

mE Microsoft Business Solutions-Navision

Processing account number L. 4711
Cancel |

14.4 The Essential C/AL Functions

To create a window like this:

1 Declare a variable of type Dialog:

i Table 0 - C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
| | Progressiwindow Dialog =
K | 1]
Help |

2 Open the dialog window, and define the string that will be displayed:

Pr ogr essW ndow. OPEN(' Processi ng account nunber #l#######'),

The part of the string that contains pound signs (#) and a number defines a field
that will be displayed in the window, and the number ("1" in this example) can be
used to refer to the field.

You can display the value of any variable in the field. In the example below, the
number of each account will be displayed as it is processed:

REPEAT

Pr ogr essW ndow. UPDATE(1, Chart Of Acc. "No. ") ;
/1 process the account...

UNTI L Chart OFf Acc. NEXT = 0;

Finally, close the window when you are finished using it:

Pr ogr essW ndow. CLCSE;

Other User Messages

MESSAGE

There are a number of other dialog functions available for displaying short user
messages. A common trait of these dialogs — except MESSAGE - is that execution
stops until the user makes a response.

The MESSAGE function displays a message in a window that remains open until the
user clicks the OK button on the window. Note that MESSAGE executes
asynchronously, that is: MESSAGE is not executed until the function from which it was
called ends or another function requests user input. The function is useful for notifying
the user that some processing has been successfully completed, as in this example:

Microsoft Business Solutions-Navision

@ Guaote number 1001 has been converted to arder number 106024,

275

Chapter 14. Using C/AL

ERROR

CONFI RM

The window was created by this statement:

MESSAGE(
"Quote % has been changed to order 9%2.',
"No.", Sal esOr der Header . "No. ") ;

Unlike in the example of the progress indication windows, the MESSAGE function was
used without first declaring a variable of type Dialog, since there will be no need to
refer to this window again.

The ERROR function is very similar to the MESSAGE function, except for one detail: when
the user has acknowledged the message, execution ends. See also the description of
FI ELDERROR On page 272.

The CONFI RMfunction is used to display a message, just like MESSAGE: but unlike
MESSAGE, this function returns a value that can (and must) be used, depending on
whether the user chooses Yes or No. Its obvious use is for asking a question like this:

Microsoft Business Solutions-Navision 1]

@ Do you want to convert the quote to an order?

The window was created by this statement:

I F CONFIRM ' Do you want to convert the quote to an order?', FALSE)
THEN
/1 do the conversion
ELSE
EXIT;

The FALSE parameter means that the negative answer (No) will be the default.

A Quick Options Form

276

The STRVENU function is used to create and display a form with an option group, and
to return the user selection to the program.

STRVENU has this syntax:

Opti onNumber : = STRMENU(OptionString [, Default Nunber]);

where OptionNumber is the number of the option the user chooses. The first option in
the OptionString is number 1 — if the user closes the form with ESC, STRVENU returns 0
(zero). If it is defined, DefaultNumber is used to select the default option (if
DefaultNumber is not defined, the system will use option number 1 as the default.)

14.4 The Essential C/AL Functions

The statement

Sel ection := STRMENY(' Save, C ose, Cancel ', 3);

will create this:

& Microsoft Business Solut... m

@ Save
 Clase

Cancel |

Notice that the Cancel option is the default — as the DefaultNumber parameter was set
to 3. It is a good idea to let the default option be a "harmless" action, like Cancel, as
this option can be chosen by pressing ENTER. If the user inadvertently presses ENTER,
no catastrophes will happen, which they might, if, for example, one of the options was
"Delete all".

277

Chapter 14. Using C/AL

278

Chapter 15

This chapter describes the nature of program errors, bugs,
and how to use the Microsoft Business Solutions—Navision
Debugger to track down errors.

What Are Bugs?
Syntax Errors
Runtime Errors
Program Logic Errors

The Microsoft Business Solutions—Navision Debugger

Chapter 15. Debugging C/AL Code

15.1 WHAT ARE BuGs?

There are three categories of errors you can meet when you develop applications that
use C/AL code

Syntax errors
Runtime errors

Program logic errors

Traditionally, errors in computer programs are called bugs, and the process of finding
and correcting errors is, correspondingly, called debugging.

This chapter describes how you can find and eliminate bugs and errors, and it shows
how you use the Navision Debugger to find runtime and program logic errors.

280

15.2 SYNTAX ERRORS

15.2 Syntax Errors

These errors are detected by the C/AL compiler when you try to compile C/AL code,
be it in a codeunit or as code in another object (table, form, report, dataport or
codeunit). The compiler will notify you of the error with a message like this:

Microsoft Business Solutions... £

& ‘THEN' should come here.

or this:

Microsoft Business Solutions-Navision x|

& *f'ou have specified an unknown variable.

Starting

Drefine the wariable under 'Global CAAL symbols',

When you have pressed ENTER and acknowledged the error message, the C/AL editor
will appear with the cursor in front of the offending expression. Note that the error
message may not always reflect the nature of the error. Consider this message:

Microsoft Business Solutions-Navision

& *f'ou have specified an unknown variable.
uF

Drefine the wariable under 'Global CAAL symbols',

When you look at the offending code in the editor, it becomes clear that the error has

nothing to do with an unknown variable:

mm C/AL Editor
Documentation(}

OnRun(}

[l 1%

UF COMPANYHAME = ‘Foobar' then
EXIT;

K

| T+]«

The real error is a misspelling of | F, which has been entered as UF. From the point of
view of the compiler, UF is an unknown identifier, hence the error message. When you
look at the code, however, it is easy to see what was really the matter.

The compiler will not compile code that contains any syntax errors, like a missing THEN

in an | F statement, or code that uses undeclared variables.

281

Chapter 15. Debugging C/AL Code

15.3 RUNTIME ERRORS

282

Runtime errors occur when the program is executed. These errors are not detected by
the compiler, because the code is syntactically correct in these cases. A good
example is division by zero. Consider this statement:

Ratio := First_nunber / Second_nunber;

There is nothing wrong with the syntax, but the statement may cause the following
error:

Microsoft Business... [E3

& Diivigion by zero.
4570

This error occurs because the Second_number variable has been assigned a value of
0 (zero), thereby causing a division by zero.

If all three variables are of type integer, the following error could occur:

Microsoft Business Solutions-Navision

& Overflow under type conversion of Decimal to Integer.
Walue: B.42357142857142857

This error occurs because the result of the division cannot be contained in an integer.
Therefore, the result is converted to decimal, but then the conversion back to integer
(to fit the result into the Ratio variable) fails. The common trait of these errors is that
the code can work perfectly in many situations, and then fail in some. The real danger
is that since there is nothing syntactically wrong with the code, the error could occur
when the program is already in use.

Unless you handle the runtime error in your code, the default messages shown above
will appear. If, as in the example, the division by zero was attempted using three
variables that were assigned values in a simple form, like this:

i Form - C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
| |First_number Integer =
| |Second_number Integer |£)
| |Ratio Inkeger
0 |
| |l |
Help |

15.3 Runtime Errors

and the form was designed like this:

M Form D - Form Designer M= 3
.|=<First number: B j

- |=<Second number> - - oo e

—

A H 4

and, finally, the expression

Ratio := First_nunber / Second_nunber;

was entered in the OnValidate trigger of the Second_number text box. Then, after the
user has acknowledged the runtime error by clicking OK, the form will look like this:

i Microsoft Business Solutions-Na... [Ij[=] [E3

At this point, the user cannot move out of the text box where Second_number is to be
entered, or close the form, without changing the value to something other than 0
(zero).

About Runtime Errors and Data Consistency

You may now be wondering if runtime errors could compromise the integrity of the
database, for example, if some fields are updated in a trigger and a runtime error
occurs while some other fields have not been updated. Chapter 22, C/SIDE in
Multiuser Environments, explains how data integrity is always maintained, under all
circumstances. When a trigger is entered, a write transaction is begun. If a runtime
error occurs inside the trigger, the write transaction will be rolled back and the
execution of the trigger terminated.

How to Avoid Runtime Errors
Basically, runtime errors should never occur, and they do not have to, provided that
you exercise care when programming. The description below gives some guidelines
on how to avoid runtime errors, but they are only guidelines, as the conditions under
which runtime errors occur are highly dependent on the context of your application. If,
for example, you use the GET function to locate a record, you will have to handle the
possibility that a runtime error will occur if there are situations where no record is
found. On the other hand, if you are absolutely certain that the specific context
precludes this situation, you can omit handling a possible runtime error. (The context
could be that the existence of a record is verified before the GET function is used.)

283

Chapter 15. Debugging C/AL Code

Generally speaking, there are two categories of runtime errors: those that are related
to the use of data types, and those that occur if a function does not succeed in doing
what it is supposed to do. Division by zero does not fit readily into either of these
categories, but it has been placed in the first one.

The heading of this section is, perhaps, overly optimistic: you can only prevent some
errors (mainly the data type-related ones) from occurring. Other errors cannot always
be avoided, but you can write code that shields the user from the error. That is,
instead of the default error handling (which amounts to displaying a message, closing
the form that was active when the error occurred and rolling back any changes to the
database), you can write a better error handler that, for example, gives the user a
chance to correct the input that caused the error, or, at least, displays a message that
explains in further detail why the error occurred.

Data Type-Related Errors

The most important thing to do to avoid this category of runtime errors is to use correct
data types. Errors like the type conversion error on page 282, and overflow errors, can
be avoided by using the correct data types. In the context of the example, integer was
obviously not a good choice for the Ratio variable. See Introducing the C/AL Data
Types on page 236. for a description of the data types, and Chapter 19 for a
description of how type conversion takes place in C/SIDE.

The division by zero error on page 282 could have been avoided in several ways,
depending upon the context where the code fragment is used. If the user enters the
denominator (the Second_number variable) in a text box immediately before the
evaluation of the statement, you could test the value of Second_number before
performing the division, and reject a value of 0 (zero):

| F Second_nunber <> 0 THEN

Ratio := First_nunber / Second_nunber
ELSE

MESSAGE(' Second_nunber nust not be 0');

If Second_number is a field in a database table, and it never should be allowed to
have a value of 0 (zero), the best place to perform this check is in the OnValidate
trigger of the field. In this way, a value of 0 (zero) could never be entered in the field,
no matter how many different text boxes are used to enter data in the field.

Other Runtime Errors

284

Any function that can fail to accomplish what it is intended to do can cause a runtime
error. A good example is the GET function, used to locate a record in a table according
to specified criteria. Consult the online C/SIDE Reference Guide for the GET function,
and observe the syntax of the command

[:=] Record.GET([Valuel], [Value2],...)

The return value of the function is Ok, a boolean. If a record is found, Ck will be TRUE,
otherwise it will be FALSE. This return value can be ignored, as indicated by the
square parentheses. If it is ignored, and the requested record cannot be found, a
runtime error will occur and a system-generated error message will be displayed. If,

15.3 Runtime Errors

on the other hand, you test the return value, a runtime error will not occur, as it is then
assumed that you handle the condition yourself.

The online C/SIDE Reference Guide always describes whether a function handles
errors in a way similar to GET. You can also look at the syntax description in the
Symbol Menu, to see if the function you intend to use returns a value called Ck. If it
does, you should consult the online C/SIDE Reference Guide as there are some
functions that return a boolean for other reasons than those described here. For
example, the ASCENDING function can be used to check the sorting order of a table,
and in this case it will return TRUE if the sorting order is ascending, and FALSE if it is
descending.

EXAMPLE
By using the return value, in a construction like this:

I F NOT Customer.GET("No.") THEN
Customer. I N T;

or like this

I F NOT Custoner.GET("No.") THEN

BEG N
MESSAGE(' Custoner %1 not found', "No.");
EXIT;

END;

you can shield the user from a runtime error. In the first example, if a Customer record with the
given No. cannot be retrieved, an (empty) record is initialized. In the second example, the user is
notified that a record cannot be found and the trigger from where the GET function was called is
exited.

You should only take the examples above as general guidelines. You will have to consider how to
handle situations like these in the context of your own application.

Finding and Correcting Runtime Errors

As you can see from the runtime error messages reproduced on page 282, this type of
message is supposed to be read by the end user. Therefore, the messages do not
include references to variables or functions, but rather an explanation and the "rea
values that caused the error. This means that these errors can be a little harder to
locate than, for example, syntax errors.

To track down a runtime error, you will need an exact description of the sequence of
events that led to the error: that is, what the user was doing at the time of the error,
and what values the user had entered or what record caused the error.

If the error was caused by something as simple as a calculation formula that failed to
check whether a division by zero was about to be carried out, you should be able to
find the statement that led to the error quite easily. If, on the other hand, the
circumstances that led to the error are more complicated, and you cannot pinpoint the

285

Chapter 15. Debugging C/AL Code

exact place directly, you can use the debugger as described in The Code Coverage
Tool on page 297.

286

15.4 Program Logic Errors

15.4 PROGRAM LOGIC ERRORS

The third major category of errors is the program logic errors (strictly speaking, the
term bug should perhaps be reserved for errors of this type). A program logic error is
an error in an application that could perfectly well be compiled, that can be run without
causing runtime errors, but that fails to function as was intended.

It can be argued that many, if not most, runtime errors are also program logic errors.
However, the "true" program logic error will not make itself noticed in a similarly
spectacular way but will quietly generate erroneous data that may not always be
detected straight away. The following example illustrates what a program logic error is.

EXAMPLE

In an application, sales orders are entered on a main form/subform: the general information is
entered in the sales header table from the main form, and specific information about items that are
ordered is entered in the sales line table from the subform. During data entry, a form that shows
statistics about the current order can be displayed. When the form is called, a series of calculations
take place and the resulting information is shown like this:

mH 341019 Jean de Bouvier - Sales Statistics M= 3
Amaunt A | Duantity 2.00
Iy, Dizcount Amount . . 000 Met'weight. 27.20
Tatal Excl VAT, 814545 Gross'wieight 1210
AT Amount pog Paresk. ... 18.00
Totallnel VAT Bidggs Unitvolme B3
VAT Base ’7000 Credit Limit 0.00

Balance 0.00
Total Cost [LCY) 21.334.00
Profit (LCYT. 7.305.47
Profit. ... 255
Help |

When the form is run with sample data, something appears to be wrong. When compared with the
sales order entry forms, the Quantity on the Sales Statistics form seems to be incorrectly

calculated.
mm 941019 Jean de Bourvier - Sales Order =1 E3
General | Invaicing | Shipping | Fareign Trade |
Moo ... p4101d | Posting Date ["o723/5
Selito Customer No. . . . [31987387 4] OrderDate. |
Sellto Customer Mame . . [Jearn de Bouvier Salesperson Code IJH +]
Sellto Address [w/estzidewal 123
Sellto Address 2. |
Selta City [1009 A5 Amsterdarn
Sellto Contact [Chr. G.E.J. van Huffelen
Line
Typ|Mo. Diescription Quantity Unit of Measure | Unit Price | Amount Dizc
| P lter 19524 | 05LO Storage Unit/Shelf 2 pos 385.94928 EBE.12 =
| |lter 19284/ ST.MORITZ Storage Unit/Drawer 2 pcs 833.0475 141619 j
4 | o
Opder vl Functions vl Posting vl Frint... | Help |

The sum of the quantities for those two sales lines that are visible in the subform alone is 4 (and
there are several lines below those two lines).

287

Chapter 15. Debugging C/AL Code

288

The numbers that are shown in the Sales Statistics form are calculated in the OnAfterGetRecord
trigger of the form, like this:

mH Form - C/AL Editor H=] E3
=
IF SalesLine.FINHD({'-") THEH 2]
REPEAT
CustAmount := CustAmount + SalesLine.Amount;

AmountInclVAT := AmountInclVUAT + SalesLine."Amount
IF SaleslLine."UAT %" <> @ THEH

UATLiableAmount := UATLiableAmount + SalesLine.fn
InvDiscAmount == InvDiscAmount + SaleslLine."Inv. D{
CostLCY := CostLCY + (SalesLine.Quantity * SalesLir

TotalHetWeight TotalHetWeight + (SalesLine.Quaniz
TotalGrossWeight := TotalGrossWeight + (SalesLine.(-~

K

The erroneous statement is highlighted. Instead of adding the quantity from each sales line in the
REPEAT loop to the variable LineQty (the source expression of the Quantity text box), the variable
is assigned the quantity on the current sales line in each iteration. The value that is finally
displayed is simply the quantity on the last of the sales lines.

In this example, the error was easy enough to find, just by looking at the C/AL code.
The Code Coverage Tool on page 297 shows how the debugger can be used to find
the error. In a more complex application, this will be, if not the only way, then the
fastest.

15.5 The Microsoft Business Solutions—Navision Debugger

15.5 THE MICROSOFT BUSINESS SOLUTIONS—NAVISION DEBUGGER

Overall Description

Navision provides an integrated debugger to help you check, correct or modify code
so that your application can build successfully, run smoothly and act as you expected.
The basic concept in debugging is the breakpoint, which is a mark that you can set on
a statement. When the program flow reaches the statement, the debugger intervenes
and suspends execution (breaks) until you instruct it to continue. Without any
breakpoints, the code would just run normally when the debugger is active. The state
disabled breakpoint means that the breakpoint is still present on the statement but is
momentarily disabled (execution will not stop at this breakpoint).

If you wish to track down a runtime error, you simply disable the Break on Triggers
setting from within the debugger and click Go. The debugger will automatically stop
execution of the code when it encounters an error.

You can also use the debugger to find a logical error. However, finding the error will
not be as easy, and you must have a good understanding of how the code is
supposed to work. The debugger enables you to execute your C/AL code one
statement at a time while you inspect the contents of global variables, local variables
and text constants at each step. In this way, you can see whether the values that are
actually used differ from those you expected when you designed the application.

The Breakpoint on Triggers setting (SHIFT+CTRL+F12) is enabled by default when you
activate the debugger for the first time. Otherwise the code would be executed
normally because there are no breakpoints. The debugger will therefore suspend
execution of the code when it reaches the first trigger. At this point you can set other
breakpoints and then disable the Breakpoint on Triggers option if you want to. If you
do not disable the Breakpoint on Triggers setting, the debugger will suspend
execution of the code at every trigger it reaches.

The code coverage functionality, which is described on page 297, enables you to log
and view code that was executed in one or more transactions. You can use this
functionality as an alternative to, or in combination with, the debugger.

Activating the Debugger
You can activate the debugger from Navision and from Navision Application Server:

From Navision

To activate the debugger from Navision, click Tools, Debugger, Active
(SHIFT+CTRL*+F11). You can also start Navision with the debugger active from the
command line by using the debug parameter:

EXAMPLE

fin.exe debug

289

Chapter 15. Debugging C/AL Code

From Navision Application Server

To activate the debugger from Navision Application Server, you include the debug
parameter at start-up:

EXAMPLE
nas debug, startupparaneter="test”, server nane=PC0123

If you deactivate the debugger, you cannot activate it again unless you terminate
Navision Application Server and then start it up with the debug parameter.

The Debugger Interface

The debugger interface provides special menus, windows and a dialog box. These are
described in the following.

<2 Microsoft Business Solutions-Navision Debugger [break] - [Form 1 Company Information]

J File Edit View Debug ‘Window Help =181 x]

El L EE IR IR
Form - OnOpenForm{}
o> REZET:
IF NOT GET THEN
INSERT:
OnPushi)
TESTFIELD ("Home Page™):
HYPERLINK | "Home FPage"|:
OnPushi{}
Mail.OpenMNewMessage ("E-Mail™) ;
Customized Calendar - OnDrillDown()
CurrForm. SAVERECORD?
TEZTFIELD ("EBEase Calendar Code"):
Calendar Mot . ShowCustomizedCalendar (CustomizedCalEntry, "Source Type™::Company, ' ','',"Base Calend:

OnPushi)
PictureExists := Picture.HASVALUE;
IF Picture.IMPORT('*_.EMP',TRUE) = '' THEN
EXIT: i
I 4 13
i‘ Context: IForm‘I CompanyInfarmation\FormrEj ﬁ o> Form 1 Company Informatlmﬂ :IJ Name Value | Type |
Name I Walug I Type Iﬂ
Curr "Formz147483 Form =
xRec "Company Record = =
A[»] AN A Tocals }_Giokals J,_Test Canst 1 » [AETh Watch 1 £ watch2 Ji Watch 3
x| =
| 5
1 4I:I\Debug||' |<|| >|
Ready Ln2 Col1 4

Debugger Menus

You can find debugging commands in the Edit, View and Debug menus:

The Edit Menu From this menu, you can access the Breakpoints dialog box
(SHIFT+F9). It displays a list of the breakpoints that you have set for the object you are
debugging. You can enable, disable and remove breakpoints in the list.

Breakpoints n

Enabled| Line [Path ok |
D 12 Farm 1 Company Information’B ase Calendar Code - OrDillD own I
ancel |

E Farm 1 Company Informationt0nPushi]

Femave |
L) | _DI Remowe &l |

290

15.5 The Microsoft Business Solutions—Navision Debugger

The View Menu This menu contains commands that display the various debugger
windows, such as the Variables window and the Call Stack window. It also contains
a command for adjusting the size of the text shown in the interface, and a command
for showing/hiding the standard and debug toolbars.

The Debug Menu This menu contains commands that start and control the
debugging process, for example, Go, Step Into, Step Over and Show Next Statement.

Go executes code from the current statement until a breakpoint or the end of the code
is reached, or until the application pauses for user input.

Step Into executes statements one at a time, and you can decide how to continue after
each statement. The execution will step into any function that is called, which means
that the debugger will single-step through the statements in the function.

Step Over executes statements one at a time, like Step Into, but if you use this
command when you reach a function call, the function is executed without the
debugger stepping through the function instructions. Note, however, that if you use
this command when the Breakpoint on Triggers setting is enabled, the debugger will
still suspend code execution at every trigger it reaches. Furthermore, if there is a
breakpoint in one of the functions you step over, the debugger will break at that
breakpoint.

Show Next Statement shows the next statement in your code.

The Debug menu also contains commands for setting, enabling/disabling and
removing breakpoints. Note that the Breakpoint on Triggers option is set
independently of other breakpoints, so the Remove All Breakpoints command does
not affect it.

The Debugger Toolbar

]J§| EEYCEEY

Use these toolbar buttons Insert/Remove Breakpoint
to show/hide the Output,
Variables, Call Stack and
Watch windows.

®e)e

~

Show Next Statement

Enable/Disable Breakpoint ~ Step Into and Step Over
Remove All Breakpoints

The Go and Stop Debugging buttons

The toolbar buttons represent commands that are also available from the menus.

291

Chapter 15. Debugging C/AL Code

Debugger Windows

There are four specialized windows for displaying debugging information: Output,
Variables, Call Stack and Watch. You can access these windows from the View
menu and from the standard toolbar.

2 Microsoft Business Solutions-avision Debugger [break] - [Form 1 Company Information]

/ This window simply contains

292

|[EFFie Edt View Debug window Hep ;Iilll‘ the code that is being
|a|=a meEE | ore aels debugged for a specific
Eorm - OnOpenForm() /z]| object - here it is a form.
o RESET: =
IF HNOT GET THEN
THSERT: All built-in functions and AL
OnPush())
TESTFIELD ("Home Page"); statements are shown in
HYPEPL INK |"Home Page"):
] blue. Comments are shown
Mail.OpenNewlizssage ("E-Mail") ; in green and text strings are
Customized Calendar - OnDrillDown() .
CurrForm. SAVERECORD ; Shown in red
TESTFIELD ("Base Calendar Code™):
CalendarMgmt. . ShowCustomizedCalendar |CustomizedCalEntry. "Source Type®::Company,'','',"Base Calends
OnPush()
PictureExists := Picture.HASVALUE;
IF Picture.IMPORT('*.BEMP',TRUE) = '' THEN
EXIT; |
a4 »
QJ Bontest [Fom 1 Company Information'Farm - L7 QJ % Form 1 Company Information] ﬂ Mare | Vol [Tee |
Name [Value [rpe [+
Curr "Form2147483 Form =
xRec MCompany Record = ~ .
| [~
oW srzyns: sy menej I o || ferEn s The Watch window
F =
1] Debug [XN})’\' ;
The Output window
Reay 2l

The Variables window The Call Stack window

The Output Window Displays information related to the debugging process.

The Variables Window Displays name, value and type information for variables
used in the current and previous statements, including the values of an array
structure. The window has four tabs: All, Locals, Globals and Text Constants. You
cannot add variables to the Variables window (you must use the Watch window for
that). You can expand or collapse the variables shown using the tree controls. You can
expand a variable if it has a plus sign (+) box in the Name field. If there is a minus sign
(=) box in the Name field, the variable is already fully expanded.

The Call Stack Window Displays the stack of function calls that are currently active.
When a function is called, it is pushed onto the stack. The debugger displays the
currently executing function at the top of the stack and older function calls below that.

When you double-click a call stack line, a green arrow appears to the left of the line. In
the window that contains the code being debugged, a corresponding green arrow
appears to indicate how far the debugger has reached in the specific trigger for the
call stack line that you selected.

The Watch Window Use the Watch window to monitor variables of special interest
while debugging your program. You can drag and drop the name of the variable that
you want to watch from the Variables window or from the window that contains the
code being debugged. You can also type the names of variables in this window.

15.5 The Microsoft Business Solutions—Navision Debugger

The Watch window contains three tabs: Watch1, Watch2 and Watch3. You can
group variables that you want to watch together onto the same tab. For example, you
could put variables related to a specific window on one tab and variables related to a
dialog box on another tab. You could watch the first tab when debugging the window
and the second tab when debugging the dialog box.

Symbols used in the Debugger Interface

The symbols used in the debugger interface are as follows:

Symbol [Meaning

There is an enabled breakpoint at this statement.

There is a disabled breakpoint at this statement.

This is a statement that will be executed.

Indicates that you have double-clicked a call stack line. This
arrow also appears in the window containing the code that
is being debugged. Here it indicates how far the debugger
has reached in the trigger for the call stack line that you
selected.

v EOe

Working with Breakpoints in the C/AL Editor

To toggle between setting, enabling/disabling and removing breakpoints in the C/AL
Editor, use the F9 key (or select the Tools, Debugger, Toggle Breakpoints menu
command). Information about the breakpoints is stored in the Breakpoints virtual
table when you close the C/AL Editor.

The Breakpoints Virtual Table

The Breakpoints virtual table, which has ID 2000000059, can store the following
information about the breakpoints that you set:

Field Description

Object ID The ID of the object for which breakpoint information has been stored.

Object Type |Table, Form, Report, Dataport or Codeunit.

Trigger Line | The number of the trigger line where there is a breakpoint.

Code No. A code number for the trigger that contains a breakpoint. C/SIDE uses
this number to identify the trigger at runtime.

Trigger Name | The name of the trigger where there is a breakpoint.

Object Name | The name of the object.

Enabled A check mark indicates whether or not the breakpoint is enabled.

293

Chapter 15.

Debugging C/AL Code

You must create a tabular form based on the Breakpoints virtual table to manage
breakpoints. Here is an example of how your form could look:

B8 My Breakpoints !EI n
Object ID |Objz_actT DE |Trigqgr Linelcade Mo |Trigqer Mame |Ob'ect Mame |Enabled | |
- 2 | Codeunit 12 & OnRun My Codeunit 1 -
i) 3 | Codeunit 1 2 OnRun My Codeunit? v
[
Help |

Information about breakpoints is saved when you close an object or when you save a
new object — compilation is unnecessary. Breakpoints are therefore not stored for
objects that you do not save.

Storage of Breakpoints in an XML File

294

Breakpoints that are stored in the Breakpoints virtual table are automatically stored
in a Navi BP. xnl file. The file is located by default in the same folder as the fi n. zup
file. On a Windows 2000 or Windows XP computer, the path is: C: \ Docunent s and
Settings\user\Application Data.

Here is an example of an XML file that contains breakpoint information for two objects:

<Puml version="1.0" 7=

- <Breakpointlist>
+ «<Object Type="Codeunit" ID="2" Name="MyCodeunit1"=>
+ <COhject Type="Codeunit" ID="3" Name="MyCodeunit2"=>
</BreakpointList=

This file contains breakpoints for MyCodeunit 1 and MyCodeunit 2. The objects are
shown as XML elements called "Object". The object element has three attributes:
Type, ID and Name.

If we expand the first object, MyCodeunit 1, we can see one "Breakpoint" element.
This shows that the object contains one breakpoint:

<7uml version="1.0" 7>
- =BreakpointList>
- =0bject Type="Codeunit" ID="2" Name="MyCodeunit1"=
- =Breakpoint=
=Triggerdame=0nRun</Triggerdame:
<CodeMoz6</CodeMos
=TriggerLine=12</TriggerLine>
<Enabled>No«</Enabled=
=/Breakpoint:=
=/Ohject>
+ <Object Type="Codeunit" ID="3" Name="MyCodeunit2">
=/BreakpointList>

15.5 The Microsoft Business Solutions—Navision Debugger

When a breakpoint element is expanded, we can see four types of information for the
breakpoint:

XML Tag Description

TriggerName | The name of the trigger that contains the breakpoint.

CodeNo The Code Number for a specific trigger in an object. C/SIDE uses this
number to identify the trigger at runtime.

Trigger Line | The number of the line in the trigger where the breakpoint has been
defined.

Enabled A Boolean expression of whether or not the breakpoint is enabled.

Starting Navision or Navision Application Server Using Another Breakpoint
File

You can start both Navision and Navision Application Server with a br eakpoi nt s
parameter. This enables you to specify a particular file for saving and loading
breakpoints.

EXAMPLE

FI N. EXE br eakpoi nt s=C: \ MyBr eakpoi nt s. xni

Storage of Debugging Information in the FIN.ZUP File

The selections that you make in the Tools, Debugger, Active and Tools, Debugger,
Breakpoint on Triggers menu commands are stored in the fi n. zup file. This means,
for example, that if the debugger was active and set to break on triggers when you
logged off, then these selections will apply when you log on again.

Overview of Shortcut Keys
Here is a list of the shortcut keys for the most common debugging commands:

Shortcut Key |Command

SHIFT+CTRL+F11 | Debugger Active

F5 Go

F9 Toggle Breakpoint

SHIFT+CTRL+F12 |Breakpoint on Triggers

SHIFT+F9 Open Breakpoints Dialog Box

CTRL+SHIFT+F9 |Remove All Breakpoints

F8 Step Into

CTRL+F8 Step Over

ALT+NUM* Show Next Statement
SHIFT+F5 Stop Debugging

295

Chapter 15. Debugging C/AL Code

The Debugger and the Command Buffer

C/SIDE uses a command buffer to improve performance. However, when you run the
debugger, C/SIDE deactivates the command buffer. For more information, see
Chapter 25 Performance.

296

15.6 The Code Coverage Tool

15.6 THE CoDE COVERAGE TOOL

When you add the function (trigger) with ID 6 to Codeunit 1, you can access the code
coverage functionality from the Debugger submenu of the Tools menu. You can now
start and stop code logging. You can also view the code that is logged. Further, you
can use the CODECOVERAGEL OG function to start and stop the logging of code. This
function can also retrieve the current logging status. See the online C/SIDE Reference
Guide for information about the CODECOVERAGEL OG function.

The code coverage functionality is useful when you are customizing Navision and
want to test your work. It provides a quick overview of the objects for which code has
been executed, and it displays the code that has been logged.

The Code Coverage window displays the objects (tables, forms, reports, dataports
and/or codeunits) for which code has been executed and logged during one or more
transactions. The Code Overview window displays the code that has been logged for
a selected object. You can read about the Code Coverage and Code Overview
windows in the following section.

Using the Code Coverage Tool

As stated earlier the Code Coverage tool is useful for giving you an overview of the
objects that are called when you perform any tasks and the code that is used during
these transactions.

To log code:

1 Click Tools, Debugger, Code Coverage. The Code Coverage window appears:

@8 Code Coverage A= &3

Object T_l,l...l Object ID | Object Mame | Coverage...

| |Table 15 GAL Account 0.00) =)

L |Fom 16| Chart of Accounts 0832
| |Fom 159 Receivables-Papables 0.20
| |Fom 355 Receivables-Papables Lines 0.4z
| |Fom 408 G/L Balance by Periods 053
|| Fom BES Code Coverage 079
|| Codeunit 1| Applicationt anagement 0.00
|| Codeunit 389 PeriodFormbd anagement 0.45

- 5|

|| =]

Stop | Lode | Help |

2 Click Start. The Code Coverage tool is now ready to log code.

3 When you have completed the transactions that you want to monitor, return to the
Code Coverage window. It now contains a list of any tables, forms, reports,
dataports and codeunits that were used.

4 Click Stop.

5 Select an object whose code you wish to view. Click Code to open the Code
Overview window:

297

Chapter 15. Debugging C/AL Code

298

8 Form 565 Code Coverage - Code Overview A= &3
Code
M UndateButtons() =
|+ | IF CurrForm.Start ENAELED = CODECOVERAGELOG THEN =
|+ | CurrForm.Start . ENABLED := NOT CODECOVERAGELOG:
|+ | IF CurrForm.Stop.ENABLED = NOT CODECOVERAGELOG THEN
|+ | CurrForm.Stop. EHABLED = CODECOVERAGELOG:
| |Form — OnOpenFora()
|+ | UpdateButtons:
| |Form — OnActivateForm()
|+ | UpdateButtons:
|+ | CurrForm. UPDATE(FALSE):
| |Form — OnAfterGetRecord()
|+ | Coverageline.SETRANGE("Object Type"."Object Type"):
|+ | Coverageline.SETRANGE("Object ID"."Object ID"):
|+ | Cowverageline SETRANGE("Line Type".Coverageline. "Line Type": :Code): ﬂ
|+ | Coverageline.SETFILTER("Lins No.".'<:»0'): j
Help |

The Code Overview window displays code for the object that you selected in the
Code Coverage window. Lines of code that were executed during the transaction(s)
are shown in black. Lines of code that were not executed are shown in red.

The Code Overview window displays code in a similar way to the debugger.
However, while you see code being executed in the debugger, the Code Overview
window shows you the end result: the code that has been executed. When a line of
code is executable, a bullet symbol is shown on the left of the line. Only the
information for lines that are marked with a bullet is correct. The lines of code that are
not marked with a bullet are simply displayed in the color of the neighboring code
lines.

Important

You must not modify objects while using the Code Coverage tool because this will
produce inconsistent results.

Chapter 16

This chapter describes how you can extend C/AL by using
COM technologies. C/SIDE supports automation servers by
acting as an automation controller and using OCXs (custom
controls).

What Is COM?

Using COM Technologies in C/SIDE

Using C/SIDE as an Automation Controller
Receiving Events in C/SIDE

Using Custom Controls from C/SIDE

Acquiring Controls

Chapter 16. Extending C/AL

16.1 WHAT Is COM?

COM and C/SIDE

300

This is not the place for anything but a very brief explanation of what the terms COM,
OCX, Automation, OLE, ActiveX and so forth mean. The subject is a huge and
complicated one that has been described in a number of good books.

In C/SIDE, you can use COM technologies in two ways: you can use custom controls
(OCXs), and you can use Automation (C/SIDE in the role of an automation controller
or client). There is a vast array of commercially available OCXs that perform all kinds
of tasks, and you can develop your own. When you use C/SIDE as an automation
controller, you will probably work with programs such as the Microsoft Office suite of
products.

If you are going to develop custom controls yourself, you will probably use tools like
Microsoft Visual C++ or Microsoft Visual Basic. Both products use wizards to make it
very easy to develop COM objects. It is, in fact, entirely possible to develop functional
controls without understanding any of the complex details of COM itself. If you are
going to use existing COM objects (controls or automation servers) from C/SIDE, you
certainly do not need to know anything about COM. Using the functionality provided
by a COM object is no different than using any C/AL function.

If, however, you do want to know more, here is a list of recommended books:
This book gives a broad overview of the subject without going into too much detail:

David Chappell. Understanding ActiveX and OLE. Microsoft Press (1996).

This book provides a more technical description:

Dale Rogerson. Inside COM. Microsoft Press (1997).

For those who really want to know the details, this book is very extensive (but it is also
older than the other two books mentioned here):

Kraig Brockschmidt. Inside OLE, 2nd edition. Microsoft Press (1995).

The very rapid evolution in this area has turned the concepts and the terminology that
is used to describe them into what David Chappell calls "moving targets," which
means that it is no easy task to keep printed documentation updated. The Microsoft
Web site (http://www.microsoft.com) offers a wealth of regularly updated online
information, including the latest specifications of all aspects of COM.

Terminology and History

16.1 What Is COM?

Parallel with the rapid development of the technology, the terminology used to
describe the technology has changed fast. The table below shows how terms have
been added and meanings have changed as the technology has evolved:

Term

Description

OLE version 1.0

OLE is introduced as Object Linking and Embedding, allowing users to
create compound documents (for example, a Microsoft Excel spreadsheet
could be embedded in a Microsoft Word document.)

COM

OLE is generalized into COM: the Component Object Model. COM is seen
as an architecture for interaction between software components.

OLE version 2.0

Building on the COM paradigm, OLE version 2.0 refines the linking and
embedding concepts of OLE version 1.0, and adds new concepts such as
OLE Automation. OLE version 2.0 is a suite of (more or less) related
technologies that use COM rather than "just" linking and embedding.

OLE

In accordance with the broadening of the concept, OLE is no longer
considered an acronym but a name in its own right (pronounced o-/ay).

OLE Automation

OLE Automation is the name for the ability of one program to expose any
or all of its capability for another program to use. In other words:
programmability. The preferred term is now Automation, with the program
providing functionality being called the Automation server and the program
that uses this functionality the Automation controller (or client).

OLE Controls

Influenced by VBX, Visual Basic Extensions, OLE Controls are defined as
COM objects that meet a certain, well-defined set of specifications. An
OLE Control (also called a Custom Control) is a COM object that can be
"plugged in" and used by a control container. In this way, applications can
be built from reusable (binary) software components. OLE Controls usually
have .ocx as their file name extension.

ActiveX

The first specifications for OLE Controls were rather strict and demanded,
among other things, that a control should implement a vast number of
interfaces. With the advent of the Internet and the emergence of the
Internet Explorer as a favored control container, the specifications were
relaxed in order to make it possible to create controls that have a smaller
footprint and therefore will load faster. At the same time, OLE Controls
were renamed ActiveX controls.

DCOM

The specifications for DCOM (Distributed COM) were released in 1996.
DCOM expands COM to make communication over a network transparent
to the clients and servers that are involved.

COM+

COM+ is the backward-compatible successor to COM. It enhances COM
with a rich set of new features.

301

Chapter 16. Extending C/AL

16.2 USING COM TECHNOLOGIES IN C/SIDE

C/SIDE supports COM technologies in two ways: using custom controls (OCXs) and
as an automation controller. This support has a few limitations:

Only non-visual controls are supported. This means that a control cannot be
used to add graphical elements to a C/SIDE object (you cannot, for example, add a
third-party control to a form). The control can, however, display information and
interact with the user in a window of its own.

Exception handling. C/SIDE does not allow the retrieval of information about
exceptions from a control or automation server through the Invoke method of the
IDispatch interface and the EXCEPINFO structure (as described, for example, in
Inside OLE). The samples in the C/OCX Samples — the control and the C/SIDE
application that uses it — show a way to work around this limitation. You can find a
description on page 332.

Parameters, Return Values and Data Types

302

As you can see in the literature about COM, the mechanisms for calling methods in a
control, passing parameters and receiving return values are somewhat complicated.
Using tools like the wizards in Microsoft Visual C++ shields you from most of the
complexities.

You should know, however, that there is not a one-to-one relationship between the
data types that you can use when implementing methods in, for example, Visual C++
and the data types in C/AL. Some of the COM data types are not supported in C/AL
and some have a limitation imposed on their usage.

When you use the C/AL Symbol Menu, you can see the syntax for a method or
property with the return value and the parameters shown with the COM data types.

16.2 Using COM Technologies in C/SIDE

The following table shows how you map C/AL data types to COM data types:

C/AL Data Type

COM Data Type

Comment

Boolean VARIANT_BOOL
(VT_BOOL)

Option long (VT_l4)

Integer long (VT_l4)

Decimal CURRENCY (VT_CY) The CURRENCY type in COM is a special
data type with a fixed point that has 15 digits
to the left of the point and 4 to the right. You
should be aware that the Decimal type in
C/AL does not have a fixed point and can
have a total of 18 digits. This could possibly
lead to some rounding being performed
when a type Decimal number is passed to a
method that expects a CURRENCY. The
server manipulates that number and returns
it as a CURRENCY. No matter how many
digits the original Decimal had to the right of
the decimal point, the returned CURRENCY
will have no more than 4 digits.

Char BSTR (VT_BSTR)

Text BSTR (VT_BSTR)

Code BSTR (VT_BSTR)

Date DATE (VT_DATE)

Time void (VT_VOID)

Automation TypedObject, UntypedObject

(VT_DISPATCH)

InStream VT_STREAM

OutStream VT_STREAM

Variant VARIANT (VT_VARIANT)

The following table shows how you map COM data types to C/AL data types:

COM Data Type

C/AL Data Type

Comment

VT_UNKNOWN InStream or OutStream Only the IID_IStream and
1ID_SequentialStream interfaces are
supported. If you pass any other IlUnknown
interface, an error will occur at runtime.

short (VT_I2) Integer

long (VT_l4) Integer

float (VT_R4) Decimal

double (VT_RS8) Decimal

303

Chapter 16. Extending C/AL

COM Data Type

C/AL Data Type

Comment

CURRENCY
(VT_CY)

Decimal

The CURRENCY type in COM is a special
data type with a fixed point, which has 15

Further remarks

304

digits to the left of the point and 4 to the
right. You must note that the Decimal type
does not have a fixed point and can have a
total of 18 digits.

DATE (VT_DATE) Date The COM DATE type contains both a date
and a time value. C/AL has Date and Time
as separate data types. Therefore, the time
part of a COM DATE type will be lost when
the COM DATE type is mapped to the C/AL
Date type.

S

BSTR (VT_BSTR) Text

VARIANT_BOOL Boolean
(VT_BOOL)

TypedObject/ Automation/OCX
UntypedObject

(VT_DISPATCH)

VT_EMPTY Text

VARIANT Variant

(VT_VARIANT)

Unsigned char (VT_UI1), SCODE (VT_ERROR) and SAFEARRAY
(VT_ARRAY)

You can use the C/AL variant data type to pass unsigned char, SCODE or
SAFEARRAY to another variant that supports these types. You cannot assign them to
C/AL data types.

When you call a method with a ByRef parameter, the normal C/AL type conversions
do not take place. This means, for example, that if the parameter is of type float, you
have to use a C/AL variable of type Decimal. You cannot use Integer and have C/AL
convert it for you. (Hint: if the value you want to pass has a "wrong" type, when, for
example, itis a value from a database record field, you can assign it to a C/AL variable
of the correct type before calling the COM object method.)

You will sometimes see a COM object method or a property in the C/AL Symbol Menu
that has type IDispatch. This means that the method or property returns or expects a
COM object. In this case, you must use a C/AL Automation variable that has been
declared (through the Subtype) to be the correct COM object. You will have to study
the documentation for the automation server to gain the necessary information.

You will also see properties and methods that do not have one of the "normal” types.
For example, a method in Microsoft Excel can have a return value of type

WORKBOOK. This means that the automation server has implemented a USERDEF
type. C/SIDE supports USERDEF types in two contexts: IDispatch and Enumeration.

16.2 Using COM Technologies in C/SIDE

If the USERDEF type is an IDispatch, it means that it is an interface (sometimes also
called class or object) with a specific GUID. You will have to use the same object for a
return value or parameter. You do this by creating an Automation variable with the
correct Subtype.

For example, Microsoft Excel has a number of methods that return a WORKBOOK
variable. This means that you must declare a variable of type Automation and subtype
'Microsoft Excel 8.0 Object Library'.Workbook.

If the USERDEF type is an Enumeration, you should know that you cannot use the
symbolic name (for example, xI3DPie) but instead must use the enumerator (for
example, -4102). For Microsoft Office products, you can find this value by using the
VBA Object Browser (see page 318).

305

Chapter 16. Extending C/AL

16.3 USING C/SIDE As AN AUTOMATION CONTROLLER

The following description outlines the procedures for using an automation server from
C/SIDE. As you will see, there are very few steps required that are specific to C/SIDE
(C/AL). Using an automation server consists of five steps:

1 Declare the creatable (top-level) interface (class) of the automation server as a
variable of type Automation.

2 Declare all the other interfaces (classes) as variables of type Automation.

3 Use the C/AL function CREATE on the variable declared in step 1. Do not use
CREATE on any other variables.

4 Use the methods and properties of the automation server in your C/AL code.

5 You can CLEAR (destroy) the top-level object if you want. Otherwise, it will be
destroyed automatically when the variable goes out of scope.

You will write most of your code during step 4 using the methods and the properties of
the automation server. The syntax and the semantics of these methods and properties
are documented in the documentation for each automation server. Using these
methods and properties in C/AL does not involve any new or changed syntax.

The best way to learn how to use automation is to look at actual solutions. The
following two sections show you how to use Microsoft Word and Microsoft Excel,
respectively.

Writing a Letter In Microsoft Word

306

In this example, we will:

Implement functionality that writes a letter in Microsoft Word by clicking a menu
item on the customer card. The letter should only be created if the customer has
bought goods for more than LCY 2,500 during the past year. If the customer fulfills
this requirement, the letter offers a 3% discount.

Most of the information we need to transfer to Microsoft Word is in the Customer
table. Here we find the information about the customer that we will use in the
letterhead, such as the name and the address of the customer and the name of the
contact to whom we will address the letter.

The Customer table also contains a FlowField called Sales (LCY). This field contains
the financial information that we need, namely the aggregated sales for the customer.
For the sake of this example (where the emphasis is on using automation), we will
simply use this value as it is. Please note that this is not what you would do in "real
life." You would have to set up an appropriate date filter to get the sales for the past
year only.

We will also need to retrieve information from the Company Information and the
User tables to be used in the letterhead and in the greeting of the letter.

16.3 Using C/SIDE as an Automation Controller

We will put all the code in a separate code unit that is called from a menu item on the
customer card for the following reasons:

Where to Place Automation Code

There are two major concerns when deciding where to place code that uses
automation. The first is the fact that an object that uses automation can be compiled
only if the automation server is installed on the machine where the compilation takes
place. This means that if an object is to be recompiled and modified on a machine
where the automation server is not installed, you have to modify the code drastically in
order to compile it again. Therefore, it is recommended that you isolate code that uses
automation in separate code units.

The second concern is performance. There is some overhead involved in creating an
automation server (using the CREATE system call). If the automation server is to be
used repetitively, it will give better performance if you arrange your code so that the
server is created only once (as opposed to a series of CREATE/CLEAR calls).

That said, it is obvious that these two concerns will sometimes clash and you will have
to make some trade-offs, based on the actual context in which your code will be used.

In this example, we have chosen not to put the automation code on the customer card,
but to isolate it in a separate code unit. The performance in a situation where the user
wants to create letters to a series of customers in one session could have been
improved if we had kept the code on the customer card, thus avoiding having to create
and destroy Microsoft Word for each letter.

There is, however, a simple trick that more or less circumvents this problem: if
Microsoft Word is already open when it is created from C/AL, the running instance can
be reused. This means that the user could either open Microsoft Word "manually” or
just not close it after creating the first letter.

Background Information about Using Microsoft Word for This Example

What we are aiming for here is a way to transfer data about one customer at a time to
Microsoft Word, and the ability to initiate this transfer and the subsequent processing
in Microsoft Word from the customer card.

This approach to mail merge is different from the mail merge you can obtain by using
C/ODBC, which is better suited for bulk processing (creating a large number of
letters).

The chosen approach does, however, force us to use Microsoft Word in a slightly
unorthodox way. We want to have a template with a form letter and to put in
information at predefined places. In short, we need some placeholders. And here is
the catch: without using the regular mail merging facilities of Microsoft Word, there is
no straightforward way to do this.

Instead, we will "abuse" Microsoft Word a little. In the template (the form letter), we will
put in a number of fields (using Insert, Field... in Microsoft Word). Then we edit these

307

Chapter 16. Extending C/AL

fields to contain some convenient mnemonic names that correspond to the names of
the C/SIDE record fields we are going to use.

To make this work, we have to use two extra calls to Microsoft Word from our C/AL
code. Before starting to use the fields, we will call ActiveDocument.Fields.Update.
After we have transferred all our information we will call
ActiveDocument.Fields.Unlink. In this way we can sucessfully use the Microsoft Word
fields for placeholders.

And one more thing, while we can give the fields names like Customer or Address, we
will have to reference them by indexing into the Fields collection of the document. This
makes the C/AL code somewhat harder to understand.

Creating the Code Unit and Declaring Variables

Declaring the
variables

308

The first step is to create the code unit that calls Microsoft Word. Later, we will add the
functionality that calls this code unit from the customer card.

1 Open the Object Designer, and click Codeunit.
2 Click New to create a new code unit.
3 On the menu bar. click View, Properties. The Properties form appears.

4 In the TableNo field, click the AssistButton t+ to open the Table List form. Select
the Customer table and click OK:

Froperty | Walue

D 0f«)

Mame H

Permissions <Undefined:

TableMa Customer ll
k1
-]

By setting the TableNo property to the Customer table, we get a very neat
connection between the customer card and this code unit. When we later add the
menu item that calls the code unit to the customer card, the code unit will be called
with the currently selected record of the customer card as its current record. We do
not have to do anything special to coordinate the two.

5 Now we will declare the variables we need. Close the Properties form and click
View, C/AL Globals on the menu bar.

6 First, we will declare the top-level (creatable) class of Microsoft Word. The name of
this class is Application. (You can find information about it in the Microsoft Word
Objects entry of the online Help for Microsoft Word.) We will name this variable
wdApp.

16.3 Using C/SIDE as an Automation Controller

Enter wdApp as the name of a new variable, and give it the Automation data type.
When you move into the Subtype field, you will see that there is an AssistButton ...
in the field:

i C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
| |wdtpp Automation =
[B
K | 2
Help |

7 In the Subtype field, click the AssistButton ... and the Automation Object List
form appears:

@8 Automation Object List [_ (O] =]
Automation Server ..l]
|| Classes

(u] % I Cancel | Help |

This is the form where you will select the class of the automation server that this
variable is referring to, but first, you must select an automation server.

8 In the Automation Server field, click the AssistButton +. The Automation Server
List form appears:

@8 Automation Server List [_ (O] %]
5.0 B
AccountLib Type Library 1.0 H
Acrobat Scan Type Library 0o
Active DS 115 Mameszpace Provider 1.0
Active DS Type Library 1.0
Active Setup Control Library 1.0
ActiveE = type library 1.0
Activebdovie control type library 1.0
Activer; Conference Control 1.0
Act<Doc 1.0
ADAM Automation Server Type Libr... 0.0 ¥
Application Performance Explorer Chi... 84.0 -
0k, I Cancel Help

309

Chapter 16. Extending C/AL

This is a list of the automation servers that are installed on the machine. Scroll
down to Microsoft Word, and select it:

8 Automation Server List !Elm

Microsoft YML Renderer Object Library
Microsoft Wallet

Microsoft Wallet Discover Card
Microsoft Wallet ICB Card

Microsoft Windows Common Controls 5.0 (SPZ)
Microsoft Windows Common Controls-2 5,0 (SPZ)
Microsoft Windows Installer Object Library
(il Ft WMI Scripting ¥1.1 Lib

Microsoft XML, version 2.0
Microsoft XML, v2.6 2.6
MimeDir 1.0 Type Library 1.0

Ok, I Cancel | Help |

9 Click OK. When the Automation Server List form has closed, you will see that the
Automation Object List form has been filled in with a list of all the classes in the
Microsoft Word 9.0 Object Library:

&8 Automation Object List !Elm
Automation Server . . . |Microsoft ‘Word 9.0 Object Library 3|
Classes
AddIn =

| |Addins

AutoCaption
AutoCaptions
AutoCorrect
AutoCarrectEntries
AutoCarrectEntry
AutoTextEntries
AutoTextEntry

OF I Cancel | Help |

[l

10Select Application, and click OK.

Now we have defined the creatable (top-level) class of Microsoft Word as a

variable:
i C/AL Globals A= &3
Variables | Text Constants I Functions I
ame |DataT pe |Subt pe |Length
wiApp Automation | ‘Microsoft Word 9.0 Object, .. =

LITTTT [Rl]
w

[l

Help |

310

16.3 Using C/SIDE as an Automation Controller

11We will need two more classes from Microsoft Word for this example: Document
and Range. Go ahead and declare the variables in the same way as we did for
Application. The C/AL Globals form should look like this when you are done:

i C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
| |wdtpp Automation | ‘Microsoft Word 9.0 Object, .. =
| |wdDac Automation | ‘Microsoft Word 9.0 Object, .. |£)
| |wdRange Automation | ‘Microsoft Word 9.0 Object, ..
|

Help |

12We also need a few other variables: two records that point to the Company
Information and User tables respectively, and a text variable to hold the name of
the template for the Microsoft Word letter we are writing. Setting up these variables
is straightforward. The C/AL Globals form should look like this when you are done:

i C/AL Globals A= &3
Variables | Text Constants I Functions I
| [Mame |DataT pe |Subt pe |Length
| |wdtpp Automation | ‘Microsoft Word 9.0 Object, .. =
| |wdDac Automation | ‘Microsoft Word 9.0 Object, .. |£)
| |wdRange Automation | ‘Microsoft Word 9.0 Object, ..
| |CompanyInfo Record Company Information
| |UserInfo Record User
|| Templatehame Text 250
|
Help |

Note that the length of the TemplateName text variable has been increased to 250
from the default value of 30.
Writing the C/AL Code
Before we start writing the part of the C/AL code that uses automation, we have to do

some initial processing:

Initial processing CALCFI ELDS(" Sal es (LCY)");
IF ("Sales (LCY)" < 2500) THEN
EXIT;

Conpanyl nf o. FI ND;
User | nf o. GET(USERI D) ;

311

Chapter 16. Extending C/AL

Creating the
automation server

Adding a new
document

312

We start by calculating the Sales (LCY) FlowField. Then we check if the customer
qualifies for a discount. Finally, we retrieve the information we will need to fill in some
fields in the letter from the Company Info and User tables.

Before we can use Microsoft Word, we have to create it, that is, we have to create an
instance of Microsoft Word. The C/AL function CREATE does exactly this. We call
CREATE like this:

CREATE(wdApp) ;

Note that CREATE has an optional argument, NewServer, which by default is FALSE.
This means that an already running instance of the automation will be reused. If we
had set NewServer to TRUE, as in CREATE(wdApp, TRUE), we would have
requested a new instance of Microsoft Word. Note that ultimately the automation
server itself can control whether it can be reused or not (see the documentation for the
server in question if this aspect is important for your application.)

Now we will add a new document to Microsoft Word using a predesigned template:

Tenpl ateNane : = ' C \ My Docunent s\ Di scount. dot"';
wdDoc : = wdApp. Docunent s. Add(Tenpl at eNane) ;
wdApp. Acti veDocunent . Fi el ds. Updat e;

Because the Add method of the Documents collection requires the path of a template
to be passed by reference, we have to set up the TemplateName variable to hold this
information. We will get a compile-time error if we try to put the path into the call as a
literal string. Take a look at the syntax string for the Documents property of wdApp (the
Microsoft Word Application class):

s C/AL Symbol Menu [_[O] x]
+ | |Methods + | |Application j
E 2| |Creator ﬂ
wiFange Parent
TemplateMame Mame
Comparylnfa
Uszerlnfo
SYSTEM 7| |ActiveDocument ﬂ
DIALOG -] - | | activewindow -
[T Paste Arguments :I :I
[DOCUMENTS Documents :=] Documents(]
0K] Cancel Apply I Help |

If you press F1 while the Documents property is highlighted, you will see the online
Help of Microsoft Word Visual Basic for the property. By browsing through this Help,
we learn that the Documents property returns a Documents collection representing all
open documents. We also learn that the Documents collection object has an Add
method, and that the Add method has this syntax:

expressi on. Add(Tenpl at e, NewTenpl at e)
where expression is a required argument, and it has to be an expression that returns

a Documents object. Template and NewTemplate are optional arguments. We will use
Template to open a new document based on our form letter template.

Transferring data to
Microsoft Word

16.3 Using C/SIDE as an Automation Controller

Now look at the syntax in the C/AL Symbol Menu again. Note that the Documents
property returns an object of type DOCUMENTS, a USERDEF type. It means that the
property returns a Documents class (or IDispatch interface). This information helps the
compiler perform a better compile-time type check.

It also means that the statement:

wdDoc : = wdApp. Docunent s. Add(Tenpl at eNane) ;

succeeds and can pass both compile-time and runtime type checks.

Finally, the Add method returns a Document class. While we did not have to declare a
C/AL variable for the "interim" Documents class, we have declared a variable for this
return value, wdDoc.

The third line (wdApp. Act i veDocunent . Fi el ds. Updat e;) contains a call that is
necessary to make the template work as intended (see Background Information about
Using Microsoft Word for This Example on page 307 for details.)

Now we are ready to transfer the actual data from the Customer record to the
placeholder fields in the Microsoft Word document.

If we set up the third field in the template for the address of the customer, we can
transfer the address like this:

wdRange : = wdApp. ActiveDocunent. Fields.ltem 3). Result;
wdRange. Text : = Address;
wdRange. Bol d : = O;

Again, we are really tweaking Microsoft Word here. We cannot use the fields directly
as variables (and do an assignment such as ... Fields.|ten(3) := Address).
Instead, we use the Result property of the field. This property returns the result of the
field as a range. We place this range in the third automation variable declared,
wdRange.

Then we can set the Text property of the range to the desired value, in this case, the
Address of the customer. Finally, we turn off the bold formatting that the text would
otherwise have by default.

Using Default Members

You will notice that the documentation for Microsoft Word Visual Basic uses this
syntax:

wdApp. Act i veDocunent . Fi el ds(3). Resul t

instead of

wdApp. Act i veDocunent . Fi el ds. Item(3). Resul t

in the examples. This is because the ltem method is the default member for the Fields
collection. Visual Basic will use this method if the programmer does not provide a
method to be used. C/SIDE, however, does not have this facility, so you must use the
Iltem method explicitly.

313

Chapter 16. Extending C/AL

Finishing the code

Save and compile

To-do list

314

One thing to remember is that whatever data you are transferring, it has to be in text
format. If it is not, you will get a compile-time error. As you can see in the following
picture, wdRange.Text expects its arguments to be of type BSTR, which maps to
either Text or Code in C/SIDE.

m C/AL Symbol Menu

Rec Methods =
wdbpp

wdDloc

BT

TemplateM ame
Companylnfa

Uszernfo ﬂ T
STYSTEM - -

[Paste Arguments
[ESTR Text:=] Text[[BSTR Text]]

OF. I Cancel Apply | Help |

Therefore, any data that is not Text or Code must be converted before it is passed on
to Microsoft Word. For example, we need to transfer the Sales (LCY) field, which is a
Decimal field. Thus, we have to use FORMAT to convert it to Text:

FORVAT(" Sal es (LCY)", 0, "' <Si gn><I nt eger ><Deci nal s, 3>');

We can transfer data from tables other than the Customer table. These two
statements use some of the information we retrieved from the Company Info and
User tables:

wdRange : = wdApp. Acti veDocunent. Fields.lten(11). Result;
wdRange. Text := Conpanyl nf o. Nane;

wdRange : = wdApp. Acti veDocunent. Fiel ds. Iten(12). Result;
wdRange. Text : = Userl nfo. Name;

After transferring the data we need to Microsoft Word, we need two more statements
to finish the processing:

wdApp. Visi bl e : = TRUE;
wdApp. Acti veDocunent . Fi el ds. Unl i nk;

The first statement makes Microsoft Word visible (it was not visible before). The
second statement is part of the Microsoft Word tweaking to make fields work as
placeholders.

Finally, save and compile the code unit and give it a number and a name. In this
example, we have used the name DiscountLetter.

Although the code described above will work, you will have to add a few things to
make it a ready for the real world:

It is not a good idea to use a hard-coded template name. It should be kept in a
table, and the user should select it from a form. You could have different templates
for different kinds of letters to the customer.

16.3 Using C/SIDE as an Automation Controller

You should add some error-handling code. For example, the CREATE call fails if
the user does not have Microsoft Word installed or if the installation has been
corrupted. You should check the return value of CREATE and give an appropriate
message if it fails.

The user should get a message if the customer does not qualify for the discount. In
the example, the code unit closes without further ado.

Calling the Code Unit from the Customer Card

The final task is to make it possible to call the code unit from the customer card. We
will add a menu item to the Customer menu button.

1

2

In the Object Designer, click Form.

Scroll down to the Customer Card form (Form 21), and select it.

Click Design.

Right-click the Customer menu button. The context-sensitive menu appears.
Click Menu Items in the context-sensitive menu. The context-sensitive will close.
Scroll down to the bottom of the list of menu items.

Click Separator to insert a separator line.

Fill in the Caption field with the text you want to appear in the menu (here, we have
used Word Letter).

9 In the Action field, click the AssistButton v, and select RunObject.
10In the RunObject field, click the AssistButton + and select the code unit you have
created:
@ MenuButton - Menu Designer [_ (O] %]
V.l Caption | ShortCutkey |Acti0n | RunObject
[V P .
: ¥ | Statistics Fa FunObject Form Customer Statistics z
| |v | Statistics by Churrencies FunObject Form Customer Stats. by Curren...
| |¥ Entry Statistics FunObject Farm Customer Entry Statistics
| |v Shales FunObject Form Customer 5ales
[V
I ¥ | Word Letter FunObject Codeunit DizcountLetter ﬂ
| -]
4-| "l ‘l‘l lrl Separator Help |

11 Save and compile the Customer Card.

Graphing With Microsoft Excel

In this example, we will transfer data from the G/L Entry table to Microsoft Excel and
create a graph. The main point of the example is to show how to handle
enumerations.

315

Chapter 16. Extending C/AL

Background Information about This Example

We will create a graph in Microsoft Excel that shows the distribution of personnel
expenses by departments. In the chart of accounts, we can see that Total Personnel
Expenses is the total of accounts 8700 to 8790. In the Departments table, we can
see that there are three departments: ADM, PROD and SALES.

We will create a code unit that retrieves the data from the G/L Entry table, transfers it
to Microsoft Excel and creates a graph. We will run the code unit directly from the
Object Designer, but in a real application you would call it from an appropriate place,
for example, from a menu in the Chart of Accounts window.

Creating the Code Unit: Declaring Variables
The first series of steps involve defining the necessary variables:
1 Open the Object Designer, and click Codeunit.
2 Click New to create a new code unit.
3 On the menu bar, click View, C/AL Globals.

4 Define a Record variable that has the G/L Entry table as Subtype. Here, we have
called it G/L Entry.

5 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Application as Automation Object. Call it xIApp.

6 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Workbook as Automation Object. Call it xIBook

7 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Worksheet as Automation Object. Call it xISheet.

8 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Chart as Automation Object. Call it xIChart.

9 Define an Automation variable with Microsoft Excel 9.0 Object Library as
Automation Server and Range as Automation Object. Call it xIRange.

After these steps, the C/AL Globals form should look like this:

i Codeunit 88888 Excel Chart - C/AL Globals A= &3

Variables | Text Constants I Functions I

| [Mame |DataT pe |Subt pe |Length

| |GiLEnkry Record GiL Entry =

- B Automation | ‘Microsoft Excel 9.0 Obj... |£)

| |xBook Automation | ‘Microsoft Excel 9.0 Obj...

| |xiSheet Automation | ‘Microsoft Excel 9.0 Obj...

| |#IChart Automation | ‘Microsoft Excel 9.0 Obj...

| |xRange Automation | ‘Microsoft Excel 9.0 Obj...

B ki
| I

Help |

316

16.3 Using C/SIDE as an Automation Controller

Creating the Code Unit: Initial Steps

Enumerations

The code itself is quite simple. First, we will set the key we need for the G/L Entry
table and then use SETFI LTER to select the accounts we are interested in:

"G L Entry". SETCURRENTKEY("G L Account No.","Business Unit
Code", "Departnent Code", "Project Code","Posting Date");

"G L Entry".SETFILTER("G L Account No.",'8700..8790");

Then, we proceed to create Microsoft Excel:

CREATE(xI App) ;

Next, we add a new workbook to Microsoft Excel:

x| Book : = xI| App. Wr kbooks. Add(- 4167) ;
x| Sheet: = x| App. Acti veSheet;
x| Sheet . Nane : = ' Personnel Expenses';

In the first line, we use the Add method of the Workbooks collection to return a new
workbook. Then we use the ActiveSheet property of the Application class to make
sure that what we do next will affect the active sheet of the new workbook. In the third
line we give the sheet a name.

Now you are probably wondering what the argument, -4167, to Add is? If we look in
the Microsoft Excel Visual Basic online Help, we can see that the Add method has one
argument, Template. It is of type VARIANT. The description says:

If this argument is a constant, the new workbook contains a single sheet of the
specified type. Can be one of the following: XIWBATemplate constants:
XIWBATChart, xIWBATExcel4IntiMacroSheet, xXIWBATExcel4MacroSheet, or
xIWBATWorkSheet.

We want to create a workbook with a single sheet. Judging from the description, we
should give an XIWBATemplate constant with the value xXIWBATWorkSheet as the
Template argument.

Nevertheless, we are passing the number -4167. The following paragraphs explain
why.

As described on page 304, this particular VARIANT is an enumeration.

There are two types of enumerations: those that are USERDEF types, and those that
are not. This is not a USERDEF type, so it looks like a VARIANT in the C/AL Symbol
Menu. You have to look in the Microsoft Excel Visual Basic Help to figure out that it is
actually an enumeration. The hint is that the arguments can be constants with names
of the form xI* (in Microsoft Word, they would be wd*, and in Microsoft Outlook ol*).

In C/SIDE, you cannot use the symbolic name (XIWBATWorkSheet). You have to use
the enumerator (-4167). But how do you find this value?

317

Chapter 16. Extending C/AL

Finding an
enumerator value

A shortcut to the
enumerator

318

1 Open Microsoft Excel.

2 On the menu bar, click Tools, Macro, Visual Basic Editor.

3 On the menu bar, click View, Object Browser.

4 Select Excel in the list box in the upper left-hand corner of the form.

5 Scroll down in the Classes list (to the left) until you can see XIWBATemplate, and
select it.

6 In the Members of ‘XIWBATemplate’ list to the right, select xXWBATWorkSheet.

7 The value can now be seen in the information pane at the bottom of the form:
+z7 Object Browser Hi=E
IExceI j <| >| |_&| il
| RN TEY
Search Results
Library | Class | Member |
|Classes Members of ®KYWBATemplate'

= XISubscribeToFurmz;I E #WBATChart

2R H¥ISummaryColumn E #WBATExceldIntMacroSheet
2F HISummaryReportTy E ¥MWBATExceld4mMacroShest
=2 HISummaryRow = ST

= HITabPosition

2 HITextParsingType
=F XTextQualifier

2P HITickLabelOrientatic
=F KITickLabelPosition
2F HITickMark

2 HTirmelnit

=F KIToolbarProtection
=8 HTrendlineType

= HlUndetlineStyle

= HIVAlign

=2 HIWindowType J
= Xiindowiew 7]

Const xIWBATWorksheet = -4167 (8HFFFFEFB)
hember of Excel XIWBATemplate

Alternatively, you can try this shorter method:

Create a macro in Microsoft Excel, and call the MsgBox function:

Sub x()
MsgBox (x| WVBATWr ksheet)
End Sub

When you run the macro, a box will pop up with the value of the enumerator:

Microsoft Excel [E3

-4167

16.3 Using C/SIDE as an Automation Controller

Creating the Code Unit: Transferring Data

To transfer the data, we need to do two things: calculate the data and transfer the
results of the calculation. To calculate the data, we do the following:

"G L Entry". SETRANGE(" Depart nent Code", 'ADM);
"G L Entry". CALCSUMS(Anount) ;

We use SETRANGE to filter the entries in the G/L Entry table on the Department Code
field. The first department is ADM (Administration). Then, we use CALCSUMS(Anount)
to get the sum for the ADM department.

Now we can transfer the data to Microsoft Excel:

x| Sheet . Range(' A2'). Value : = 'Adm nistration';
x| Sheet . Range(' A3').Value := "G L Entry". Anount;

We repeat this for the other two departments, PROD and SALES:

"G L Entry". SETRANGE(" Depart nent Code", 'PROD);
"G L Entry". CALCSUMS(Anpunt) ;

x| Sheet . Range(' B2'). Val ue : = 'Production';

x| Sheet . Range(' B3').Value := "G L Entry". Anount;

"G L Entry". SETRANGE(" Depart nent Code", 'SALES);
"G L Entry". CALCSUMS(Anount) ;

x| Sheet . Range(' C2'). Value : = 'Sales';

x| Sheet . Range(' C3').Value := "G L Entry". Anpunt;

This is how the data looks once it is transferred to Microsoft Excel:

X Microsoft Excel - Sheet3 [_ (O] %]

ﬁﬁile Edit Wiew Insert Format Tools Data Window Help
=121 %]

DsRERY smac(@ ||+

Arial - 10 -

Administration Production Sales
kr389.749,35 | kr584.854 85 kr975.14293

g -
4] 4[> [»i]}, Personnel Expenses /| 4] |]
I e N N 0 I 7

Creating the Code Unit: Making the Graph

The final step is to create the graph. We will use the ChartWizard method to create a
3D pie chart. This is a fast and simple way to do it. You can more tightly control the
design of the graph by setting it up using the methods and properties of the various
Chart objects (ChartArea, Legend, and so on).

First, we must define a range for the data for the graph:

319

Chapter 16. Extending C/AL

320

x| Range : = x| Sheet. Range(' A2: C3");

Then, we add a new chart sheet and give it a name:

x|l Chart := x| Book. Charts. Add;

x| Chart . Nane

:= ' Personnel Expenses -

Finally, this call creates the graph for us:

G aph';

x|l Chart. Chart W zar d(x| Range, -4102,7,1,1, 0,0, ' Personnel Expenses');

We use the first eight of the optional arguments of the ChartWizard method:

Argument Description Value
Source The range that contains the xIRange — the object returned by
source data for the new chart xISheet.Range(‘A