
C/FRONT Reference Guide

C/FRONT REFERENCE GUIDE

DISCLAIMER

This material is for informational purposes only. Microsoft Business Solutions ApS
disclaims all warranties and conditions with regard to use of the material for other
purposes. Microsoft Business Solutions ApS shall not, at any time, be liable for any
special, direct, indirect or consequential damages, whether in an action of contract,
negligence or other action arising out of or in connection with the use or performance
of the material. Nothing herein should be construed as constituting any kind of
warranty.

COPYRIGHT NOTICE

Copyright © 2003 Microsoft Business Solutions ApS, Denmark.

TRADEMARK NOTICE

Microsoft, Great Plains, bCentral and Microsoft Windows 2000 are either registered
trademarks or trademarks of Microsoft Corporation or Great Plains Software, Inc. in
the United States and/or other countries. Great Plains Software, Inc. and Microsoft
Business Solutions ApS are wholly owned subsidiaries of Microsoft Corporation.
Navision is a registered trademark of Microsoft Business Solutions ApS in the United
States and/or other countries. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners. No part of this
document may be reproduced or transmitted in any form or by any means, whole or in
part without the prior written permission of Microsoft Business Solutions ApS.
Information in this document is subject to change without notice. Any rights not
expressly granted herein are reserved.

Published by Microsoft Business Solutions ApS, Denmark.

Published in Denmark 2003.

DocID: NA-370-DVG-003-v01.00-W1W1

PREFACE

This book is a manual for the C/FRONT application programming interface that can be
used to access a C/SIDE® database. This manual describes how to install and use
C/FRONT. This book is part of a comprehensive set of documentation and Help
materials for Microsoft® Business Solutions–Navision®.

You should also be familiar with the symbols and typographical conventions used in
the Navision manuals. In the list below, you can see how various elements of the
program are distinguished by special typefaces and symbols:

Appearance Element

Ctrl Keys on the keyboard. They are written in small capitals.

Design Menu items and buttons in windows. They always start with a capital
letter, and the access key is underlined.

Address Field names. They appear in medium bold and start with a capital letter.

Department Names of windows, boxes and tabs. They appear in medium bold italics
and start with a capital letter.

Hansen Text that you must enter, for example: "...enter Yes in this field." It is
written in italics.

fin.flf File names. They are written with the Courier font and lowercase letters.

p o h b k The special symbols that can be seen in the windows on the screen.

TABLE OF CONTENTS
Chapter 1 Introduction to C/FRONT. 1

Introduction to C/FRONT. 2

Chapter 2 Review of Standard Operations . 7

The Standard Operations . 8

Chapter 3 A Sample Application . 21

Building and Running the Sample Application. 22

Chapter 4 Moving From the C-Toolkit to C/FRONT 25

Overview . 26

New and Changed Functions . 27

Changes to Constants . 29

Chapter 5 The Library Functions . 31

Library Functions Grouped by Use . 32

Library Functions in Alphabetical Order . 39

Appendix A C/FRONT Library Specifications 133

C/FRONT Library Specifications . 134

Appendix B The Alpha Type. 137

Alpha Type . 138

Table of Contents

Chapter 1
Introduction to C/FRONT

This is an introduction to C/FRONT and describes the
contents of C/FRONT, the system requirements,
standby/hibernation and multilanguage.

This chapter contains:

· Introduction to C/FRONT

Chapter 1. Introduction to C/FRONT
1.1 INTRODUCTION TO C/FRONT

C/FRONT is an application programming interface that can be used to access a
C/SIDE® database. C/FRONT facilitates high-level interaction with the C/SIDE
database manager, and allows C developers to manipulate any C/SIDE database.

The central component of C/FRONT is a library of C functions. These functions give
you access to every aspect of data storage and maintenance, and allow you to
integrate both standard and custom applications with your C/SIDE database.

This Manual
This manual explains how to use the library functions to access the features and
facilities of a C/SIDE database. It consists of five chapters:

· Chapter 1 – Introduction to C/FRONT:

Lists the contents of C/FRONT and explains how to configure C/FRONT.

· Chapter 2 – Review of Standard Operations:

Explains and demonstrates how to use some of the library functions in frequent
operations.

· Chapter 3 – A Sample Application:

Explains how to run the sample application that comes with C/FRONT. The source
code is available on the Microsoft® Business Solutions–Navision® product CD in
the file called sample.c.

· Chapter 4 – Moving From the C-Toolkit to C/FRONT:

Describes the differences between the C-Toolkit and C/FRONT and explains how to
upgrade to C/FRONT.

· Chapter 5 – The Library Functions:

All of the C/FRONT functions are listed and described.

Appendix A lists the type and constant definitions.

Appendix B describes nonstandard data formats.

It is assumed that the reader has a good knowledge of C and C/SIDE. For further
information about these subjects, refer to your C manuals and the Application
Designer’s Guide.

The Contents of C/FRONT
C/FRONT provides an interface to the C language, and is distributed on the Navision
product CD. The following files are distributed:

File name Used for

cfront.dll C/FRONT C-API library
2

1.1 Introduction to C/FRONT
In addition to these files, C/FRONT contains a sample application – see Building and
Running the Sample Application on page 22 for details.

Before you can use C/FRONT, you must copy the following files from Navision to the
directory where you have installed C/FRONT:

dbm.dll

nc_netb.dll

nc_tcp.dll

slave.exe

fin.etx

fin.stx

fin.flf

You must also have a database. These files are all part of a standard Navision
installation. Last minute changes to C/FRONT are documented in the file Readme.txt
that is distributed on the Navision product CD. Please read this file before beginning
the installation.

Installation
The Readme.txt file on the product CD contains detailed and up-to-date information
on installing C/FRONT.

System Requirements
C/FRONT can be used on the Windows XP, Windows 2000, Windows 98 and
Windows NT platforms. It has been tested with the Watcom C compiler, version 10.5a
and with Microsoft Visual C++, version 5.00. It can also be used with any other
compiler that can load and use DLLs correctly, but note that the functions in the
C/FRONT DLL module are called with the _CDECL calling convention.

Standby and Hibernation
C/FRONT supports the standby and hibernation facilities provided by Windows XP
and Windows 2000.

Putting your computer on standby means that the entire computer switches to a low
power state. When on standby all devices, such as the monitor and hard disks, turn off
and your computer uses less power. When you want to use the computer again, it
comes out of standby quickly, and your desktop is restored exactly as you left it.

cfrontsql.dll C/FRONT C-API library

cf.h C/FRONT header file

libload.c Source file containing functions to load and unload cfront.dll

dberror.txt Database error/return codes

cfront.ocx C/FRONT OCX

File name Used for
3

Chapter 1. Introduction to C/FRONT
Standby is particularly useful for conserving battery power in portable computers.
Because standby does not save your desktop state to disk, a power failure while on
standby can cause unsaved information to be lost.

Putting your computer in hibernation means that before shutting down your computer
saves everything that is currently in memory to disk, turns off your monitor and hard
disk, and then turns off your computer. When you reactivate your computer, your
desktop is restored exactly as you left it. It takes longer to bring your computer out of
hibernation than out of standby.

Shutting Down The individual workstations can specify that their computer should go to standby or
hibernate after being idle for a certain length of time. It is also possible to make the
computer go to standby from the Shut Down dialog box in Windows.

Windows will not go to standby or hibernation if there is an open server connection
from C/FRONT.

If you attempt to make the computer go to standby from the Windows Shut Down
dialog box, a window will appear informing you that C/FRONT is busy and that
shutting down is not yet possible.

If you click Cancel in this window, the hibernation or standby procedure will be
postponed. Alternatively, you can ignore this window and the computer will shut down
when C/FRONT has completed its task.

Restarting When you restart your computer after it has gone to standby or is in hibernation it will
restart with the desktop exactly as it was when you left it. However, the information
displayed will also be the same and will therefore not necessarily be up to date.

The window will not be updated until you use the program and actively update the
window in question.

Multilanguage
Navision 3.70 is multilanguage enabled, allowing users to change application
language on the fly. This is achieved by adding captions to the objects in the
database. These captions contain the names of the database objects in the languages
that are available in your application. However, C/FRONT does not have any table or
field caption functions that you can use to identify these different names.

Any programs that use C/FRONT will therefore not be able to identify the names of the
database objects in the various application languages that are available. To obtain this
information you can generate a text file listing all of the objects in the database and the
captions that they contain.

To generate this text file:

1 Open the Object Designer and select all the objects.

2 Click Tools, Translate, Export.
4

1.1 Introduction to C/FRONT
This file will list all the objects in the database and each object will be listed once for
each language that it used in your application.

Here is an example:

T3-F2-P8629-A1033-L999:Due Date Calculation

Table 3, Field 2, Property 8629(Caption), Language ID 1033 (US English), Max.
Length 999, the name of the object.

You can now use the information contained in this text file in the program that uses
C/FRONT.
5

Chapter 1. Introduction to C/FRONT
6

Chapter 2
Review of Standard Operations

C/FRONT contains functions that allow you to perform all
the standard operations that are used to maintain a C/SIDE
database.

The chapter contains the following topics:

· The Standard Operations

Chapter 2. Review of Standard Operations
2.1 THE STANDARD OPERATIONS

Maintaining a C/SIDE database involves a number of operations:

· Determining which DLL to Use

· Initializing the Library

· Connecting to a Server and Opening a Database

· Opening a Company

· Opening a Table

· Using Filters

· Using Keys

· Finding a Record

· Inserting a Record

· Modifying a Record

· Deleting a Record

· Editing a Field in a Record

· Handling Errors and Exceptions

These operations are illustrated with the help of small sample routines. All of the
functions are fully explained in chapter 5, "The Library Functions".

Determining which DLL to Use
Navision can run on two different servers and C/FRONT therefore comes with two
different DLLs: CFRONT.DLL and CFRONTSQL.DLL. They will both be installed when
you install C/FRONT.

If you are running on Navision Database Server you must use CFRONT.DLL. If you are
running on Microsoft SQL Server you must use CFRONTSQL.DLL.

Initializing the Library
To initialize the library and configure the environment, call DBL_Init. This function
initializes internal data structures, creates buffers, and loads the dynamic link libraries
required by the library.

As shown below, this operation is usually performed in the main() function of the C
program:

void main(int argc, char* argv[])

{

DBL_Init();

/* ... */

DBL_Exit();

exit(0);

}

8

2.1 The Standard Operations
Connecting to a Server and Opening a Database
C/FRONT now contains a single function that you can use to connect with a server
and open a database. This new function works with both Navision Database Server
and the Microsoft SQL Server Option.

SQL Server Option

With the SQL Server Option there is one function that enables you to connect to a
server, open a database and specify the kind of authentication to use.

#define DRIVERNAME "NDBCS"

#define SERVERNAME "SQL 1"

#define NETTYPE "Named Pipes"

#define DATABASENAME "My Database.mdf"

#define CACHESIZE 0

#define USECOMMITCACHE 0

#define USENTAUTHENTICATION 1

#define USERID ""

#define PASSWORD ""

DBL_ConnectServerandOpenDatabase(DRIVERNAME, SERVERNAME, NETTYPE,

DATABASENAME, CACHESIZE, USECOMMITCACHE, USENTAUTHENTICATION, USERID,

PASSWORD);

/* ... access the database ... */

 DBL_DisconnectServer();

/* ... */

If you are using SQL Server you still have to enter a zero value for CacheSize or
UseCommitCache even though they only apply to the Navision Database Server. If
you select NT Authentication (UseNTAuthentication=1) then you do not have to
supply a user ID or a password. However you must enter two empty sets of quotes ("")
in order to comply with the syntax.

You must run this function again if you want to open another database. This database
can be on the same server or on another server.

Both Servers This routine works with both servers and we recommend that it be used with both
server options.

Navision Database Server

The functions described here still work with the Navision Database Server, even
though we recommend that you use the function described above.

The library can either run in 'local mode' or be connected to a remote server in a
network. When the user connects to a Navision Database Server in a network a
database is opened automatically by the server. When the library is run in 'local mode'
(the database is stored on the same computer as your application), a database must
be opened explicitly. The following routine works in both environments:
9

Chapter 2. Review of Standard Operations
#define DRIVERNAME "NDBCN"

#define SERVERNAME "accounting"

#define NETTYPE "tcp"

#define DATABASENAME "Database.fdb"

#define CACHESIZE 1000

#define USECOMMITCACHE 0

DBL_BOOL RemoteMode = 0;

/* ... */

if (RemoteMode)

DBL_ConnectServer(DRIVERNAME, SERVERNAME, NETTYPE);

else

DBL_OpenDatabase(DATABASENAME, CACHESIZE, USECOMMITCACHE);

/* ... access the database ... */

if (RemoteMode)

 DBL_DisconnectServer();

else

 DBL_CloseDatabase();

/* ... */

If the open/connect operation fails, the function raises an exception that terminates
the application.

Only one database/server connection can be open at a time.

For more information about exceptions, see Handling Errors and Exceptions on page
18.

.
Note

C/FRONT does not support the use of extended characters in directory and database

.
names.

Opening a Company
A database consists of one or more companies. A company is a "subdatabase,"
whose primary use is to separate and group data within one database. A company
"bundles" one or more tables together into a logical structure that is identified by the
company name. The tables within a company do not need not have anything in
common other than the shared company name.

Only one company can be open at a time. You must open a company before the
application can access the data in the database tables. By opening a company, you
specify which data tables can be opened by DBL_OpenTable.

#define COMPANYNAME "Test Company"
10

2.1 The Standard Operations
DBL_OpenCompany(COMPANYNAME);

/* ... open tables ... */

DBL_CloseCompany();

If the company that you want to open does not exist, the function raises an exception
that terminates the application.

For more information about exceptions, see Handling Errors and Exceptions on page
18.

A database maintains a list of the companies that it contains. To retrieve the names of
all the companies contained in a database, execute the DBL_NextCompany function
in a loop:

DBL_U8 *CompName;

for (CompName = NULL; CompName = DBL_NextCompany(CompName);)

{

/* ... */

}

For more information about companies, see the Application Designer’s Guide.

Opening a Table
A database contains a number of tables that can be manipulated with the functions in
the library. You can have any number of tables, within a single company, open at the
same time. A table is identified by a unique number. When a table is opened, the
database manager returns a unique handle, which remains valid until the table is
closed. This handle must be passed to all operations that are carried out on the table.

If you do not know the number of the table that you want to open, you can look it up
with the library function DBL_TableNo. This function requires the name of the table as
a parameter. Table names are also unique.

Manipulating a table often requires the use of filters and keys. Filters and keys are
bound to a handle and not to a table. This allows you to open various "views" of a
single table, each with its own key and set of filters, to suit the needs of individual
applications.

The following example illustrates how a table is represented by its handle, with the
symbolic name hTable.

#define TABLENAME "MyTable"

DBL_HTABLE hTable;

DBL_S32 TableNo;

TableNo = DBL_TableNo(TABLENAME);
11

Chapter 2. Review of Standard Operations
if (TableNo != 0)

{

DBL_OpenTable(&hTable, TableNo);

/* ... access data in the table ... */

DBL_CloseTable(hTable);

}

Filters and keys are discussed in the next section. For more information about tables,
see the Application Designer’s Guide.

Using Filters
Filters limit the number of records that are being manipulated. Filters limit the number
of records that are selected for calculating column sums, in record searches, and in
other activities. The library contains two functions that can set a filter: DBL_SetFilter
and DBL_SetRange. DBL_SetRange is a subfunction of DBL_SetFilter.

In the following example, the operations will only affect records with Field Number 2
that are within the ranges 100..200 and 300..400.

#define TABLENUMBER 15

DBL_HTABLE hTable;

DBL_S32 FieldNo;

/* ... */

DBL_OpenTable(&hTable, TABLENUMBER);

FieldNo = 2;

DBL_SetFilter(hTable, FieldNo, "100..200&300..400", NULL);

/* ... retrieve data within the specified range ... */

DBL_CloseTable(hTable);

/* ... */

Setting a Range The DBL_SetRange function is used in the following way:

DBL_HTABLE hTable;

DBL_S32 FieldNo = 2;

DBL_S32 MinValue = 100;

DBL_S32 MaxValue = 200;

/* ... */

DBL_SetRange(hTable, FieldNo, &MinValue, &MaxValue);

/* ... retrieve data within the specified range ... */

/* ... */

DBL_SetFilter can use the & or | operators to specify a complex interval as the
condition for a field, but DBL_SetRange can specify only a single interval. A filter can
be retrieved by the function DBL_GetFilter, and the range by DBL_GetRange.

For more information about filters, see the Application Designer’s Guide.
12

2.1 The Standard Operations
Using Keys
You can use keys to sort the records in a table according to the values in specified
fields, for example, in ascending order. You can find a field that contains a specific
value much faster when the records are sorted (using a key). A key maintains the
relationship between the records, in a structure called an index.

A key is composed of one or more fields. You specify how these fields are ordered in
C/SIDE. Keys cannot be defined or modified in C/FRONT.

A table can contain up to 20 keys, each with its own index. The first key in a table is
the primary key and the data it contains must always be unique. The index for each
key is maintained by the C/SIDE database manager.

All of the other keys are secondary keys. Multiple secondary keys may be active
simultaneously. The secondary keys do not have to contain unique data. Records
containing identical data in secondary key fields are "sub-sorted" once again,
according to the value of the primary key because the primary key is always in effect
with the current secondary key.

Keys can be active or inactive. Keys can be activated or deactivated in C/SIDE, not in
C/FRONT. Only active keys are available to library functions.

When you insert, delete or modify a record, the indexes that are maintained by all of
the active keys are automatically updated to reflect any changes that are made to the
table. The indexes of inactive keys are not updated. If at some point you reactivate a
key (in C/SIDE) that has been inactive, you must allow some time for the application to
rebuild the index structure. This may require some additional disk space if the space
that has been allocated to the database is nearly full, because each key occupies
space in the database.

The Current Key

Although keys can only be defined in C/SIDE, the key needed for the current
application can be selected in the library. This key is then called the current key. The
current key is always attached to the table handle, not to the table itself.

The following example shows how to select the current key:

DBL_HTABLE hTable;

DBL_S32 Key[DBL_MaxFieldsPerKey+1];

/* ... */

Key[0] = 3;

Key[1] = 0; /* Zero-terminated list */

DBL_SetCurrentKey(hTable, Key);

/* ... scan table sorted by field number 3 ... */

/* ... */
13

Chapter 2. Review of Standard Operations
The primary key is selected when you call DBL_SetCurrentKey with the Key
parameter equal to NULL.

Each table maintains a list of all its keys. To retrieve this list, execute the
DBL_NextKey function in a loop:

DBL_HTABLE hTable;

DBL_S32 *Key;

DBL_S32 *Field;

/* ... */

for (Key = NULL; Key = DBL_NextKey(hTable, Key);)

{

printf("Key contains the following field number(s):\n");

for (Field = Key; *Field; Field++)

printf("%d\n", *Field);

}

/* ... */

Other key functions are:

For more information about keys and SumIndexFields, see the Application Designer’s
Guide.

Finding a Record
Two functions are used to retrieve records:

To create a record buffer, call DBL_AllocRec. This function allocates an area of
memory equal to the size of the record, including virtual fields (FlowField® and
FlowFilter®). You must remove the record buffer when you are finished using it, by
calling DBL_FreeRec.

Function Purpose

DBL_GetCurrentKey Retrieves the key that is currently selected.

DBL_KeySumFields Returns a list of SumIndexField® numbers for a specified key.

Function Purpose

DBL_FindRec Locates a record that contains given values in the fields of the current
key, and copies it to a buffer. The current filters are used when
searching.

DBL_NextRec Uses the current sorting sequence to retrieve a record in the table
relative to a specified record, and copies it to a buffer. The current
filters are used when searching.
14

2.1 The Standard Operations
In the following routine, DBL_FindRec searches for the first record in the table, copies
it to a buffer and performs some operations on it. Control is then passed to
DBL_NextRec, which steps through the entire file performing the same operations on
each record.

DBL_HTABLE hTable;

DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */

hRec = DBL_AllocRec(hTable);

/* Let DBL_FindRec return error if not present */

DBL_Allow(DBL_Err_RecordNotFound);

/* Find the first record */

if (DBL_FindRec(hTable, hRec, "-"))

{

do

{

/* ... */

/* Get the next record */

} while (DBL_NextRec(hTable, hRec, 1));

}

DBL_FreeRec(hRec);

/* ... */

For more information about records and FlowFields, see the Application Designer’s
Guide.

Inserting a Record
Inserting a record is a three-step operation:

1 Call DBL_InitRec to initialize the record. This function assigns the default field
values that were defined when the record layout was created in C/SIDE.

2 Modify the field values.

Be aware that the library does not provide range and validity checks. You must
verify that the inserted data is valid.

3 After you have verified the contents of the fields, call DBL_InsertRec to insert the
record into the table.

The database manager will ensure that the new record is automatically inserted into
the correct place. The correct place is determined by the values of the fields in the
primary key.
15

Chapter 2. Review of Standard Operations
In the following example, an initialized record is inserted into the table:

DBL_HTABLE hTable;

DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */

hRec = DBL_AllocRec(hTable);

/* Initialize record */

DBL_InitRec(hTable, hRec);

/* ... assign values to fields in hRec ... */

DBL_BWT();

DBL_Allow(DBL_Err_RecordExists);

if (DBL_InsertRec(hTable, hRec))

{

printf("Record inserted.\n");

DBL_EWT();

}

else

{

 printf("Record NOT inserted. Record already exists.\n");

DBL_AWT();

}

/* ... */

The transaction functions DBL_BWT, DBL_AWT and DBL_EWT ensure that all the
database updates that are grouped in a series are either committed (DBL_EWT) or
rolled back (DBL_AWT).

Modifying a Record
Use the DBL_ModifyRec function to change the field values in a record. The record
structure itself cannot be changed by using any of the library functions. The record
structure can only be changed in C/SIDE.

Be aware that the library does not provide range and validity checks.You must verify
that the data being inserted is valid.

The following example below shows how a modified record is copied from its buffer
and written to the original record in the table. The fields are changed while the record
is in the buffer, but this is not shown in this example. To see the steps in detail, refer to
Editing a Field in a Record on page 18.

DBL_HTABLE hTable;

DBL_HREC hRec;

/* ... */
16

2.1 The Standard Operations
/* Allocate memory for the record buffer */

hRec = DBL_AllocRec(hTable);

/* ... retrieve record to modify from the table ... */

/* ... assign values to fields in hRec ... */

DBL_BWT();

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_ModifyRec(hTable, hRec))

{

printf("Record modified\n");

DBL_EWT();

}

else

{

printf("Record NOT modified. Record not found\n");

DBL_AWT();

}

/* ... */

The transaction functions DBL_BWT, DBL_AWT and DBL_EWT ensure that all
database updates grouped in a series are either committed (DBL_EWT) or rolled back
(DBL_AWT).

Deleting a Record
Use DBL_DeleteRec to delete a record from a table. This function can remove any or
all records in a table, but the table description itself can only be deleted in C/SIDE.

DBL_HTABLE hTable;

DBL_HREC hRec;

/* ... */

/* Allocate memory for the record buffer */

hRec = DBL_AllocRec(hTable);

/* ... retrieve record to delete from the table ... */

DBL_BWT();

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_DeleteRec(hTable, hRec))

printf("Record deleted\n");

else

{

printf("Record NOT deleted. Record not found\n");

DBL_AWT();

}

DBL_EWT();

/* ... */
17

Chapter 2. Review of Standard Operations
The transaction functions DBL_BWT, DBL_AWT and DBL_EWT ensure that all
database updates that are grouped in a series are either committed (DBL_EWT) or
rolled back (DBL_AWT).

Editing a Field in a Record
Before you can edit a record, you must retrieve it from the table and have it copied to
a buffer, where you can access it by using a record handle. You can then use the
DBL_AssignField function to assign new values to (edit) the fields in the record.

In the following example, DBL_FindRec is first used to retrieve the record and copy it
to a buffer. Then it is accessed with the hRec handle, and a new value is assigned to
field number 3.

DBL_HTABLE hTable;

DBL_HREC hRec;

/* ... */

DBL_FindRec(hTable,hRec,"=");

DBL_AssignField(hTable,hRec,3,DBL_FieldType(hTable,3),"RAW",

strlen("RAW"));

DBL_BWT();

DBL_ModifyRec(hTable,hRec);

DBL_EWT()

/* ... */

Handling Errors and Exceptions
Errors can occur if you use the library functions incorrectly. If an error occurs, the
library terminates your application. However, you can specify that some errors are
allowed by using the DBL_Allow function. For more information, see DBL_Allow() on
page 42.

The library function DBL_Allow enables the programmer to allow the following errors:

· DBL_Err_TableNotFound

· DBL_Err_RecordNotFound

· DBL_Err_RecordExists

· DBL_Err_KeyNotFound

These allowable errors can occur in the following library functions:

· DBL_OpenTable

· DBL_FindRec

· DBL_InsertRec

· DBL_DeleteRec

· DBL_ModifyRec
18

2.1 The Standard Operations
· DBL_SetCurrentKey

If the error that causes the function to fail has been allowed by DBL_Allow, the
function will return 0. If it has not been allowed, the library will do the following:

1 Fetch the corresponding error message and call the message handler, passing the
error message as a parameter. If no message handler has been set, the error
message is written to standard output.

2 Call the exception handler.

The following routine demonstrates how to allow an unsuccessful result for a record
retrieval:

/* ... */

/* Allow DBL_FindRec to fail */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, "="))

 printf("Record was found\n");

else

 printf("Record was NOT found\n");

/* ... */

When a library function detects an error or sends a warning, it fetches the
corresponding error message and calls the default message handler, passing the
message, the message type and the message code as arguments. The default
message handler writes the error message to standard output.

However, you can choose to install your own message handler by using the library
function DBL_SetMessageShowHandler. Your custom message handler can do such
tasks as:

· hide particular messages

· map some messages to your own versions

· improve the formatting of the messages

· log messages to a file

Error messages passed to the message handler (and displayed by the default
message handler) are retrieved from the fin.etx and fin.stx ASCII files. You can
inspect the contents of these files with an ASCII editor.

After the library has detected an error and the message handler has been called, the
default exception handler is called. The default exception handler simply terminates
the application. You can install your own exception handler to prevent the application
being terminated. Use the library function DBL_SetExceptionHandler to install your
own exception handler.
19

Chapter 2. Review of Standard Operations
The exception handler receives two parameters: the error code and a fatal error flag.
The error code identifies the error (this has the same value as the message code in
the message handler) and the fatal error flag tells you whether you are able to
continue to use the library functions or if you must terminate your application.

If the error is nonfatal and you decide not to terminate your application in your
exception handler, the execution is continued immediately after the library call that
raised the exception.

If the error is fatal, the library will terminate the application, when you return from your
exception handler.

In short the exception handler can be used to:

· save data before the application is terminated.

· continue when the errors are nonfatal.
20

Chapter 3
A Sample Application

C/FRONT comes with a sample application.

The chapter contains:

· Building and Running the Sample Application

Chapter 3. A Sample Application
3.1 BUILDING AND RUNNING THE SAMPLE APPLICATION

In the C/FRONT folder on the product CD you will find a sample C/FRONT C-API
program named sample.c (source file) and sample.exe (executable). You can either
use the executable, or build your own by using the source file. This sample program
tests the most basic C/FRONT functions and can be used as a source of inspiration
for your own programs. It can connect to a database directly or via a server.

The Sample Application
The sample application consists of the following files:

You will also need the libload.c file – the file that contains the functions that load
and unload the cfront.dll/cfrontsql.dll.

Building the C/FRONT Sample Application

1 Copy libload.c and sample.c to your compiler directory and cf.h to your include
directory.

2 Edit sample.c :

Delete #include <cf/dbl_type.h> and #include <cf/dbl_td.h>. Replace
them with #include <cf.h>

3 Compile sample.c and libload.c.

4 Link sample.obj and libload.obj to sample.exe.

Running the Sample Application on SQL Server

If you are running on Microsoft SQL Server you must also perform the following tasks
before you can run the sample application:

1 Open the SQL Server Option for Navision and create a new database called
sample.

2 Restore the backup of the sample database sample.fbk into this new database.

File Contents

sample.c C/FRONT sample application source file.

sample.exe C/FRONT sample application executable.

sample.fbk Navision sample database backup.

sample.fdb Navision sample database.

sample.txt Text file describing how to build and run the sample application. Any last-minute
changes are also described here.
22

3.1 Building and Running the Sample Application
Running the Sample Application

1 Copy the sample application sample.exe to the directory where
cfront.dll/cfrontsql.dll and sample.fdb are placed. This is normally the
directory where C/FRONT is installed.

2 Normally, the C/FRONT library (cfront.dll/cfrontsql.dll) reads the registry in
order to locate the Navision DBMS system. However, if multiple Navision systems
are installed or if Navision is not present on the system, the function
SetNavisionPath in the cfront.dll/cfrontsql.dll library must be called
specifying the path to the directory where Navision is installed or to a directory
containing the following files from a Navision installation:

dbm.dll

nc_netb.dll

nc_tcp.dll

slave.exe

fin.etx

fin.stx

fin.flf

Alternatively these files can also be copied to the directory where the sample
application and the database are stored.

3 You run the sample application by entering the command sample. But you may also
enter one or more of the following parameters:

.
Note

If you are running on SQL Server, you must have a Windows login in order to connect

.
to the sample application.

Parameter Meaning

-d Database name

-t Run the exception handler test

-s Server name

-p Set Navision path

-n Nettype – Navision Database Server: tcp, netb – SQL Server: Default, Named
Piped, TCP/IP Sockets, Multiprotocol.
23

Chapter 3. A Sample Application
Example

If you have installed the sample application on your client computer, enter the
following command to run it:

sample

If the program is started by entering the sample command only, the following appears
on the screen during startup:

Company present C/FRONT Sample Company

Testing some table functions ..OK

Verifying create table functions ..OK

Verifying the table layout ..OK

Deleting all records ..OK

Creating test data ..OK

Verifying test data ..OK

Verifying modified test data ..OK

Testing string to/from type conversion ..OK

Testing filter functions ..OK

Testing key functions ..OK

Testing bcd functions ..OK

Testing sum functions ..OK

Database test ended

If the program is started with a parameter (in the case illustrated below, using sample
-t), the text will be a little different:

Company present C/FRONT Sample Company

Testing some table functions ..OK

Verifying create table functions ..OK

Verifying the table layout ..OK

Deleting all records ..OK

Creating test data ..OK

Verifying test data ..OK

Verifying modified test data ..OK

Testing string to/from type conversion ..OK

Testing filter functions ..OK

Testing key functions ..OK

Testing bcd functions ..OK

Testing sum functions ..OK

Exception Handler test

TableData 2000 does not exist.

Exception Handler called with Database Error: 1001.

Database test ended

If you have installed the sample application on a Navision Database Server you can
enter the following code when you want to run the sample application:

sample -s"My Server" -ntcp -penter the path

To use CFRONT to access a database on a Navision Database Server enter the
following code:

sample -s"My Server" -ntcp -d"My database" -t -penter the path
24

Chapter 4
Moving From the C-Toolkit to C/FRONT

There are some important differences between the C-
Toolkit for Navision 3.XX (the old text-based version) and
C/FRONT for Navision.

The chapter contains:

· Overview

· New and Changed Functions

· Changes to Constants

Chapter 4. Moving From the C-Toolkit to C/FRONT
4.1 OVERVIEW

C/FRONT differs from the C-Toolkit in a number ways. Basically, these differences
reflect changes in the underlying database management system – especially the fact
that key elements of the database management system have been changed to new
data types. For example, field numbers were eight-bit entities in the old text -based
Navision 3.XX, but now they are 32-bit entities.

A number of new functions have been added to the library, and a few have been
removed. The new functions provide a higher-level of access to the database, that is:
the programmer does not have to manage the physical layout of records and tables.

Finally, some of the constants in the cf.h header file have been changed.
26

4.2 New and Changed Functions
4.2 NEW AND CHANGED FUNCTIONS

This section lists all of the new functions and the functions that have been changed in
the library. The list of changed functions only contains those functions where the
syntax or semantics have been changed. There is also a set of general differences
that have been caused by the changes to the data types in the database management
system. These changes are summarized at the end of the section.

New Functions

The following functions have been added to the library:

Function Purpose

DBL_AddKey Adds keys and SumIndexFields to a table

DBL_AddTableField Adds a field to a table

DBL_AssignField Assigns a value to a record field

DBL_CheckLicenseFile Checks permissions in license file for object

DBL_CmpRec Compares records

DBL_ConnectServerandOpenDatabase Connects with a server and opens a database

DBL_CopyRec Copies a record

DBL_CreateTable Creates a database table

DBL_CreateTableBegin Creates a create table handle

DBL_CreateTableEnd Closes a create table handle

DBL_Date_2_Str Converts date to string

DBL_DeleteTable Deletes a table from a database

DBL_FieldDataOffset Gets offset of field data

DBL_GetFieldData Retrieves field data

DBL_GetFieldDataAddr Gets address of field data

DBL_GetFieldDataSize Gets size of field data

DBL_GetLastErrorCode Retrieves last error code

DBL_GetVersion Gets C/FRONT-API version number

DBL_LoadLicenseFile Loads a license file

DBL_SetMessageShowHandler Installs a message handing routine

DBL_SetNavisionPath Sets path to Navision files

DBL_Str_2_Date Converts a string to date

DBL_Str_2_Time Converts a string to time

DBL_Time_2_Str Converts time to a string

DBL_UseCodeUnitsPermissions Allows you to use the permissions of a codeunit
27

Chapter 4. Moving From the C-Toolkit to C/FRONT
Changed functions

The following functions have been changed syntactically and/or semantically:

Removed Functions

The following functions have been removed or replaced:

General Changes

These general changes should be considered when moving an application from the C-
Toolkit to the C/FRONT-API:

Referencing
Records

Records are no longer referenced by a pointer, but by a record handle of type
DBL_HREC.

Table Numbers Table numbers are now of type DBL_S32.

Field Numbers Field numbers are now of type DBL_S32.

Keys Keys are now of type DBL_S32.

Date and Time The components of dates (year, month, date) and times (hours, minutes, seconds) are
now of type DBL_S32.

Options Options are now of type DBL_O32.

DBL_BOOL The DBL_BOOL type is now defined as a DBL_U32.

DBL_DATE The DBL_DATE type is now defined as a DBL_U32.

Function Purpose

DBL_AllocRec Returns a record handle of type DBL_HREC (was: takes a
record pointer as an argument)

DBL_ConnectServer Takes a server name as an argument (was: a server
number)

DBL_Init Takes no arguments (was: took three arguments)

DBL_Login Allows any number of login attempts (was: three attempts)

DBL_OpenDatabase Third argument means UseCommitCache? (was: third
argument was size of lazy cache)

DBL_SetExceptionHandler Read the new description carefully

Function Replaced By

DBL_FieldOffset Replaced by DBL_FieldDataOffset (read this description
carefully).

DBL_RecSize Removed without replacement.
28

4.3 Changes to Constants
4.3 CHANGES TO CONSTANTS

The table below lists those constants in the cf.h file that are different in the
C/FRONT-API:

Field Class
Constants

The three field class constants (as used in, for example, the DBL_FieldClass function)
have been changed:

Constant New Value Old Value

DBL_MaxRecSize 4000 1000

DBL_MaxCompanyNameLen 30 15

DBL_MaxFieldNameLen 30 20

DBL_MaxNoOfKeys 40 20

DBL_MaxFieldsPerKey 20 10

DBL_MaxSumFieldsPerKey 20 10

New Old Value

DBL_Class_Normal DBL_Class_Ordinary 0

DBL_Class_FlowField DBL_Class_Calculated 1

DBL_Class_FlowFilter DBL_Class_CalcFilter 2
29

Chapter 4. Moving From the C-Toolkit to C/FRONT
30

Chapter 5
The Library Functions

The functions in the C/FRONT function library are listed
and described in this chapter. The functions are grouped
according to use and then they are grouped alphabetically.

The chapter contains:

· Library Functions Grouped by Use

· Library Functions in Alphabetical Order

Chapter 5. The Library Functions
5.1 LIBRARY FUNCTIONS GROUPED BY USE

Initialization and Finalization Functions

Database Functions

Security Functions

Function Purpose

DBL_Init() Initializes the library

DBL_Exit() Closes the library

DBL_SetNavisionPath() Sets the path to the Navision files

Function Purpose

DBL_ConnectServerandOpenDatabase() Connects to a server and opens a database

DBL_ConnectServer() Connects to a server

DBL_DisconnectServer() Disconnects from a server

DBL_ReleaseAllObjects() Frees all resources in C/FRONT

DBL_OpenDatabase() Opens a database

DBL_CloseDatabase() Closes a database

DBL_OpenCompany() Opens a company

DBL_CloseCompany() Closes a company

DBL_CompanyName() Retrieves the current company name

DBL_NextCompany() Scans company names

DBL_GetDatabaseName() Tests whether a database is open and – if it is –
returns its name.

DBL_CheckLicenseFile() Checks user permissions against license file

DBL_LoadLicenseFile() Loads a license file.

DBL_GetVersion() Gets version number of C/FRONT library

DBL_AddKey() Adds keys and SumIndexFields to a table

DBL_AddTableField() Adds a field to a table

DBL_CreateTable() Creates a database table

DBL_CreateTableBegin() Acquires a create table handle

DBL_CreateTableEnd() Releases a create table handle

DBL_DeleteTable() Deletes a table from a database

Function Purpose

DBL_Login() Authorizes entry to a database
32

5.1 Library Functions Grouped by Use
Table Functions

DBL_UserID() Retrieves current user ID

DBL_UserCount() Counts users in a database

DBL_CryptPassword() Encrypts password

DBL_UseCodeUnitsPermissions Allows you to use the permissions of a codeunit

Function Purpose

DBL_OpenTable() Opens a table

DBL_CloseTable() Closes a table

DBL_OpenTemporaryTable() Creates a temporary table

DBL_LockTable() Locks a table

DBL_TableName() Retrieves a table name

DBL_TableNo() Retrieves a table number

DBL_NextTable() Scans table numbers

DBL_CalcSums() Accumulates the sums of specified columns

Function Purpose
33

Chapter 5. The Library Functions
Record Functions

Transaction Functions

Function Purpose

DBL_AllocRec() Creates a record buffer

DBL_FreeRec() Removes a record buffer

DBL_FindRec() Finds a record

DBL_NextRec() Scans records

DBL_InsertRec() Inserts a record

DBL_DeleteRec() Deletes a record

DBL_DeleteRecs() Deletes all records in a table

DBL_ModifyRec() Modifies a record

DBL_CopyRec() Copies a record

DBL_CmpRec() Compares two records

DBL_InitRec() Initializes fields in a record

DBL_RecCount() Counts records

DBL_CalcFields() Updates FlowFields in a record

Function Purpose

DBL_BWT() Begins a write transaction

DBL_EWT() Ends a write transaction

DBL_AWT() Aborts a write transaction

DBL_SelectLatestVersion() Selects the latest data version
34

5.1 Library Functions Grouped by Use
Field Functions

Key Functions

Filter Functions

Function Purpose

DBL_FieldCount() Counts the number of fields in record

DBL_NextField() Scans the fields in a table

DBL_FieldLen() Retrieves the declared length of a field

DBL_FieldNo() Retrieves a field number

DBL_FieldName() Retrieves a field name

DBL_FieldType() Retrieves a field type

DBL_FieldSize() Retrieves the field size in bytes

DBL_AssignField() Assigns a value to a field in a record

DBL_GetFieldData() Retrieves data from a field

DBL_GetFieldDataAddr() Retrieves the address of field data

DBL_GetFieldDataSize() Retrieves the size of field data

DBL_FieldDataOffset() Retrieves the offset of a field

DBL_FieldOptionStr() Retrieves the option string of a field

DBL_FieldClass() Retrieves the class of a field

Function Purpose

DBL_SetCurrentKey() Sets the current key for a table

DBL_GetCurrentKey() Retrieves the current key

DBL_KeyCount() Counts the keys

DBL_NextKey() Scans the keys of a table

DBL_KeySumFields() Retrieves the SumIndexFields of a key

Function Purpose

DBL_SetFilter() Sets a filter for a field

DBL_GetFilter() Retrieves the current filter

DBL_SetRange() Sets a range filter for a field

DBL_GetRange() Retrieves the current range filter
35

Chapter 5. The Library Functions
Conversion Functions

Function Purpose

DBL_Field_2_Str() Converts a value to a string

DBL_YMD_2_Date() Converts date elements to DATE type

DBL_Date_2_YMD() Converts DATE type to date units

DBL_HMST_2_Time() Converts time elements to TIME type

DBL_Time_2_HMST() Converts TIME type to time units

DBL_Alpha_2_Str() Converts ALPHA type to string

DBL_Str_2_Alpha() Converts string to ALPHA type

DBL_Date_2_Str() Converts DATE to string

DBL_Str_2_Date() Converts string to DATE

DBL_Time_2_Str() Converts TIME to string

DBL_Str_2_Time() Converts string to TIME

DBL_Ansi2OemBuff() Converts string from ANSI to OEM

DBL_Oem2AnsiBuff() Converts string from OEM to ANSI
36

5.1 Library Functions Grouped by Use
BCD Functions

Function Purpose

DBL_BCD_2_Str() Converts a BCD number to a string

DBL_Str_2_BCD() Converts a string to a BCD number

DBL_BCD_2_Double() Converts a BCD number to a double

DBL_Double_2_BCD() Converts a double to a BCD number

DBL_BCD_2_S32() Converts a BCD number to an S32

DBL_S32_2_BCD() Converts an S32 to a BCD number

DBL_BCD_IsZero() Tests if a BCD number has a value of 0

DBL_BCD_IsNegative() Tests if a BCD number is negative

DBL_BCD_IsPositive() Tests if a BCD number is positive

DBL_BCD_Div() Divides one BCD number with another BCD number

DBL_BCD_Mul() Multiplies one BCD number by another BCD
number

DBL_BCD_Add() Adds two BCD numbers together

DBL_BCD_Sub() Subtracts one BCD number from another BCD
number

DBL_BCD_Abs() Returns the absolute value of a BCD number

DBL_BCD_Neg() Reverses the sign of a BCD number

DBL_BCD_Power() Raises a BCD number to a power.

DBL_BCD_Sgn() Returns the sign of a BCD number

DBL_BCD_Cmp() Compares one BCD number to another BCD
number

DBL_BCD_Trunc() Truncates a BCD number

DBL_BCD_Round() Rounds a BCD number

DBL_BCD_RoundUnit() Rounds a BCD number to a unit

DBL_BCD_Make() Returns a BCD number
37

Chapter 5. The Library Functions
Error-Handling and Exception-Handling Functions

Function Purpose

DBL_Allow() Specifies the error to be allowed

DBL_SetExceptionHandler() Installs a custom exception handler

DBL_SetMessageShowHandler Installs custom message handler

DBL_GetLastErrorCode Retrieves code of last error
38

5.2 Library Functions in Alphabetical Order
5.2 LIBRARY FUNCTIONS IN ALPHABETICAL ORDER

This section lists all the functions in the C/FRONT library in alphabetical order.

DBL_AddKey()

Function Adds keys and SumIndexFields to a table.

Category Database function.

Syntax void DBL_AddKey(DBL_HCREATE_TABLE hCreateTable, DBL_S32 *Key, DBL_S32

*SumIndexFields);

hCreateTable: A create table handle (see DBL_CreateTableBegin)

Key: Zero-terminated array of the field numbers that you want to constitute

the key

SumIndexFields:Zero-terminated array of the field numbers for which you want

SumIndexFields to be maintained

Remarks The first time you call DBL_ AddKey you create the primary key and the
SumIndexFields that are associated with the primary key. You can then add more keys
and SumIndexFields by making more AddKey calls.

The fields (and the table itself) are not created in the database until you call
DBL_CreateTable.

Example DBL_HCREATE_TABLE hCT;

DBL_S32 TableNo = 50000;

DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_S32 Key[15];

DBL_S32 SumIndexFields[15];

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* create table fields */

Key[0] = 10;

Key[1] = 0;

SumIndexFields[0] = 40;

SumIndexFields[1] = 0;

DBL_AddKey(hCT, Key, SumIndexFields);
39

Chapter 5. The Library Functions
DBL_AddTableField()

Function Adds a field to a table.

Category Database function.

Syntax void DBL_AddTableField(DBL_HCREATE_TABLE hCreateTable, DBL_S32 FieldNo,

DBL_U8 *FieldName, DBL_U16 FieldType, DBL_S16 FieldLen, DBL_U8 *OptionStr,

DBL_S16 FieldClass);

hCreateTable: A create table handle (see CreateTableBegin)

FieldNo: Number of the field to add

FieldName: Name of the field to add

FieldType: Type of the field to add

FieldLen: The length of the field

OptionStr: A comma-separated string of option values

FieldClass: The class of the field

Remarks The FieldType can be one of these constants:

DBL_Type_STR

DBL_Type_DATE

DBL_Type_TIME

DBL_Type_BLOB

DBL_Type_BOOL

DBL_Type_S32

DBL_Type_ALPHA

DBL_Type_O32

DBL_Type_BCD

FieldLen is only relevant for fields of type DBL_Type_STR and DBL_Type_ALPHA.
FieldLen corresponds to the declared length, not the actual length of a field.

The OptionStr should be a string like "a,b,c,d".

FieldClass can be one of these constants:

DBL_Class_Normal

DBL_Class_FlowField

DBL_Class_FlowFilter

DBL_AddTableField adds a field to a table. You must already have acquired a create
table handle by calling DBL_CreateTableBegin. The table will not be created in the
database before you call DBL_CreateTable on the create table handle.

You can create keys and SumIndexFields by using DBL_AddKey.

Example DBL_HCREATE_TABLE hCT;

DBL_S32 TableNo = 50000;

DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

DBL_AddTableField(hCT, 10, (DBL_U8*)"Decimal Field", DBL_Type_BCD, 0, NULL,
40

5.2 Library Functions in Alphabetical Order
0);

DBL_AddTableField(hCT, 20, (DBL_U8*)"Date Field", DBL_Type_DATE, 0, NULL, 0);

DBL_AddTableField(hCT, 30, (DBL_U8*)"Time Field", DBL_Type_TIME, 0, NULL, 0);

DBL_AllocRec()

Function Creates a record buffer.

Category Record function.

Syntax DBL_HREC DBL_AllocRec(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_AllocRec creates a record buffer for the specified table handle. If it is successful,
a handle for the record is returned. A record buffer is just an area of memory that has
the same size as a record (including virtual fields – FlowFields and FlowFilters) in the
specified table. Changes to the buffer do not affect the table. You change or add table
records by using DBL_InsertRec, DBL_ModifyRec or DBL_DeleteRec. If sufficient
memory is not available, the function will raise an exception. Always use
DBL_FreeRec to remove the record buffer created by DBL_AllocRec. Never use a C
run-time function for record allocation and deallocation.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Allocate memory for record buffer */

hRec = DBL_AllocRec(hTable);

/* ... */

/* Free memory occupied by record buffer */

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
41

Chapter 5. The Library Functions
DBL_Allow()

Function Specifies that an error is allowed.

Category Error function.

Syntax void DBL_Allow(DBL_S32 ErrorCode);

ErrorCode can be one of these constants:

DBL_Err_TableNotFound

DBL_Err_RecordNotFound

DBL_Err_RecordExists

DBL_Err_KeyNotFound

Remarks DBL_Allow permits certain library functions to be executed after a specified error has
occurred that would otherwise raise an exception. These functions all have a boolean
return value. If a call to such a function is successful, the function returns 1. If the
function fails, one of two things can happen:

1 If you have used DBL_Allow to allow the error that causes the function to fail, the
function will return 0.

2 If the error is not allowed, the function will raise an exception and call the exception
handler.

For more information about exceptions, see Handling Errors and Exceptions on page
18.

DBL_Allow stores the number of the allowed error in a global variable, which is reset
when the next library function is called. Always place DBL_Allow immediately before
the function call in which the error is to be allowed. DBL_Allow must be invoked again
if the same error is to be permitted in a subsequent function call.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Allow DBL_FindRec to fail */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable,hRec,(DBL_U8*)"-"))

printf("Record was found.\n");

else

printf("Record was NOT found.\n");
42

5.2 Library Functions in Alphabetical Order
DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Alpha_2_Str()

Function Converts an ALPHA variable to a string.

Category Conversion function.

Syntax void DBL_Alpha_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_U8* Alpha);

Str: Variable to receive the converted string

StrSize: Size of Str in bytes, including the terminating zero

Alpha: ALPHA string to be converted

Remarks DBL_Alpha_2_Str converts an Alpha variable to a string and stores it in Str. If Str is not
long enough to contain the converted variable, the function raises an exception.

For more information about the ALPHA variable type, see Appendix B.

Example DBL_U8 Alpha[12], Str[11];

DBL_Init();

DBL_Str_2_Alpha(Alpha, sizeof(Alpha), "Number10");

DBL_Alpha_2_Str(Str, sizeof(Str), Alpha);

printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_Ansi2OemBuff

Function Converts characters from ANSI to OEM.

Category Conversion function.

Syntax void DBL_Ansi2OemBuff(const DBL_U8 *Src,DBL_U8 *Dst,DBL_S32 DstSize)

Src: the source

Dst: the destination

DstSize: the number of characters to be converted

Remarks DBL_Ansi2OemBuff converts the character buffer from ANSI to OEM. You must
specify the source buffer the destination buffer and the number of characters. This
function should be used in conjuction with DBL_Oem2AnsiBuff because it can
43

Chapter 5. The Library Functions
successfully convert the characters from ANSI to OEM and back again. The
comparable Windows function does not always perform this conversion successfully.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Ansi buffer is allocated room for 10 characters */

DBL_U8 Ansibuff[10];

/* Oem buffer is allocated room for 5 characters */

DBL_U8 Oembuff[5];

/* Copy the string "Hi" to the Ansi buffer */

strcpy(Ansibuff, "Hi")

/* Convert the two character string from ANSI to OEM */

DBL_Ansi2OemBuff(Ansibuff, Oembuff, 2);

DBL_CloseDatabase();

DBL_Exit();

DBL_AssignField()

Function Assigns a value to a field in a record.

Category Field function.

Syntax void DBL_AssignField(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32 FieldNo,

DBL_U16 Type, void *Data, DBL_S32 DataSize);

hTable: handle to the table

hRec: handle to the record

FieldNo: the field number

Type: the type of the field

Data: pointer to the data

DataSize: size of the data

Remarks DBL_AssignField places the data that is pointed to by the Data pointer in the FieldNo
field of hRec. Note that Data is designed as a void pointer – a pointer to any kind of
data type. DataSize must be set to the size of the data in bytes (for example, as
returned by the C function sizeof).

Example DBL_HTABLE hTable;

DBL_HREC hRec;

char s[100];

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);
44

5.2 Library Functions in Alphabetical Order
hRec = DBL_AllocRec(hTable);

sprintf(s,”This is some test data”);

DBL_BWT();

DBL_InitRec(hTable,hRec);

DBL_AssignField(hTable,hRec,10,DBL_FieldType(hTable,10),

s,sizeof(s));

DBL_InsertRec(hTable,hRec);

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_AWT()

Function Aborts a write transaction.

Category Transaction function.

Syntax void DBL_AWT(void);

Remarks DBL_AWT signals the interruption of a write transaction and undoes all of the changes
that have been made in the database since DBL_BWT was issued and unlocks any
locked tables. DBL_BWT must be used before DBL_AWT is called.

For more information about write transactions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Start write transaction */

DBL_BWT();

/* Insert and modify records using hRec and hTable */

/* Abort write transaction */

DBL_AWT();

printf("Table 15 is unchanged\n");

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();
45

Chapter 5. The Library Functions
DBL_CloseDatabase();

DBL_Exit();

DBL_BCD_2_Double()

Function Converts a BCD (decimal number) to a double.

Category BCD function.

Syntax void DBL_BCD_2_Double(DBL_DOUBLE* Dest,const DBL_BCD* Source)

Dest: Variable in which the converted BCD is placed

Source: BCD variable to be converted

Remarks DBL_BCD_2_Double converts Source to a double and places the result in Dest.

Example DBL_BCD b1, b2;

double d1, d2;

DBL_Init();

d1 = 12.56789;

DBL_Double_2_BCD(&b1, d1);

DBL_Double_2_BCD(&b2, d1);

DBL_BCD_Round(&b1, 2);

DBL_BCD_Trunc(&b2, 2);

DBL_BCD_2_Double(&d1, &b1);

DBL_BCD_2_Double(&d2, &b2);

if ((d1 != 12.57) || (d2 != 12.56))

return(-1);

DBL_Exit();

DBL_BCD_2_S32()

Function Converts a BCD (decimal number) to an S32.

Category BCD function.

Syntax DBL_S32 DBL_BCD_2_S32(const DBL_BCD *Source);

Source: BCD variable to be converted

Remarks DBL_BCD_2_S32 converts the BCD variable Source to an S32 value, and returns this
value.
46

5.2 Library Functions in Alphabetical Order
Example DBL_BCD b1;

DBL_S32 s1, s2;

DBL_Init();

s1 = 31415;

DBL_S32_2_BCD(&b1, s1);

s2 = DBL_BCD_2_S32(&b1);

if (s1 != s2)

 return(-1);

DBL_Exit();

DBL_BCD_2_Str()

Function Converts a BCD (decimal number) to a string.

Category BCD function.

Syntax void DBL_BCD_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_BCD* Bcd);

Str:Variable in which the converted BCD is placed

StrSize:Size of Str in bytes, including the terminating zero

Bcd: BCD variable to be converted

Remarks DBL_BCD_2_Str converts Bcd to a string and stores it in Str. The returned string is
formatted according to the format specified in the Windows setup. This means that the
following examples may yield different results, depending on the Windows setup.

If Str cannot hold the converted BCD, then Str is filled with '*' characters.

Example DBL_BCD Bcd;

DBL_U8 Str[11];

DBL_Init();

DBL_Str_2_BCD(&Bcd, "-1.2345");

Value String

1234 "1234"

-1234 "-1234"

1234.00 "1234"

1234.050 "1234.05"

11234.56 "11234.56"

.005 "0.005"
47

Chapter 5. The Library Functions
/* Variable Bcd now contains the value -1.2345 */

DBL_BCD_2_Str(Str, sizeof(Str), &Bcd);

/* Variable Str now contains the string value "-1.2345" */

printf("Variable Str now contains the string value %s\n", Str);

DBL_BCD_2_Str(Str, 6+1, &Bcd);

/* Variable Str now contains the string value "******" */

printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_BCD_Abs()

Function Converts a BCD number to the absolute value of the number.

Category BCD function.

Syntax void DBL_BCD_Abs(DBL_BCD *Dest);

Dest: the BCD number to convert

Remarks DBL_BCD_Abs converts the BCD number Dest to the absolute value of that number.

DBL_BCD_Add()

Function Adds two BCD numbers together.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Add(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number

Source: source BCD number

Remarks DBL_BCD_Add adds the BCD number Source to the BCD number Dest, and places
the result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Add(DBL_BCD_Add(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst + src) +
src1.
48

5.2 Library Functions in Alphabetical Order
DBL_BCD_Cmp()

Function Compares two BCD numbers.

Category BCD function.

Syntax DBL_S32 DBL_BCD_Cmp(const DBL_BCD *Left, const DBL_BCD *Right)

Left: first (left) BCD number to compare

Right: second (right) BCD number to compare

Remarks DBL_BCD_Cmp compares the Left and Right BCD numbers. The return values are:

DBL_BCD_Div()

Function Divides one BCD number with another BCD number.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Div(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number

Source: source BCD number

Remarks DBL_BCD_Div divides the BCD number Dest with the BCD number Source, and
places the result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Div(DBL_BCD_Div(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst / src) / src1.

If DBL_BCD_Cmp returns

Left > Right 1

Left < Right -1

Left = Right 0
49

Chapter 5. The Library Functions
DBL_BCD_IsNegative()

Function Tests whether a BCD number is negative.

Category BCD function.

Syntax DBL_BOOL DBL_BCD_IsNegative(const DBL_BCD *Source)

Source: the BCD number to test

Remarks DBL_BCD_IsNegative tests if the BCD number Source is negative.
DBL_BCD_IsNegative returns TRUE if the BCD number referenced by hBcd has a
value less than 0 (zero). If it does not, DBL_BCD_IsNegative returns FALSE

DBL_BCD_IsPositive()

Function Tests whether a BCD number is positive.

Category BCD function.

Syntax DBL_BOOL DBL_BCD_IsPositive(const DBL_BCD *Source)

Source: the BCD number to test

Remarks DBL_BCD_IsPositive tests if the BCD number Source is positive.
DBL_BCD_IsPositive returns TRUE if the BCD number referenced by hBcd has a
value larger than 0 (zero). If it does not, DBL_BCD_IsPositive returns FALSE

DBL_BCD_IsZero()

Function Tests if a BCD number has a value of 0 (zero).

Category BCD function.

Syntax DBL_BOOL DBL_BCD_IsZero(const DBL_BCD *Source)

Source: the BCD number to test

Remarks DBL_BCD_IsZero tests if the BCD number Source has a value of zero. If Source has
a value of zero, DBL_BCD_IsZero returns TRUE. If it does not, DBL_BCD_IsZero
returns FALSE.
50

5.2 Library Functions in Alphabetical Order
DBL_BCD_Make()

Function Returns a BCD number.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Make(DBL_BCD *Dest, DBL_S32 Kind);

Dest: the BCD to make

Kind: what BCD number to make

Remarks DBL_BCD_Make creates a valid BCD number, according to the Kind parameter. The
created BCD number is placed in Dest and returned by the function.

The Kind parameter can have the following values:

DBL_BCD_Mul()

Function Multiplies two BCD numbers.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Mul(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number

Source: source BCD number

Remarks DBL_BCD_Mul multiples the BCD number Dest with the BCD number Source, and
places the result in the BCD number Dest.

Kind Created BCD number

DBL_Make_Bcd_0 0

DBL_Make_Bcd_1 1

DBL_Make_Bcd_2 2

DBL_Make_Bcd_10 10

DBL_Make_Bcd_100 100

DBL_Make_Bcd_1024 1024

DBL_Make_Bcd_MIN The BCD with the minimum value (lowest possible)

DBL_Make_Bcd_MAX The BCD number maximum value (highest possible)
51

Chapter 5. The Library Functions
The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Mul(DBL_BCD_Mul(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst * src) * src1.

DBL_BCD_Neg()

Function Reverses the sign of a BCD number.

Category BCD function.

Syntax void DBL_BCD_Neg(DBL_BCD *Dest);

Dest: BCD number to be converted

Remarks DBL_BCD_neg reverses the sign of the BCD number Dest. For example, -3 becomes
3, 4 becomes -4 and 0 remains 0.

DBL_BCD_Power()

Function Raises a BCD number to a specified power.

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Power(DBL_BCD *Dest,const DBL_BCD *Power);

Dest: the BCD number to raise to a power

Power: the power to raise Dest to

Remarks DBL_BCD_Power raises the BCD number Dest to the power Power, and puts the
result in Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Power(DBL_BCD_Power(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst ** src) **
src1.
52

5.2 Library Functions in Alphabetical Order
DBL_BCD_Round()

Function Rounds a BCD number.

Category BCD function.

Syntax void DBL_BCD_Round(DBL_BCD *Dest, DBL_S32 Cnt);

Dest: the BCD number to truncate

Cnt: the number of digits to round Dest to

Remarks DBL_BCD_Round rounds the BCD number Dest to contain Cnt digits.

Examples:

DBL_BCD_RoundUnit()

Function Rounds a BCD number to a unit.

Category BCD function.

Syntax void DBL_BCD_RoundUnit(DBL_BCD *Dest,const DBL_BCD *Unit,DBL_S32 How);

Dest: the BCD number to round

Unit: the unit to use

How: how to round

Remarks DBL_BCD_RoundUnit rounds Dest according to Unit. The How parameter is used to
set how rounding should occur:

Original BCD number Cnt Result

123.45 1 123.5

123.45 0 123

126.45 -1 130

153.45 -2 200

123.45 -40 0

-123.45 1 -123.5

If How is DBL_BCD_RoundUnit rounds

DBL_BCD_Up Always Up

DBL_BCD_Near To the closest value, Up or Down

DBL_BCD_Down Always Down
53

Chapter 5. The Library Functions
The algorithm of DBL_BCD_RoundUnit can be described like this:

1 The sign of Dest is saved

2 Dest is converted to its absolute value

3 Dest is divided by Unit.

If Unit is Null, the default unit of 0.01 is used. This means that Dest is rounded to 2
decimals.

4 The result is rounded according to How.

5 Dest is multiplied by Unit.

6 The saved sign of Dest is put back in place.

The following table shows some examples of this function:

DBL_BCD_Sgn()

Function Returns the sign of a BCD number.

Category BCD function.

Syntax DBL_S32 DBL_BCD_Sgn(const DBL_BCD *Source);

Source: the BCD number to return the sign of

Remarks DBL_BCD_Sgn return the sign of the Source BCD number:

Dest Unit How Result

80 12 DBL_BCD_Up 84

80 12 DBL_BCD_Down 72

80 12 DBL_BCD_Near 84

12.5 10 DBL_BCD_Up 20

If Source is DBL_BCD_sgn returns

> 0 1

< 0 -1

0 0
54

5.2 Library Functions in Alphabetical Order
DBL_BCD_Sub()

Function Subtracts one BCD number from another BCD number

Category BCD function.

Syntax DBL_BCD* DBL_BCD_Sub(DBL_BCD *Dest,const DBL_BCD *Source)

Dest: destination BCD number

Source: source BCD number

Remarks DBL_BCD_Sub subtracts the BCD number Source from the BCD number Dest, and
puts the result in the BCD number Dest.

The function also returns the Dest BCD number. This is useful in situations where the
result is only used to call yet another function, as in the following example:

h = DBL_BCD_Sub(DBL_BCD_Sub(dst, src),src1);

h and dst are now the same number, and that number has the value: (dst - src) - src1.

DBL_BCD_Trunc()

Function Truncates a BCD number.

Category BCD function.

Syntax void DBL_BCD_Trunc(DBL_BCD *Dest, DBL_S32 Cnt);

Dest: the BCD number to truncate

Cnt: the number of digits to truncate Dest to

Remarks DBL_BCD_trunc truncates the BCD number Dest to contain Cnt digits.

Examples:

Original BCD number Cnt Result

123.45 1 123.4

123.45 0 123

123.45 -1 120

123.45 -2 100

123.45 -40 0

-123.45 1 -123.4
55

Chapter 5. The Library Functions
DBL_BWT()

Function Begins a write transaction.

Category Transaction function.

Syntax void DBL_BWT(void);

Remarks DBL_BWT marks the beginning of a set of logically related table operations (start of a
transaction). The end of the transaction is signaled by a DBL_EWT or aborted with a
DBL_AWT. Transactions are useful when you need to ensure that tables are not left in
an inconsistent state if an operation in a set of operations fails. Multiple operations can
be performed automatically with transactions.

By placing a set of operations between Begin and End transaction functions, you
ensure that none of the operations are permanently recorded unless all of the
operations are completed successfully.

After calling DBL_BWT, an application is allowed to modify data, using
DBL_ModifyRec, etc. Calling DBL_BWT does not in itself lock the table; other users
still have write access. It is only when your application begins making changes to the
table or calls DBL_LockTable that the table is locked and other applications are
refused access. Locked tables remain locked until either DBL_AWT or DBL_EWT is
called.

For more information about write transactions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Start write transaction */

DBL_BWT();

/* Process hRec and hTable */

/* Commit write transaction */

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
56

5.2 Library Functions in Alphabetical Order
DBL_CalcFields()

Function Updates FlowFields in a record.

Category Record function.

Syntax void DBL_CalcFields(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32* FieldList);

hTable:Handle to the table

hRec:Handle to the record whose FlowFields are to be updated

FieldList:Zero-terminated array containing the numbers of the fields in hRec

to be updated

Remarks DBL_CalcFields updates any FlowFields that exist in a record. FlowFields are a
special C/SIDE feature that provide information from other tables in the database.

They are also known as virtual fields because their values are not saved with the
table. FlowFields are only updated when DBL_CalcFields is called. For example,
FlowFields in records that are accessed with DBL_FindRec and DBL_NextRec are set
to zero. DBL_CalcFields must be called to update the values in the FlowFields.

A detailed explanation and illustration of FlowFields is available in the Application
Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S32 Fields[11];

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Update value in field 5 (a FlowField) in hRec */

/* Causes an exception if field 5 is not a FlowField */

Fields[0] = 5;

Fields[1] = 0; /* Remember to zero-terminate strings */

DBL_CalcFields(hTable, hRec, Fields);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
57

Chapter 5. The Library Functions
DBL_CalcSums()

Function Sums up totals for selected fields.

Category Table function.

Syntax void DBL_CalcSums(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32* FieldList);

hTable: Handle to the table

hRec: Handle to the record buffer in which sums are to be placed

FieldList: Zero-terminated array containing the numbers of the fields to be

added up

Remarks DBL_CalcSums adds up totals for specific fields (columns) in a table. The function
operates only on those records that meet the conditions specified in any filters that are
associated with the table handle.

All of the fields listed in FieldList must be designated in the current key as
SumIndexFields. If any of them do not meet this criteria, an exception is raised. To
retrieve a list of the SumIndexFields for a given key, call DBL_KeySumFields.

SumIndexFields are a special C/SIDE feature that give speedy access to numeric
totals. SumIndexFields also work in tables that contain many thousands of records.

For more information about SumIndexFields, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S32 Fields[DBL_MaxSumFieldsPerKey+1];

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

Fields[0] = 4;

Fields[1] = 0;

DBL_CalcSums(hTable, hRec, Fields);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
58

5.2 Library Functions in Alphabetical Order
DBL_CheckLicenseFile()

Function Checks whether the license file that is currently in use contains permissions for a
specified object.

Category Database function.

Syntax void DBL_CheckLicenseFile(DBL_S32 ObjectNo);

ObjectNo: number of the object to check permissions for

Remarks The permissions for the object specified by ObjectNo are checked against the license
file. If the required permissions are not specified in the license file, an error (which you
will have to handle) occurs.

Example DBL_CheckLicenseFile(9110); /* C/FRONT license check */

DBL_CloseCompany()

Function Closes the company that is currently open.

Category Database function.

Syntax void DBL_CloseCompany(void);

Remarks DBL_CloseCompany closes the company that was opened by DBL_OpenCompany.
You must close any tables that are open before calling this function.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Open company. */

/* Causes an exception if "Test Company" does not exist */

DBL_OpenCompany("Test Company");

printf("Current company is %s\n", DBL_CompanyName());

/* ... */

/* Close company */

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
59

Chapter 5. The Library Functions
DBL_CloseDatabase()

Function Closes the database that is open.

Category Database function.

Syntax void DBL_CloseDatabase(void);

Remarks Closes the database that was opened by DBL_OpenDatabase. DBL_CloseDatabase
will raise an exception if there are any open tables or allocated records (see
DBL_ReleaseAllObjects).

Example DBL_Init();

/* Open database using 2000 Kb cache */

/* Causes an exception if database MY DB does not exist */

/* Causes an exception if 2000 Kb cache cannot be allocated */

DBL_OpenDatabase("MY DB.fdb", 2000, 0);

/* ... */

/* Close database */

DBL_CloseDatabase();

DBL_Exit();

DBL_CloseTable()

Function Closes the specified table.

Category Table function.

Syntax void DBL_CloseTable(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_CloseTable deletes a handle to a table that was opened by DBL_OpenTable and
frees the memory occupied by such things as filters. hTable is no longer a valid handle
after this operation has been called.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");
60

5.2 Library Functions in Alphabetical Order
/* Open table */

/* Causes an exception if table 15 does not exist */

DBL_OpenTable(&hTable, 15);

/* ... */

/* Close table */

DBL_CloseTable(hTable);

/* Open table */

DBL_Allow(DBL_Err_TableNotFound);

if (DBL_OpenTable(&hTable, 16))

{

printf("Table opened\n");

/* ... */

/* Close table */

DBL_CloseTable(hTable);

}

else

printf("Table does not exist\n");

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_CmpRec()

Function Compares two records.

Category Record function.

Syntax DBL_BOOL DBL_CmpRec(DBL_HTABLE hTable, const DBL_HREC hDstRec, const DBL_HREC

hSrcRec);

hTable: handle to the table

hDstRec: handle to a record

hSrcRec: handle to the record to compare hDstRec against

Remarks hDstRec and hSrcRec must be handles to records from the same table. If the contents
of the records are the same, the function returns TRUE. If the contents are not the
same, it returns FALSE.

Example DBL_HTABLE hTable;

DBL_HREC hDstRec;

DBL_HREC hSrcRec;

char a[100];

char b[100];
61

Chapter 5. The Library Functions
DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hDstRec = DBL_AllocRec(hTable);

hSrcRec = DBL_AllocRec(hTable);

sprintf(a,"Some data");

sprintf(b,"Some other data");

/* Assign values to the fields of the two records. */

DBL_InitRec(hTable,hDstRec);

DBL_InitRec(hTable,hSrcRec);

DBL_AssignField(hTable,hDstRec,10,DBL_Type_STR,a,sizeof(a));

DBL_AssignField(hTable,hSrcRec,10,DBL_Type_STR,b,sizeof(b));

/* Then, compare the records: */

if (DBL_CmpRec(hTable,hDstRec,hSrcRec))

printf("The records are identical\n");

else

printf("The records are NOT identical\n");

DBL_FreeRec(hDstRec);

DBL_FreeRec(hSrcRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_CompanyName()

Function Retrieves the name of the company that is currently open.

Category Database function.

Syntax const DBL_U8* DBL_CompanyName(void);

Remarks DBL_CompanyName returns the CompanyName of the company that was opened by
DBL_OpenCompany. The returned value is a pointer to a string that contains the
current CompanyName. If DBL_OpenCompany has not been called, the function
returns a pointer to an empty string.

You cannot select another CompanyName with this function. You must use
DBL_CloseCompany and DBL_OpenCompany to change to another company.
Companies can only be created and deleted in C/SIDE.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Open company */

/* Causes an exception if "Test Company" does not exist */
62

5.2 Library Functions in Alphabetical Order
DBL_OpenCompany("Test Company");

printf("Current company is %s\n", DBL_CompanyName());

/* Close company */

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_ConnectServerandOpenDatabase()

Function Connects to a server and opens a database.

Category Database function.

Syntax void DBL_ConnectServerandOpenDatabase(DBL_U8* NDBCDriverName, DBL_U8*

ServerName, DBL_U8* NetType, DBL_U8* DatabaseName, DBL_S32 CacheSize DBL_BOOL

UseCommitCache, DBL_Bool UseNTAuthentication, DBL_U8* UserID, DBL_U8*

PassWord);

NDBCDriverName: "NDBCS": The Microsoft SQL Server driver

 "NDBCN": The Navision Database Server driver

ServerName: Name of the server

NetType: "Default": use the default Net Type for network communication

"Named Pipes": use Named Pipes for network communication

"TCP/IP Sockets": use TCP/IP Sockets for network communication

"Multiprotocol": use Multiprotocol for network communication

DatabaseName: Name of the database to open

CacheSize: Size of cache in KB

UseCommitCache: Whether to use CommitCache or not

UseNTAuthentication: Whether to use NT Authentication or not

UserID: Login name

PassWord: Password belonging to UserID

Remarks You must use this function with the SQL Server Option for Navision and we
recommend that you also use it with Navision Database Server. It must be used with
the SQL Server Option for Navision because SQL Server demands that you open the
server, the database and provide authentication at the same time.
63

Chapter 5. The Library Functions
The Net Type you select is dependent on the server you are using:

The driver you select is dependent on the server you are using.

SQL Server The server must be running when you issue this call. All succeeding calls to the
database will be passed to the server, which will execute the operations.

If you are using SQL Server you still have to enter a zero value for CacheSize and
UseCommitCache even though they only apply to the Navision Database Server.

If you select NT Authentication (UseNTAuthentication=1) then you do not have to
supply a user ID or a password. However, you do have to enter two empty sets of
quotes ("") in order to comply with the syntax.

Issue this call again to open another database. You can only open the databases to
which you have been granted permission.

Navision Database
Server

This function connects with a server and opens a database with a cache of the
CacheSize you have specified. The server must be running when you issue this call.
All succeeding calls to access the database are passed to the server, which will
execute the operations.

A cache is an area of RAM that holds the results of recent disk accesses. CacheSize
specifies the amount of memory assigned to the disk cache. The size depends upon
which operating system is in use. As a general rule, the larger the cache, the better
the performance. For more information, see the Installation and System Management:
Microsoft Business Solutions–Navision Database Server manual.

If you are using the Navision Database Server and do not specify a server name
(ServerName=0) the application will search for the database file on your local
computer and open it, if it can be found.

If you select NT Authentication (UseNTAuthentication=1) then you do not have to
supply a user ID or a password. However you do have to enter two empty sets of
quotes ("") in order to comply with the syntax.

To close the connection to a database server, call DisconnectServer.

An application can only be connected to one server at a time.

Server: Value: Net Type:

SQL Server Named Pipes Named Pipes

TCP/IP Sockets TCP/IP Sockets

Multiprotocol Multiprotocol

Default Default Net Type

Navision Database
Server

tcp TCP/IP

netb NetBIOS
64

5.2 Library Functions in Alphabetical Order
Example SQL Server

DBL_Init();

/* Connect to TestServer using Named Pipes and NT Authentication */

DBL_ConnectServerandOpenDatabase("NDBCS", "TestServer",

"Named Pipes", "test.fdb", 0, 0, 1, "", "");

/* Causes an exception if TestServer is not connectable*/

/* Causes an exception if database test.fdb does not exist*/

/* Causes an exception if the NT login does not give the user access to this

server*/

/*CacheSize and UseCommitCache do not apply to SQL Server*/

/*Using NT Authentication means that you do not need to enter a UserID and

Password*/

/*...*/

/* Disconnect from server */

DBL_DisconnectServer();

DBL_Exit();

Navision Database Server

DBL_Init();

/* Connect to the Navision Database Server "TestServer" using NetBIOS and

open testdb using 3000Kb cache, commitcache, not using NT Authentication and

therefore providing a user ID and password*/

DBL_ConnectServerandOpenDatabase("NDBCN", "TestServer", "netb", "test.fdb",

3000, 1, 0, "MyUserID", "MyPassword");

/* Causes an exception if TestServer is not connectable*/

/* Causes an exception if database test.fdb does not exist*/

/* Causes an exception if 3000 KB cannot be allocated*/

/* Causes an exception if UserID is not correct*/

/* Causes an exception if password is not correct*/

/* ...*/

/* Disconnect from server */

DBL_DisconnectServer();

DBL_Exit();

DBL_ConnectServer()

Function Connects to a database server.

Category Database function.

Syntax void DBL_ConnectServer(DBL_U8* ServerName, DBL_U8* NetType);

ServerName: name of the server to connect to
65

Chapter 5. The Library Functions
NetType: "netb": use NetBIOS for network communication

"tcp": use TCP/IP for network communication

Remarks The server must be running when you issue this call. All succeeding calls to access
the database will be passed to the server, which will execute the operations.

This function is applicable only in a multiuser configuration.

To close the connections to a database server, call DBL_DisconnectServer.

An application can be connected to only one server at a time; use
DBL_DisconnectServer before connecting to another. Applications can switch
between a server connection and a locally-opened database (you can alternate
between DBL_ConnectServer and DBL_OpenDatabase); remember to close the
existing connection before making the switch.

If an error occurs, the function will raise an exception and call the exception handler.

For more information about exceptions, see Handling Errors and Exceptions on page
18.

Example DBL_Init();

/* Connect to TestServer using NetBIOS */

/* Causes an exception if TestServer is not connectable */

DBL_ConnectServer("TestServer", "netb");

/* ...*/

/* Disconnect from server */

DBL_DisconnectServer();

DBL_Exit();

DBL_CopyRec()

Function Copies a record.

Category Record function.

Syntax void DBL_CopyRec(DBL_HTABLE hTable, DBL_HREC hDstRec, const DBL_HREC

hSrcRec);

hTable: handle to the table

hDstRec: handle to the record to copy to

hSrcRec: handle to the record to copy from

Remarks DBL_CopyRec copies the contents of one record to another record. hSrcRec and
hDstRec must be handles to records from the same table.
66

5.2 Library Functions in Alphabetical Order
Example DBL_HTABLE hTable;

DBL_HREC hDstRec;

DBL_HREC hSrcRec;

char s[100];

DBL_S32 num;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hDstRec = DBL_AllocRec(hTable);

hSrcRec = DBL_AllocRec(hTable);

sprintf(s,"New data");

DBL_BWT();

/* Retrieve a record: */

DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")

/* And copy it: */

DBL_CopyRec(hTable,hDstRec,hSrcRec);

/* Process hDstRec, and insert it into the table: */

num = 4711;

DBL_AssignField(hTable,hDstRec,1,DBL_FieldType(hTable,1),

num,sizeof(DBL_S32));

DBL_AssignField(hTable,hDstRec,10,DBL_FieldType(hTable,10),

s,sizeof(s));

DBL_InsertRec(hTable,hDstRec);

DBL_EWT();

DBL_FreeRec(hDstRec);

DBL_FreeRec(hSrcRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_CreateTable()

Function Creates a database table.

Category Database function

Syntax DBL_BOOL DBL_CreateTable(DBL_HCREATE_TABLE hCreateTable)

hCreateTable: Create table handle

Remarks DBL_CreateTable creates a table in a Navision database. Before using
DBL_CreateTable you have to acquire a create table handle by using
DBL_CreateTableBegin, and add fields and keys with DBL_AddTableField and
DBL_AddKey.
67

Chapter 5. The Library Functions
DBL_CreateTable returns TRUE if the table is created successfully and FALSE if it is
not created. When creating the table fails, the error handler is called.

If you use DBL_CreateTableEnd without using DBL_CreateTable, the table will not be
created.

Example DBL_HCREATE_TABLE hCT;

DBL_S32 TableNo = 50000;

DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* add table fields, keys and SumIndexFields */

DBL_CreateTable(hCT);

DBL_CreateTableEnd(hCT);

DBL_CreateTableBegin()

Function Creates a create table handle.

Category Database function.

Syntax DBL_CreateTableBegin(DBL_HCREATE_TABLE *phCreateTableRef, DBL_S32 TableNo,

DBL_U8 *TableName, DBL_BOOL DataPerCompany);

phCreateTableRef: create table handle

TableNo: number of the table

TableName: name of the table

DataPerCompany: if FALSE, data in the table will be available to all

companies in the database; if TRUE, it will only be available to the currently

selected company.

Remarks DBL_CreateTableBegin creates a create table handle. After you have created this
handle, you can use DBL_AddTableField and DBL_AddKey to add fields and keys to
the table. When you have finished defining fields and keys, you use DBL_CreateTable
to create the table in C/SIDE.

When the table has been created with DBL_CreateTable, you must close the create
table handle with DBL_CreateTableEnd. If you use DBL_CreateTableEnd without
using DBL_CreateTable first, the table will not be created.

Example DBL_HCREATE_TABLE hCT;

DBL_S32 TableNo = 50000;

DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* add table fields, keys and SumIndexFields */
68

5.2 Library Functions in Alphabetical Order
DBL_CreateTable(hCT);

DBL_CreateTableEnd(hCT);

DBL_CreateTableEnd()

Function Closes a create table handle.

Category Database function.

Syntax DBL_CreateTableEnd(DBL_HCREATE_TABLE hCreateTable);

hCreateTable: Create table handle.

Remarks DBL_CreateTableEnd closes the create table handle that hCreateTable acquired by
calling DBL_CreateTableBegin.

If you have not called DBL_CreateTable, any fields and keys you may have defined
with DBL_AddTableField and DBL_AddKey will be lost.

Example DBL_HCREATE_TABLE hCT;

DBL_S32 TableNo = 50000;

DBL_U8 *TableName = (DBL_U8*)"Sample Table";

DBL_CreateTableBegin(&hCT, TableNo, TableName, 1);

/* add table fields, keys and SumIndexFields */

DBL_CreateTable(hCT);

DBL_CreateTableEnd(hCT);

DBL_CryptPassword()

Function Encrypts the password.

Category Password function

Syntax DBL_CryptPassword(const DBL_U8 *UserID, DBL_U8 *PassWord)

UserId: the user ID

PassWord: the clear-text password

Remarks DBL_CryptPassword encrypts a password, if you have supplied a user ID and a clear-
text version of the password. The result is placed in PassWord.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_U8 *UserID = (DBL_U8*)"UID";
69

Chapter 5. The Library Functions
DBL_U8 UserIDCode[12];

DBL_U8 Password[11];

DBL_U8 *EncryptedPassword;

printf("Testing login functions ..");

strcpy((char*)Password,"Password");

DBL_Login(UserID, Password);

DBL_OpenTable(&hTable, 2000000002); /* 'User' table */

hRec = DBL_AllocRec(hTable);

DBL_InitRec(hTable, hRec);

DBL_BWT();

DBL_DeleteRecs(hTable);

DBL_EWT();

DBL_Str_2_Alpha(UserIDCode, sizeof(UserIDCode), UserID);

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),UserIDCode,strlen((cha

r*)UserID)+2);

DBL_AssignField(hTable,hRec,2,DBL_FieldType(hTable,2),Password,

strlen((char*)Password)+1);

DBL_BWT();

DBL_InsertRec(hTable, hRec);

DBL_EWT();

DBL_InitRec(hTable, hRec);

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

EncryptedPassword =

(DBL_U8*)DBL_GetFieldDataAddr(hTable, hRec, 2);

DBL_CryptPassword(UserIDCode, Password);

if (0 != memcmp(EncryptedPassword, Password, strlen((char*)Password)))

{

DBL_CloseTable(hTable);

printf("Login functions \nError !");

return(-1);

}

DBL_BWT();

DBL_DeleteRecs(hTable);

DBL_EWT();

DBL_CloseTable(hTable);

printf("OK\n");

DBL_Date_2_Str()

Function Converts a DATE element to a string.

Category Conversion function

Syntax void DBL_Date_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_DATE Date);
70

5.2 Library Functions in Alphabetical Order
Str: the string in which to place the converted DATE

StrSize: the size of the destination string

Date: the DATE element to convert

Remarks DBL_Date_2_Str converts the DATE value in Date to a string. StrSize is the size of the
destination string, in effect, the number of bytes to place in Str. It is your own
responsibility to ensure that the converted value will not be truncated.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_U8 resStr[50];

DBL_DATE *pDate;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */

DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")

/* Get pDate from field 20: */

pDate = (DBL_DATE*)DBL_GetFieldDataAddr(hTable,hRec,20);

/* Convert pDate to a string: */

DBL_Date_2_Str(resStr,sizeof(resStr),*pDate);

/* Print out the string: */

printf("Date as string: %s\n", resStr);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Date_2_YMD()

Function Converts a DATE variable to year, month, day.

Category Conversion function.

Syntax void DBL_Date_2_YMD(DBL_S32* y, DBL_S32* m, DBL_S32* d,

DBL_BOOL* Closing, DBL_DATE Date);

y: Variable to receive the value for year

m: Variable to receive the value for month

d: Variable to receive the value for day

Closing: 1 if the Date value is designated as a closing date,

otherwise 0

Date: DATE variable to be converted
71

Chapter 5. The Library Functions
Remarks DBL_Date_2_YMD dismantles a DATE variable to create separate values for year,
month and day.

Any of the four output variables (y, m, d or Closing) can be set to NULL if they are not
needed.

If this function is called with Date=zero (undefined), an exception is raised. To prevent
this occurring, test the value of the Date variable before making this call.

Example DBL_DATE Date;

DBL_S32 y,m,d;

DBL_BOOL c;

DBL_Init();

DBL_YMD_2_Date(&Date, 1996, 5, 17, 0);

/* Variable Date now contains the date May 17, 1996 */

DBL_Date_2_YMD(&y, &m, &d, &c, Date);

printf("y,m,d and c now contain %d, %d, %d and %d\n",y,m,d,c);

DBL_Exit();

DBL_DeleteRec()

Function Deletes a record from a table.

Category Record function.

Syntax DBL_BOOL DBL_DeleteRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: Handle to the table

hRec: Handle to the record to be deleted. hRec itself does not change.

Remarks DBL_DeleteRec deletes a record from an open table. The current key and any filters
bound to the table handle have no effect on this operation. The record to be deleted is
identified only by the values in its primary key.

In a multiuser environment, another application can delete the record from the table in
the interval between your reading the record and your attempt to delete it. The C/SIDE
database system automatically detects such an event, causing DBL_DeleteRec to
raise an exception.

To prevent this from happening, use DBL_LockTable to lock the table before reading
the record. Remember, however, that the table will be locked for the time that elapses
between reading and deleting the record, and that other users will therefore be unable
to access it.

For more information about table locking, see the Application Designer’s Guide.
72

5.2 Library Functions in Alphabetical Order
If the record is successfully deleted, 1 is returned. If the record is not found in the
table, two things can happen:

1 If this result has been allowed by the function:
DBL_Allow(DBL_Err_RecordNotFound), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions, see Handling Errors and Exceptions on page
18.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_BWT();

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

DBL_DeleteRec(hTable, hRec);

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_DeleteRecs()

Function Deletes all of the records in a table.

Category Record function.

Syntax DBL_DeleteRecs(DBL_HTABLE hTable)

hTable: handle to the table

Remarks DBL_DeleteRecs deletes all of the records in the table referenced by hTable.
DBL_DeleteRecs must be used inside a transaction.

Example DBL_HTABLE hTable;
73

Chapter 5. The Library Functions
DBL_OpenTable(&hTable, 123456);

DBL_BWT();

DBL_DeleteRecs(hTable);

DBL_EWT();

DBL_CloseTable(hTable);

DBL_DeleteTable()

Function Deletes a table from a database.

Category Database function.

Syntax DBL_BOOL DBL_DeleteTable(DBL_S32 TableNo);

TableNo: the number of the table to delete

Remarks DBL_DeleteTable deletes the table with table number TableNo from the database. If
the table was found and it could be deleted, DBL_DeleteTable returns TRUE.

If DBL_DeleteTable returns FALSE, an error has occurred. This means that either the
table could not be found or that the table was locked. When DBL_DeleteTable returns
FALSE, the error handler is called.

DBL_DisconnectServer()

Function Disconnects from a database server.

Category Database function.

Syntax void DBL_DisconnectServer(void);

Remarks DBL_DisconnectServer disconnects an application from a database server. The
connection must have been established by calling DBL_ConnectServer.

Example DBL_Init();

/* Connect to TestServer using NetBIOS */

/* Causes an exception if TestServer is not connectable */

DBL_ConnectServer("TestServer", "netb");

/* Disconnect from server */

DBL_DisconnectServer();

DBL_Exit();
74

5.2 Library Functions in Alphabetical Order
DBL_Double_2_BCD()

Function Converts a BCD (decimal number) to a double.

Category BCD function.

Syntax void DBL_Double_2_BCD(DBL_BCD *Dest,DBL_DOUBLE Source)

Dest: Variable in which the converted double is placed

Source: double variable to be converted

Remarks DBL_Double_2_BCD converts Source to a BCD and places the result in Dest.

Example DBL_BCD b1, b2;

double d1, d2;

DBL_Init();

d1 = 12.56789;

DBL_Double_2_BCD(&b1, d1);

DBL_Double_2_BCD(&b2, d1);

DBL_BCD_Round(&b1, 2);

DBL_BCD_Trunc(&b2, 2);

DBL_BCD_2_Double(&d1, &b1);

DBL_BCD_2_Double(&d2, &b2);

if ((d1 != 12.57) || (d2 != 12.56))

return(-1);

DBL_Exit();

DBL_EWT()

Function Ends a write transaction.

Category Transaction function.

Syntax void DBL_EWT(void);

Remarks DBL_EWT signals the end of a transaction. It completes the ongoing transaction and
makes the appropriate changes to the tables. All modifications that have been made
to the database since DBL_BWT was called are committed, and any locked tables are
unlocked.

A call to DBL_BWT must precede a call to DBL_EWT. An application cannot abort a
transaction after a DBL_EWT operation.

For more information about write transactions, see the Application Designer’s Guide.
75

Chapter 5. The Library Functions
Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Start write transaction */

DBL_BWT();

/* Insert and modify records */

/* Commit write transaction */

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Exit()

Function Closes the C/FRONT environment.

Category Initializing function.

Syntax void DBL_Exit(void);

Remarks DBL_Exit closes the single-user or network C/FRONT environment that was
previously opened with DBL_Init. DBL_Exit aborts any outstanding write transactions,
removes any table locks, closes any open tables and frees internal buffer areas and
internal tables.

DBL_Init must have been called before this function is used.

Example void main(int argc, char* argv[], char* envp[])

{

DBL_Init();

/* A database can now be opened or */

/* a connection to a server established */

DBL_Exit();

}

76

5.2 Library Functions in Alphabetical Order
DBL_Field_2_Str()

Function Converts a value in a field to a string.

Category Conversion function.

Syntax void DBL_Field_2_Str(DBL_U8* Str, DBL_S16 StrSize, DBL_HTABLE hTable,

DBL_HREC hRec, DBL_S32 FieldNo);

Str: Variable in which the converted field will be placed

StrSize:Size of Str in bytes, including the terminating zero

hTable: Handle to the table

hRec: Handle to the record containing the field to be converted

FieldNo: Number of the field containing the value to be converted

Remarks DBL_Field_2_Str converts the contents of FieldNo in hRec to a zero-terminated ASCII
string and places it in Str. The field represented by FieldNo may be of any type.

If Str is too short to hold the converted string, the converted string is truncated from
the right. If FieldNo is of type integer, large integer or decimal, Str is filled with '*'
characters.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_U8 Str[11];

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Let's assume that: */

/* Field 10 in hRec is a BCD type field containing 1.23456 */

/* Field 11 in hRec is a TEXT type field containing */

/* "This is a test" */

DBL_Field_2_Str(Str, 6+1, hTable, hRec, 10);

/* Variable Str now contains the string value "******" */

printf("Variable Str now contains the string value %s\n", Str);

DBL_Field_2_Str(Str, 7+1, hTable, hRec, 11);

/* Variable Str now contains the string value "This is" */

printf("Variable Str now contains the string value %s\n", Str);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
77

Chapter 5. The Library Functions
DBL_FieldClass()

Function Retrieves the class of a specified field.

Category Field function.

Syntax DBL_S16 DBL_FieldClass(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: Number of the field whose class is to be determined

Remarks There are three different classes of fields: Normal, FlowField or FlowFilter.
DBL_FieldClass returns the class of the field with the number specified in FieldNo.

If the number specified in FieldNo does not exist, the function will raise an exception.

The value returned by DBL_FieldClass is one of the three constants:

DBL_Class_Normal

DBL_Class_FlowField

DBL_Class_FlowFilter

These constants are listed in Appendix A.

While ordinary fields are stored in the database, FlowFields are virtual fields that
contain information about other tables in the database and are not saved with the
table. To update the FlowFields you must call DBL_CalcFields.

FlowFilter fields are also virtual fields. The values in FlowFilter fields are used as
parameters for calculating FlowFields.

For more information about field classes see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_S16 Class;

DBL_Init();

DBL_OpenDatabase("test-fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Retrieve class of field 3 */

Class = DBL_FieldClass(hTable, 3);

if (Class == DBL_Class_Normal)

printf("Field 3 is a field stored in the database\n");

else

{

printf("Field 3 is NOT a field stored in the database\n");

if (Class == DBL_Class_FlowField)

printf("because it is a FlowField\n");

else
78

5.2 Library Functions in Alphabetical Order
printf("because it is a FlowFilter field\n");

}

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_FieldCount()

Function Counts the number of fields (columns) in a table.

Category Field function.

Syntax DBL_S16 DBL_FieldCount(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_FieldCount retrieves the number of fields in a record in a given table. Only active
fields are counted.

Example DBL_HTABLE hTable;

DBL_S16 FieldNo;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

Init(("Table 15 contains %d active field(s)\n",

 DBL_FieldCount(hTable));

printf("These fields are numbered as follows:\n");

for (FieldNo = 0; FieldNo = DBL_NextField(hTable, FieldNo;)

printf("%d\n", FieldNo);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
79

Chapter 5. The Library Functions
DBL_FieldDataOffset()

Function Returns the offset of a specified field in a record.

Category Field function.

Syntax DBL_S16 DBL_FieldDataOffset(DBL_HTABLE hTable, DBL_U8 FieldNo);

hTable: Handle to the table

FieldNo: Number of the field whose offset is to be retrieved

Remarks DBL_FieldDataOffset returns the offset of the field with field number FieldNo in bytes,
thereby indicating its position in relation to the first byte of the record. Generally, you
should not use this function to assign values to or retrieve values from fields – use the
DBL_AssignField and DBL_GetFieldData functions instead. This function is not
expected to exist in future versions of the C/FRONT API, and it is only included for
compatibility reasons for now.

If FieldNo does not exist, the function will raise an exception.

DBL_FieldLen()

Function Retrieves the declared length of a specified field.

Category Field function.

Syntax DBL_S16 DBL_FieldLen(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: Number of the field whose size will be retrieved

Remarks DBL_FieldLen returns the declared length of FieldNo. If FieldNo does not exist, the
function will raise an exception.

While DBL_FieldSize returns the actual length of the data in a field, DBL_FieldLen
returns the declared length. A text field could, for example, be declared with length 30,
while the actual size of the data in the field is 8 bytes.

For more information about C/SIDE field types and their sizes, see the Application
Designer’s Guide and Appendix A.
80

5.2 Library Functions in Alphabetical Order
DBL_FieldName()

Function Retrieves the name of a specified field.

Category Field function.

Syntax const DBL_U8* DBL_FieldName(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: Number of the field whose name will be retrieved

Remarks DBL_FieldName returns the name of the field identified by FieldNo. This function
cannot be used to change the name of the field. Field names are defined in C/SIDE.

If no field exists with the number specified in FieldNo, the function will raise an
exception. Because the field name is returned as a pointer, it (the pointer) is only valid
while the handle to the table is open.

For more information about fields, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Retrieve information about field 3 in table 15 */

/* Causes an exception if field 3 does not exist in table 15 */

printf("Field name is %s\n", DBL_FieldName(hTable, 3));

printf("Field type is %d\n", DBL_FieldType(hTable, 3));

printf("Field size is %d\n", DBL_FieldSize(hTable, 3));

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_FieldNo()

Function Retrieves the number of a specified field that is identified by name.

Category Field function.

Syntax DBL_S32 DBL_FieldNo(DBL_HTABLE hTable, DBL_U8* FieldName);

hTable: Handle to the table

FieldName: Name of the field whose number is to be retrieved
81

Chapter 5. The Library Functions
Remarks DBL_FieldNo returns the field number of FieldName.

Each field is uniquely identified by both a number and a name. Two fields in the same
table cannot have the same number or name – this is checked when fields are created
in C/SIDE.

Fields are normally accessed by number because the random access used for
numbers is faster than the sequential scan used for names. Therefore, you should
only call DBL_FieldNo to look up the number of a field if your system does not support
field numbers, and there is no alternative.

If no field exists with the name specified in FieldName, the function will raise an
exception.

Example DBL_HTABLE hTable;

DBL_S32 FieldNo;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Look up MyField in table 15 */

FieldNo = DBL_FieldNo(hTable, "TestField");

printf("TestField in table 15 has the number %d\n", FieldNo);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_FieldOptionStr()

Function Retrieves the option string of a field.

Category Field function.

Syntax DBL_U8* DBL_FieldOptionStr(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: Option field whose option string is to be retrieved

Remarks DBL_FieldOptionStr returns a string that contains the options for a specified option
field. Only fields of type DBL_Type_O32 have an option string. The string consists of a
comma-separated list of the valid options for the field that match the valid values of
the option field.

If no field exists with the number specified in FieldNo or if the field is not of the
DBL_Type_O32 type, the function will raise an exception.
82

5.2 Library Functions in Alphabetical Order
This function cannot be used to change the option string of the field, only to retrieve it.
Option strings can only be modified in C/SIDE.

For more information about fields and option strings, see the Application Designer’s
Guide.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Retrieve the option string for field 6 in table 15 */

/* Causes an exception if field 6 does not exist in table 15 */

/* Causes an exception if field 6 is not of type DBL_Type_O32 */

printf("Option string is %s\n", DBL_FieldOptionStr(hTable, 6));

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_FieldSize()

Function Retrieves the size of a specified field.

Category Field function.

Syntax DBL_S16 DBL_FieldSize(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: Number of the field whose size will be retrieved

Remarks DBL_FieldSize returns the size of the field specified in FieldNo in bytes. If no field
exists with the number specified in FieldNo, the function will raise an exception.

For more information about the C/SIDE field types and their sizes, see the Application
Designer’s Guide and Appendix A.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Retrieve information about field 3 in table 15 */

/* Causes an exception if field 3 does not exist in table 15 */

printf("Field name is %s\n", DBL_FieldName(hTable, 3));
83

Chapter 5. The Library Functions
printf("Field type is %d\n", DBL_FieldType(hTable, 3));

printf("Field size is %d\n", DBL_FieldSize(hTable, 3));

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_FieldType()

Function Retrieves the type of a specified field.

Category Field function.

Syntax DBL_U16 DBL_FieldType(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: Number of the field whose type will be retrieved

Remarks DBL_FieldType returns the type of the field specified in FieldNo. If no field exists with
the number specified in FieldNo, the function will raise an exception.

C/SIDE supports the following data types: option, boolean, integer, biginteger,
decimal, text, code, date, time, BLOB, datetime, binary, dateformula, duration, GUID.

For more information about the C/SIDE data types, see the Application Designer’s
Guide. The sizes of the C/SIDE data types are listed in Appendix A.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Retrieve information about field 3 in table 15 */

/* Causes an exception if field 3 does not exist in table 15 */

printf("Field name is %s\n", DBL_FieldName(hTable, 3));

printf("Field type is %d\n", DBL_FieldType(hTable, 3));

printf("Field size is %d\n", DBL_FieldSize(hTable, 3));

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
84

5.2 Library Functions in Alphabetical Order
DBL_FindRec()

Function Locates a record and copies it to a buffer.

Category Record function.

Syntax DBL_BOOL DBL_FindRec(DBL_HTABLE hTable, DBL_HREC hRec, DBL_U8* SearchMethod);

hTable: Handle to the table.

hRec: As input: Record from which the search will begin.

As output: Record that is found. Any FlowFields

associated with the record are set to zero; use

DBL_CalcFields to update these fields.

SearchMethod: A string with one or more of these operators:

= find record equal to hRec

< find record less than hRec

> find record greater than hRec

- find first record in table

+ find last record in table

NULL means the same as =

An operator can only occur once. The operators + and - must be used alone.

If SearchMethod contains any of the operators =, > or <, values must be assigned to
all the fields of the current key and the primary key in hRec before making this call.

Remarks DBL_FindRec retrieves the first record that meets the criteria set by SearchMethod
and the scope of any filters associated with the table handle (set by
DBL_SetFilter/Range). The order in which the records are scanned is determined by
the current key of the table handle (set by DBL_SetCurrentKey).

The search starts from the values in the current key fields in hRec. If the current key is
not the primary key, there is a chance that several records will have the same values
in their current key fields. In such case, the values in the primary key fields of hRec
are also used in the search.

If a record is found, 1 is returned. If a record is not found, two things can happen:

1 If this result is allowed by DBL_Allow(DBL_Err_RecordNotFound), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions, see Handling Errors and Exceptions on page
18.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);
85

Chapter 5. The Library Functions
DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Look up record matching hRec */

/* Causes an exception if hRec does not exist in table 15 */

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

DBL_FindRec(hTable, hRec, (DBL_U8*)"=");

/* Look up record equal to or greater than hRec */

/* Causes an exception if such a record does not exist */

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

DBL_FindRec(hTable, hRec, (DBL_U8*)"=>");

/* Look up first record */

/* Causes an exception if table 15 is empty */

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Look up last record */

/* Causes an exception if table 15 is empty */

DBL_FindRec(hTable, hRec, (DBL_U8*)"+");

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_FreeRec()

Function Removes a record buffer.

Category Record function.

Syntax void DBL_FreeRec(DBL_HREC hRec);

hRec: Record buffer to remove

Remarks DBL_FreeRec frees the memory occupied by the specified record buffer that was
previously allocated by a call to DBL_AllocRec. After this operation, hRec is no longer
a valid buffer.

A call to DBL_Exit will automatically remove all the record buffers.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");
86

5.2 Library Functions in Alphabetical Order
DBL_OpenTable(&hTable, 15);

 /* Allocate memory for record buffer */

hRec = DBL_AllocRec(hTable);

/* ... */

/* Free memory occupied by record buffer */

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetCurrentKey()

Function Retrieves the key that is currently assigned to a table.

Category Key function.

Syntax DBL_S32* DBL_GetCurrentKey(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_GetCurrentKey returns a pointer to a list of the fields that make up the current
key. The field list will be the same as the key that has been set by a prior call to
DBL_SetCurrentKey. If DBL_SetCurrentKey has not been called, the current key is
the primary key.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S32 Key[DBL_MaxFieldsPerKey+1];

DBL_S32 *Field;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Select key on field 2 as the current key for the hTable */

/* Causes an exception if there is no key on field 2 */

Key[0] = 2;

Key[1] = 0;

DBL_SetCurrentKey(hTable, Key);

printf("The current key on hTable contains these fields:\n");

for (Field = DBL_GetCurrentKey(hTable); *Field; Field++)
87

Chapter 5. The Library Functions
printf("%d\n", *Field);

/* Scan all records sorted by field 2 in ascending order */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))

do {

/* Process records */

} while (DBL_NextRec(hTable, hRec, 1));

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetDatabaseName()

Function Returns information about whether or not a database is open, and if it is open, its
name.

Category Database function.

Syntax DBL_BOOL DBL_GetDatabaseName(DBL_U8* DatabaseName);

DatabaseName: Name of the database, if a database is open

Remarks DBL_GetDatabaseName is called before opening a database to test if it is already
open. This function is used with DBL_OpenDatabase, DBL_ConnectServer or
DBL_ConnectServerandOpenDatabase.

Example 1 DBL_U8 DatabaseName[256];

DBL_Init();

/* Connect to a running database if there is one. */

/* If no database is running, use 2000 KB cache. */

DBL_OpenDatabase(NULL, 2000, 0);

if (!DBL_GetDatabaseName(DatabaseName))

{

strcpy(DatabaseName,"test.fdb");

/* There is no database running. */

/* Connect to database. */

DBL_OpenDatabase(DatabaseName, 0, 0);

}

printf("Connected to database: %s\n",DatabaseName);

/* Close database.*/

DBL_CloseDatabase();
88

5.2 Library Functions in Alphabetical Order
DBL_Exit();

Example 2 DBL_U8 DatabaseName[256];

DBL_Init();

/* Connect to a running server if there is one. */

/* If no server is running, use 2000 KB cache. */

DBL_ConnectServer("TestServer", "netb");

if !DBL_GetDatabaseName(DatabaseName)

{

strcpy(DatabaseName,"test.fdb");

/* There is no database running*. */

/* Connect to database. */

DBL_OpenDatabase(DatabaseName, 0, 0);

}

printf("Connected to database: %s\n",DatabaseName);

/* Disconnect Server */

DBL_DisconnectServer();

DBL_Exit();

DBL_GetFieldData()

Function Retrieves data from a field.

Category Field function

Syntax DBL_S32 DBL_GetFieldData(void *Dst, DBL_S32 DstSize, DBL_HTABLE hTable,

DBL_HREC hRec, DBL_S32 FieldNo);

Dst: pointer to the destination of the field data

DstSize: amount of data to retrieve, in bytes

hTable: handle to the table

hRec: handle to the record to retrieve field data from

FieldNo: number of the field to retrieve data from

Remarks DBL_GetFieldData is the preferred way to retrieve data from a field in a record, in
order to store it in a variable for further processing. Dst is designed as a void pointer,
and can therefore be a pointer to any data type.

If the value of DstSize is less than the size of the data in the field specified with
FieldNo in the record of the hTable table referenced by the hRec handle, the function
will raise an exception. Therefore, you must be sure that Dst has enough space to
contain the data it will receive.
89

Chapter 5. The Library Functions
DBL_GetFieldData returns the number of bytes actually retrieved – which may be less
than DstSize.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

char s[100];

int i;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

/* Retrieve contents of field 10: */

i = DBL_GetFieldData(s,100,hTable,hRec,10);

/* Print out the result of the operation: */

printf("Contents of field 10: %s (%d bytes)\n",s,i);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetFieldDataAddr()

Function Retrieves a pointer to the data in a field.

Category Field function

Syntax void* DBL_GetFieldDataAddr(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S32

FieldNo);

hTable: handle to the table

hRec: handle to the record of the field

FieldNo: the number of the field to retrieve the data address for

Remarks DBL_GetFieldDataAddr is designed to return a void pointer to the data contained in
the field with the number specified in FieldNo, in the record specified by hRec, and
where hTable is a handle to the table. In the application you must cast the pointer that
is returned by DBL_GetFieldDataAddr to be of the data type defined for that field.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_DATE *pDate;

DBL_Init();
90

5.2 Library Functions in Alphabetical Order
DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

/* Retrieve a pointer to data of field 5 */

pDate = (DBL_DATE*)DBL_GetFieldDataAddr(hTable,hRec,5);

/* ... */

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetFieldDataSize()

Function Retrieves the data size of a field.

Category Field function.

Syntax DBL_S32 DBL_GetFieldDataSize(DBL_HTABLE hTable, DBL_S32 FieldNo, const void

*FieldVal);

hTable: handle to the table

FieldNo: number of the field to retrieve the data size for

FieldVal: NULL pointer, or pointer to data in field

Remarks DBL_GetFieldDataSize returns the data size of a field. In most cases, this will be the
same as the size of the field that was defined in C/SIDE. However, for fields with the
(C/SIDE) data types Text and Code, the actual size of the data in a field may be less
than the defined size, and the actual size of a BLOB field will always be different from
the defined field size – which is 0(zero) – when the BLOB field has a content (BLOB
fields are stored in a dedicated area of the database).

For these three data types, the number returned depends upon the FieldVal
parameter. If FieldVal is a NULL pointer, the defined size is returned. If FieldVal is a
pointer to the data, the actual size is returned (as retrievable by
DBL_GetFieldDataAddr). For all the other data types, it doesn’t matter whether
FieldVal is a NULL pointer or a pointer to the field data.

Example 1 DBL_HTABLE hTable;

DBL_S32 i;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);
91

Chapter 5. The Library Functions
/* Get the defined size of field 5: */

i = DBL_GetFieldDataSize(hTable,5,NULL);

/* Print out the size: */

printf("The defined size of field 5 is %d\n",i);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

Example 2 DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S32 i, j;

DBL_U8 *Text;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Get the defined size of field 10: */

i = DBL_GetFieldDataSize(hTable,10,NULL);

/* Retrieve a specific record from the table: */

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

/* Retrieve a pointer to the data of field 10 */

Text = (DBL_U8*)DBL_GetFieldDataAddr(hTable,hRec,10);

/* Get the actual size of the data in field 10: */

j = DBL_GetFieldDataSize(hTable,10,Text);

/* Print out the sizes: */

printf("Sizes of field 10 are:\n");

printf("Defined: %d\n",i);

printf("Actual: %d\n",j);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetFilter()

Function Retrieves the filter that has been set for a given field.

Category Filter function.

Syntax DBL_S32 DBL_GetFilter(DBL_HTABLE hTable, DBL_S32 FieldNo,

DBL_U8* FilterStr, DBL_S16 FilterStrSize);

hTable: Handle to the table
92

5.2 Library Functions in Alphabetical Order
FieldNo: Number of the field whose filter will be retrieved

FilterStr: A string variable to hold filter information

FilterStrSize: Size of FilterStr, including the terminating zero

If the contents of the filter cannot fit in FilterStr, an exception is raised.

Remarks DBL_GetFilter returns the filter expression that has been set by DBL_SetFilter or
DBL_SetRange for the field specified by FieldNo.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S16 MaxValue;

DBL_U8 FilterStr[100];

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Set filter on field 3 */

MaxValue = 500;

DBL_SetFilter(hTable, 3, ">=200&<=%1", &MaxValue, NULL);

/* Retrieve filter on field 3 */

DBL_GetFilter(hTable, 3, FilterStr, sizeof(FilterStr));

/* Variable FilterStr now contains the string ">=200&<=500" */

printf("Current filter on field 3 is %s\n", FilterStr);

/* Scan records with a value in field 3 in the range 200 - 500 */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))

do {

/* Process records */

} while (DBL_NextRec(hTable, hRec, 1) != 0);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetLastErrorCode

Function Retrieves the code of the last error.

Category Error function.

Syntax DBL_S32 DBL_GetLastErrorCode(void);
93

Chapter 5. The Library Functions
Remarks DBL_GetLastErrorCode returns the code number of the last error that you recieved.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_BWT();

DBL_FindRec(hTable,hRec,(DBL_U8*)"-")

DBL_DeleteRec(hTable, hRec);

/* Delete record again to provoke error */

DBL_DeleteRec(hTable, hRec);

if(DBL_GetLastErrorCode()!=0)

{

/*...record not found...*/

}

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_GetRange()

Function Retrieves the values of a range filter for a field.

Category Filter function.

Syntax void DBL_GetRange(DBL_HTABLE hTable, DBL_S32 FieldNo,

void* MinValue, void* MaxValue);

hTable: Handle to the table

FieldNo:Number of the field whose range filter is to be

retrieved

MinValue:If set to NULL, then MinValue is not returned

MaxValue:If set to NULL, then MaxValue is not returned

Remarks DBL_GetRange returns the start and end values of the range filter for the field
specified by FieldNo. The values are returned in MinValue and/or MaxValue,
respectively. These variables must have the same size as FieldNo.
94

5.2 Library Functions in Alphabetical Order
If either value is undefined, any attempt to return them will cause an exception. Set the
undefined value to NULL to prevent an exception being caused.

DBL_GetRange can retrieve only a single interval, for example:

>=5 & <=8

Setting a range that is more complex than this will raise an exception.

Example DBL_HTABLE hTable;

DBL_S16 MinValue;

DBL_S16 MaxValue;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Set range filter on field 3 */

/* Equals DBL_SetFilter(hTable, 3, ">=200&<=500") */

MinValue = 200;

MaxValue = 500;

DBL_SetRange(hTable, 3, &MinValue, &MaxValue);

/* Retrieve range limits from current filter on field 3 */

DBL_GetRange(hTable, 3, &MinValue, &MaxValue);

/* Retrieve range minimum limit from current filter on field 3* /

DBL_GetRange(hTable, 3, &MinValue, NULL);

/* Retrieve range maximum limit from current filter on field 3 */

DBL_GetRange(hTable, 3, NULL, &MaxValue);

/**********/

/* Set one value filter on field 3 */

/* Equals DBL_SetFilter(hTable, 3, "=200") */

MinValue = 200;

DBL_SetRange(hTable, 3, &MinValue, NULL);

/* Retrieve range limits from current filter on field 3 */

DBL_GetRange(hTable, 3, &MinValue, &MaxValue);

printf("MinValue and MaxValue now both contain the value 200\n");

/**********/

/* Remove filter on field 3 */

/* Equals DBL_SetFilter(hTable, 3, "") */

DBL_SetRange(hTable, 3, NULL, NULL);

/* Any call to DBL_GetRange(hTable, 3, ...) now causes an */

/* exception */

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
95

Chapter 5. The Library Functions
DBL_GetVersion()

Function Retrieves the version number of the C/FRONT library functions.

Category Database function

Syntax DBL_S32 DBL_GetVersion(void);

Remarks This function returns the version number of the C/FRONT library.

Example printf("The C/FRONT library version is %d\n", DBL_GetVersion());

DBL_HMST_2_Time()

Function Converts units of time to a TIME variable.

Category Conversion function.

Syntax void DBL_HMST_2_TIME(DBL_TIME* Time, DBL_S32 h, DBL_S32 m,

 DBL_S32 s, DBL_S32 t);

Time: TIME variable that will receive the converted value

h: Value for the hours

m: Value for the minutes

s: Value for the seconds

t: Value for the thousandths of a second

Remarks DBL_HMST_2_TIME combines discrete values for hours, minutes, seconds and
thousandths of a second to create a TIME variable. The range of the input values is
not checked – this is your responsibility!

Example DBL_TIME Time;

DBL_S32 h,m,s,t;

DBL_Init();

DBL_HMST_2_TIME(&Time, 14, 23, 30, 1);

/* Variable Time now contains the time 14:23:30.1 */

DBL_TIME_2_HMST(&h, &m, &s, &t, Time);

/* Variables h,m,s and t now contain 14, 23, 30 and 1 */

printf("h, m, s and t now contain %d, %d, %d and %d\n",h,m,s,t);

DBL_Exit();
96

5.2 Library Functions in Alphabetical Order
DBL_Init()

Function Initializes the library.

Category Initializing function.

Syntax DBL_S32 DBL_Init(void);

Remarks DBL_Init initializes (opens) the library by creating and initializing internal buffers and
tables. Initialization includes loading the Navision DLL-modules used by the library. An
application must therefore call DBL_Init before it calls any other library function.

If the library is successfully initialized, 0 is returned. If initialization fails, an error code
is returned. This is the only library function that returns an error code.

For more information about errors and exceptions, see Handling Errors and
Exceptions on page 18.

Once it has been successfully called, DBL_Init cannot be called again until you have
closed the library by calling DBL_Exit.

Example void main(int argc, char* argv[], char* envp[])

{

DBL_Init();

/* A database can now be opened or */

/* a connection to a server established */

DBL_Exit();

DBL_InitRec()

Function Initializes a record.

Category Record function.

Syntax void DBL_InitRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: Handle to the table

hRec: Handle to the record to be initialized

Remarks DBL_InitRec assigns default values to each field in the record buffer. The values
correspond to those that were defined when the table was created in C/SIDE. Fields
for which no values were defined are assigned zero values.

After this operation has been performed, you are free to change the values in any or
all of the fields before calling DBL_InsertRec to enter the record in the table. Ensure
97

Chapter 5. The Library Functions
that the field(s) which make up the primary key contain values that make the contents
of the total primary key unique. If the contents of the total primary key are not unique,
the database manager will reject the record.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Initialize all fields in hRec */

DBL_InitRec(hTable, hRec);

/* Assign value to field 1 in hRec */

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

/* Insert hRec into table 15 */

DBL_InsertRec(hTable, hRec);

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_InsertRec()

Function Inserts a record into a table.

Category Record function.

Syntax DBL_BOOL DBL_InsertRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: Handle to the table

hRec: Handle to the record to be inserted. hRec itself does not change.

Remarks DBL_InsertRec inserts a record into an open table. Use DBL_InitRec to initialize the
record before assigning values to the fields. The current key and any filters that have
been placed on the table handle do not effect this operation.
98

5.2 Library Functions in Alphabetical Order
A record is uniquely identified by the values of the fields in the primary key. The
C/SIDE database manager inspects the primary keys in the table before inserting the
new record.

If the record is successfully inserted, 1 is returned. If a record with the same value in
the primary key already exists in the table, the insertion will fail and two things can
happen:

1 If this result is allowed by DBL_Allow(DBL_Err_RecordExists), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about errors and exceptions, see Handling Errors and
Exceptions on page 18.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.db", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Initialize all fields in hRec */

DBL_InitRec(hTable, hRec);

/* Assign value to field 1 in hRec */

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

/* Insert hRec into table 15 */

DBL_InsertRec(hTable, hRec);

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
99

Chapter 5. The Library Functions
DBL_KeyCount()

Function Counts the keys that are available for a table.

Category Key function.

Syntax DBL_S16 DBL_KeyCount(DBL_HTABLE hTable);

hTable: Handle to the table

Remarks DBL_KeyCount returns the number of keys that have been defined for a table. A table
always has one primary key and can have one or more secondary keys. Therefore,
DBL_KeyCount always returns a number greater than or equal to one. Only active
keys are counted.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_S32 *Key,Field;

DBL_S16 i;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d active key(s)\n",

DBL_KeyCount(hTable));

i = 0;

for (Key = NULL; Key = DBL_NextKey(hTable, Key);)

{

i++;

printf("Key %d contains these field number(s):\n", i);

for (Field = Key; *Field; Field++)

printf("%d\n", *Field);

}

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
100

5.2 Library Functions in Alphabetical Order
DBL_KeySumFields()

Function Returns the SumIndexFields of a specified table key.

Category Key function.

Syntax DBL_S32* DBL_KeySumFields(DBL_HTABLE hTable, DBL_S32* Key);

hTable: Handle to the table

Key:Key whose list of SumIndexFields is to be retrieved; this

parameter may represent either a primary or secondary

key

Remarks DBL_KeySumFields retrieves a list of the SumIndexFields for a given key and for a
given table. SumIndexFields are a special C/SIDE feature that permits speedy access
to numeric amounts, even in tables that contain thousands of records.

For more information about keys and SumIndexFields, see the Application Designer’s
Guide.

Example DBL_HTABLE hTable;

DBL_S32 Key[DBL_MaxFieldsPerKey+1];

DBL_S32 *Field;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

Key[0] = 2; /* Field number 2 */

Key[1] = 0; /* Key terminator */

printf("The key on field 2 contains the following SumIndexFields:\n");

for (Field = DBL_KeySumFields(hTable, Key); *Field; Field++)

printf("%d\n", *Field);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_LoadLicenseFile()

Function Loads a license file.

Category Database function.

Syntax void DBL_LoadLicenseFile(DBL_U8* FileName);
101

Chapter 5. The Library Functions
FileName: license file to load.

Remarks DBL_LoadLicenseFile loads the license file specified by FileName. This function must
be called before establishing a connection to a database – otherwise, the current
connection will be closed.

DBL_LockTable()

Function Locks a table.

Category Table function.

Syntax void DBL_LockTable(DBL_HTABLE hTable, DBL_U32 Mode);

hTable: Handle to the table

Mode: DBL_LockWait or DBL_LockNoWait

Remarks DBL_LockTable locks a table to prevent conflicting write operations. You can specify
either a Wait or NoWait lock for the Mode parameter:

· DBL_LockWait

If another application is carrying out a transaction on the table when you issue this
lock, the function suspends your operations and waits until the table is available
before returning.

· DBL_LockNoWait

If another application is carrying out a transaction on the table when you issue this
lock, the function raises an exception and calls the exception handler.

The C/SIDE database system uses table locking to ensure data integrity. Whenever
an application begins to change data in a table (with InsertRec / ModifyRec /
DeleteRec), the table is automatically locked. The lock prevents all other applications
from changing data in the same table and remains active until the write transaction is
ended (or aborted) with DBL_EWT or DBL_AWT.

Table locking does not prevent any authorized users from gaining read access to the
table.

Because all write operations automatically lock the table in question, a call to
DBL_LockTable would seem to be unnecessary. Imagine, however, a transaction in
which an application wants to inspect data before possibly (though not necessarily)
changing it – and have a guarantee that the data it changes has not been altered
since it was read. The solution is to lock the table before reading, thereby ensuring
that no other application can change the data between your reading the data and
performing the possible write transaction.
102

5.2 Library Functions in Alphabetical Order
The C/SIDE database system provides deadlock detection. Let us say that two
applications, A and B, simultaneously want to lock the same two tables but in reverse
order. Thus A locks Table 1 and waits to lock Table 2, while B locks Table 2 and waits
to lock Table 1. This potentially fatal situation is called a deadlock and is automatically
detected by the C/SIDE database manager. One of the applications will raise an
exception and be terminated, while the other will be allowed to continue.

DBL_LockTable is only allowed within a DBL_BWT/DBL_EXT construction.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Prevent other users from modifying table 15 */

DBL_LockTable(hTable, DBL_LockWait);

/* Retrieve hRec from table 15 */

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Assign value to field 2 in hRec */

DBL_AssignField(hTable,hRec,2,DBL_FieldType(hTable,2),"Name",

strlen("Name"));

/* Modify hRec in table 15 */

DBL_ModifyRec(hTable, hRec);

/* Commit write transaction and remove table lock */

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Login()

Function Logs a user into a database.

Category Database function.

Syntax DBL_BOOL DBL_Login(DBL_U8* UserID, DBL_U8* PassWord);

UserID: Login name (see DBL_MaxUserIDLen in cf.h)

PassWord: Password belonging to UserID
103

Chapter 5. The Library Functions
(see DBL_MaxPassWordLen in cf.h)

Remarks DBL_Login plays a double role: it controls access to tables in a multiuser environment,
and it provides password protection for user verification. The function must be called if
more than one user (DBL_UserCount > 0) is permitted to open the database tables.

A successful login, however, does not ensure access to the data. Anyone can open a
database and then, after logging in, inspect table descriptions, but gaining access to
data tables requires further verification. The security mechanisms in C/SIDE allow any
or all tables to be protected against unauthorized users. A typical user, for example,
may only have read access to the tables in one company, may be able to read and
write to the tables in another company and have no access at all to the tables in a third
company. DBL_Login returns 1 for a successful login and 0 for an unsuccessful login.

User IDs are stored in an internal table in the database. The contents of this table
cannot be changed by any of the functions in the library, although the current User ID
can be retrieved by DBL_UserID. User IDs can only be created, modified and deleted
within C/SIDE.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Test whether login is required */

if (DBL_UserCount() > 0)

{

/* Log into database */

DBL_Login("MyUserID", "MyPassWord");

printf("Current userid is %s\n", DBL_UserID());

}

/* ... */

DBL_CloseDatabase();

DBL_Exit();

DBL_ModifyRec()

Function Modifies a record in a table.

Category Record function.

Syntax DBL_BOOL DBL_ModifyRec(DBL_HTABLE hTable, DBL_HREC hRec);

hTable: The handle to the table

hRec: The handle to the record that is to be modified. hRec itself does not

change.
104

5.2 Library Functions in Alphabetical Order
Remarks DBL_ModifyRec modifies a record in the table. The record to be modified is the one
identified by the values in the primary key fields in hRec. The current key and any
filters that have been placed on the table handle have no effect on this operation.

In a multiuser environment, another application can modify the record in the table in
the interval between your reading the record and your attempting to modify it. The
C/SIDE database system automatically detects such an event, causing
DBL_ModifyRec to raise an exception.

To prevent this from happening, use DBL_LockTable to lock the table before reading
the record. Remember, however, that the table will be locked for the entire time that
elapses between reading the the record and modifying it, and other users will
therefore be unable to access it.

For more information about table locking, see the Application Designer’s Guide.

Note that the library does not support range and validity checks – it is your
responsibility to verify that the data you are inserting is valid.

If the record is successfully modified, 1 is returned. If the record is not found in the
table, two things can happen:

1 If this result is allowed by the function BL_Allow(DBL_Err_RecordNotFound), 0 is
returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions and errors, see Handling Errors and
Exceptions on page 18.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

DBL_BWT();

/* Prevent other users from modifying table 15 */

DBL_LockTable(hTable, DBL_LockWait);

/* Retrieve hRec from table 15 */

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

/* Assign value to field 2 in hRec */

DBL_AssignField(hTable,hRec,2,DBL_FieldType(hTable,2),"Name",

strlen("Name"));

/* Modify hRec in table 15 */

DBL_ModifyRec(hTable, hRec);
105

Chapter 5. The Library Functions
/* Commit write transaction and remove table lock */

DBL_EWT();

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_NextCompany()

Function Retrieves the company name that comes after a specified company name.

Category Database function.

Syntax DBL_U8* DBL_NextCompany(DBL_U8* CompanyName);

CompanyName: Name of a company, or a NULL pointer. Both this

parameter and the result returned by the function are pointers

to strings.

Remarks DBL_NextCompany returns the company name that follows CompanyName. You can
scan all the company names in a database, by executing DBL_NextCompany in a
loop. If you call this function with CompanyName set to NULL, the first company name
in the database is returned. If you then call DBL_NextCompany using this result as an
argument, the function returns the second company name, and so on, until the entire
list has been scanned. When the end of the list is reached, the function returns a
NULL pointer.

The company is neither opened or closed when this function is called.

Example DBL_U8* CompName;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

printf("The database contains the following companies:\n");

for (CompName = NULL; CompName = DBL_NextCompany(CompName);)

{

printf("%s\n", CompanyName);

}

DBL_CloseDatabase();

DBL_Exit();
106

5.2 Library Functions in Alphabetical Order
DBL_NextField()

Function Retrieves the field number that comes after the specified field number in a table.

Category Field function.

Syntax DBL_S32 DBL_NextField(DBL_HTABLE hTable, DBL_S32 FieldNo);

hTable: Handle to the table

FieldNo: A field number. If set to zero, the first field number in the record

is retrieved.

Remarks DBL_NextField returns the field number of the field that comes after FieldNo. If the
function reaches the end of the field number list, zero is returned.

DBL_NextField can scan the entire list of fields in a table. The scan is restricted to the
active fields and excludes the inactive ones.

For more information about active and inactive fields, see the Application Designer’s
Guide.

Example DBL_HTABLE hTable;

DBL_S32 FieldNo;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("test Company");

DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d active field(s)\n",

DBL_FieldCount(hTable));

printf("These fields are numbered as follows:\n");

for (FieldNo = 0; FieldNo = DBL_NextField(hTable, FieldNo);)

printf("%d\n", FieldNo);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_NextKey()

Function Retrieves the table key that comes after a specified table key.

Category Key function.

Syntax DBL_S32* DBL_NextKey(DBL_HTABLE hTable, DBL_S32* Key);
107

Chapter 5. The Library Functions
hTable: Handle to the table

Key: A table key or a NULL pointer

Remarks DBL_NextKey returns the key that comes after the specified key in the table. Both the
parameter "Key" and the function result are pointers to zero-terminated char arrays
that contain the numbers of the fields comprising a key.

This function does not influence the definition or selection of the keys. Table keys are
defined in C/SIDE.

If Key is set to NULL, the first key for the table is returned. The first key is the primary
key. If DBL_NextKey is then called using the first key as the argument, the second key
is returned, and so on. When the function reaches the end of the key list, it returns a
NULL pointer. In this way, DBL_NextKey can scan the entire list of table keys. The
scan is restricted to the active keys and excludes the inactive ones.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_S32 *Key;

DBL_S32 *Field;

DBL_S16 i;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d active key(s)\n",

DBL_KeyCount(hTable));

i = 0;

for (Key = NULL; Key = DBL_NextKey(hTable, Key);)

{

i++;

printf("Key %d contains the following field number(s):\n", i);

for (Field = Key; *Field; Field++)

printf("%d\n", *Field);

}

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
108

5.2 Library Functions in Alphabetical Order
DBL_NextRec()

Function Steps through a specified number of records to retrieve a record.

Category Record function.

Syntax DBL_S16 DBL_NextRec(DBL_HTABLE hTable, DBL_HREC hRec, DBL_S16 Step);

hTable: Handle to the table

hRec: As input: Record from which the search will begin.

As output: Record that is found. Any FlowFields

associated with the record are set to zero; use

DBL_CalcFields to update these fields.

Step: Number of steps. If Step=0, the function has no effect.

For backward movement through the table, use a negative

number.

Remarks DBL_NextRec locates a record that is positioned a given number of steps before or
after hRec. Movement through the table is governed by the filters and by the current
key that is associated with the table handle. All of the fields in hRec which will be
compared to the current key must contain relevant values before this function is
called.

The function returns the number of records that have been scanned which meet the
criteria set by any filters, given the current key. This value can be closer to zero than
Step, depending upon the number of records in the table. If the table is empty, zero is
returned and hRec remains unchanged.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Scan all records in table 15 in ascending order */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))

do

{

} while (DBL_NextRec(hTable, hRec, 1) != 0);

/* Scan all records in table 15 in descending order */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"+"))

do

{

} while (DBL_NextRec(hTable, hRec, -1) != 0);
109

Chapter 5. The Library Functions
DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_NextTable()

Function Returns the table number of the table that comes after a given table number.

Category Table function.

Syntax DBL_S32 DBL_NextTable(DBL_S32 TableNo);

TableNo: A number of a table. If set to zero, the first table number is

retrieved.

Remarks DBL_NextTable allows you to scan all of the table numbers within a database. It
returns the table number that comes after TableNo – or zero when it reaches the end
of the list of table numbers.

For more information about tables, see the Application Designer’s Guide.

Example DBL_S32 TableNo;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company")

printf("The database contains the following table numbers:\n");

for (TableNo = 0; TableNo = DBL_NextTable(TableNo);)

{

printf("%d\n", TableNo);

}

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Oem2AnsiBuff

Function Converts characters from OEM to ANSI.

Category Conversion function.

Syntax void DBL_Oem2AnsiBuff(const DBL_U8 *Src,DBL_U8 *Dst,DBL_S32 DstSize)
110

5.2 Library Functions in Alphabetical Order
Src: the source

Dst: the destination

DstSize: the number of characters to be converted

Remarks DBL_Oem2AnsiBuff converts the character buffer from OEM to ANSI. You must
specify the source buffer the destination buffer and the number of characters. This
function should be used in conjuction with DBL_Ansi2OemBuff because it can
successfully convert the characters from OEM to ANSI and back again. The
comparable Windows function does not always perform this conversion successfully.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Oem buffer is allocated room for 10 characters */

DBL_U8 Oembuff[10]

/* Ansi buffer is allocated room for 5 characters */(

DBL_U8 Ansibuff[5]

/* Copy the string "Hi" to the Oem buffer */

strcpy(Oembuff, "Hi")

/* Convert the two character string from OEM to ANSI */

DBL_Oem2AnsiBuff(Oembuff, Ansibuff, 2);

DBL_CloseDatabase();

DBL_Exit();

DBL_OpenCompany()

Function Opens a company in an open database.

Category Database function.

Syntax void DBL_OpenCompany(DBL_U8* CompanyName);

CompanyName: Company to open

Remarks DBL_OpenCompany allows an application to select a company and thereby open
tables and access data (records) from the database.

An application can have only one company open at a time, but it can have many
tables open, provided they are in the same company.

In a multiuser environment, different applications can access different companies
within a single database (via a server), but each application can only have one
company open at a time.

If CompanyName does not exist, the function raises an exception.
111

Chapter 5. The Library Functions
For more information about companies, see the Application Designer’s Guide.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Open company */

/* Causes an exception if "Test Company" does not exist */

DBL_OpenCompany("Test Company");

printf("Current company is %s\n", DBL_CompanyName());

/* Close company */

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_OpenDatabase()

Function Opens a database file.

Category Database function.

Syntax void DBL_OpenDatabase(DBL_U8* DatabaseName, DBL_S32 CacheSize,

DBL_BOOL UseCommitCache);

DatabaseName: Database to open

CacheSize: Size of cache in KB

UseCommitCache: Whether to use CommitCache or not

Remarks DBL_OpenDatabase opens a database with a cache of the size specified in
CacheSize and loads the database manager. All succeeding calls to access the
database are passed to the database manager, which executes the operations.

A cache is an area of RAM that holds the results of recent disk accesses. CacheSize
specifies the amount of memory assigned to the disk cache that is used by the
database manager when it accesses the database file. The size depends upon which
operating system is being used. As a general rule, the larger the cache, the better the
performance.

For more information about cache size and performance, see the Installation and
System Management manual.

There are no restrictions on opening a database, but access to the tables can be
governed by a password. See DBL_Login.

Close the database by calling DBL_CloseDatabase. An application can have only one
database open at a time. Use DBL_CloseDatabase before opening another database.
Applications can switch between a server connection and a locally-opened database
112

5.2 Library Functions in Alphabetical Order
(use DBL_ConnectServerandOpenDatabase, DBL_ConnectServer and
DBL_OpenDatabase); remember to close the current connection before making the
switch.

If there is an error, the function raises an exception and calls the exception handler.

For more information about exceptions and errors, see Handling Errors and
Exceptions on page 18.

Example DBL_Init();

/* Open database using 2000 Kb cache */

/* Causes an exception if database test.fdb does not exist */

/* Causes an exception if 2000 Kb cache cannot be allocated */

DBL_OpenDatabase("test.fdb", 2000, 0);

/* ... */

/* Close database */

DBL_CloseDatabase();

DBL_Exit();

DBL_OpenTable()

Function Opens a table and creates a handle to it.

Category Table function.

Syntax DBL_BOOL DBL_OpenTable(DBL_HTABLE* hTablePtr, DBL_S32 TableNo);

hTablePtr: New handle to the table

TableNo: Number of the table to be opened

Remarks DBL_OpenTable opens the table identified by TableNo and assigns a handle to the
table. This handle can be used for future calls. The handle remains valid until
DBL_CloseTable is invoked. You can create several handles to the same table. You
can also use other library functions to set filters and to set a current key individually for
each handle.

DBL_OpenTable will open the table even if the user (verified by DBL_Login) does not
have permission to access the table. But the application will receive an error when the
user tries to read or modify the data in the table. Only the table description (field and
key layout) can be accessed, not the table data.

If the table is successfully opened, 1 is returned. If the table does not exist, two things
can happen:

1 If this result is allowed by DBL_Allow(DBL_Err_TableNot Found), 0 is returned.
113

Chapter 5. The Library Functions
2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

/* Open table */

/* Causes an exception if table 15 does not exist */

DBL_OpenTable(&hTable, 15);

/* Close table */

DBL_CloseTable(hTable);

/* Open table */

DBL_Allow(DBL_Err_TableNotFound);

if (DBL_OpenTable(&hTable, 16))

{

printf("Table opened\n");

/* ... */

/* Close table */

DBL_CloseTable(hTable);

}

else

printf("Table does not exist\n");

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_OpenTemporaryTable()

Function Creates a temporary table.

Category Table function.

Syntax DBL_BOOL DBL_OpenTable(DBL_HTABLE* hTablePtr, DBL_S32 TableNo);

hTablePtr: New handle to the table

TableNo:The number of the table to be used as a template for the temporary

table.
114

5.2 Library Functions in Alphabetical Order
Remarks DBL_OpenTemporaryTable creates a temporary table based on the table description
of the "real" table with the number specified in TableNo. The temporary table can be
accessed like any other table by using hTablePtr.

You cannot perform transactions on a temporary table because it is not a part of the
database. The temporary table does not exist outside the application that creates it.
Consequently, it is also "private" for the application that creates it, and other users in a
multi-user system cannot access it. Other than that, you can perform the same
operations as on a "real" table.

The benefit of using a temporary table is that it is held in memory and this makes
performing operations on it very fast. In a client/server environment, this also reduces
the load on the network. You can copy records from the corresponding "real" table by
using DBL_FindRec and DBL_NextRec. You cannot use DBL_CopyRec because the
source and the destination records must be in the same table when you are using this
function. When you have performed a series of operations on the records in a
temporary table, you can insert these records into the "real" table by using
DBL_InsertRec or DBL_ModifyRec.

DBL_RecCount()

Function Counts the number of records in a table.

Category Record function.

Syntax DBL_S32 DBL_RecCount(DBL_HTABLE hTable);

hTable:Handle to the table

Remarks DBL_RecCount returns the number of records that meet the conditions specified in
any filters assigned to the table handle. If no filters are set, DBL_RecCount returns the
total number of records in the table.

This operation is very quick if the table is not filtered. Filters make movement through
the table slower.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

printf("Table 15 contains %d record(s)\n", DBL_RecCount(hTable));

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
115

Chapter 5. The Library Functions
DBL_ReleaseAllObjects()

Function Releases all of the resources in C/FRONT.

Category Database function.

Syntax void DBL_ReleaseAllObjects(void);

Remarks DBL_ReleaseAllObjects releases all of the allocated resources in C/FRONT. This
means that all the tables are closed and all the allocated records are released.

This function is meant to be used when you are handling errors, where it is desirable
to have all of the resources released at once.

The database is not closed, and any open companies are not closed either.

If all of the resources are not released, a call to DBL_OpenDatabase or
DBL_CloseDatabase will raise an exception.

DBL_SelectLatestVersion()

Function Selects the latest data version.

Category Database operation

Syntax void DBL_SelectLatestVersion(void);

Remarks DBL_SelectLatestVersion accesses the newest version of the data in a database. All
subsequent database operations will be performed on this version of the data. In a
single-user environment, this function has no effect, because the application always
accesses the newest version – there are no other active applications creating new
versions.

For more information about database versions, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Retrieve hRec from my data version */

DBL_FindRec(hTable, hRec, (DBL_U8*)"-");

printf("hRec was found\n");
116

5.2 Library Functions in Alphabetical Order
/* Another application connected to the database/server */

/* and deleted hRec */

/*...

DBL_BWT();

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

DBL_DeleteRec(hTable, hRec);

DBL_EWT();

...

***/

/* Retrieve hRec again from my data version */

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

DBL_FindRec(hTable, hRec, (DBL_U8*)"=");

printf("hRec was found\n");

/* Select the latest public version to be my data version */

DBL_SelectLatestVersion();

/* Retrieve hRec from my data version */

DBL_AssignField(hTable,hRec,1,DBL_FieldType(hTable,1),"100",

strlen("100"));

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"="))

printf("Record still exists\n");

else

printf("Record has been deleted by another application\n");

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_S32_2_BCD()

Function Converts an S32 variable to a BCD (decimal number).

Category BCD function.

Syntax void DBL_S32_2_BCD(DBL_BCD *Dest, DBL_S32 Source);

Dest: Variable in which the converted S32 variable is placed

Source: S32 variable to be converted

Remarks DBL_S32_2_BCD converts Source to a BCD and places the result in Dest.

Example DBL_BCD b1;

DBL_S32 s1, s2;
117

Chapter 5. The Library Functions
DBL_Init();

s1 = 31415;

DBL_S32_2_BCD(&b1, s1);

s2 = DBL_BCD_2_S32(&b1);

if (s1 != s2)

 return(-1);

DBL_Exit();

DBL_SetCurrentKey()

Function Sets the current key for a table handle.

Category Key function.

Syntax DBL_BOOL DBL_SetCurrentKey(DBL_HTABLE hTable, DBL_S32* Key);

hTable: Handle to the table

Key: Desired key or a NULL pointer

Remarks DBL_SetCurrentKey assigns a specified key to a table handle. The key becomes the
current key and is used by DBL_FindRec, DBL_NextRec and other functions until
another key is selected. Use DBL_NextKey to scan the list of keys for the table to find
out which keys are available. Only active keys will be retrieved.

The primary key of the table is the current key, until DBL_SetCurrentKey is called.
When a secondary key is the current key, you can make the primary key the current
key again by calling DBL_SetCurrentKey with Key set to NULL.

If a new current key is successfully assigned to the table handle, 1 is returned. If the
requested key does not exist, two things can happen:

1 If this result is allowed by the DBL_Allow(DBL_Err_Key NotFound), 0 is returned.

2 If the result is not allowed, the function will raise an exception and call the exception
handler with an error.

For more information about exceptions and errors, see Handling Errors and
Exceptions on page 18.

For more information about keys, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S32 Key[DBL_MaxFieldsPerKey+1];

DBL_S32 *Field;
118

5.2 Library Functions in Alphabetical Order
DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Select key defined for field 2 as current key for the hTable */

/* handle. Causes an exception if table 15 does not have a */

/* key on field 2 */

Key[0] = 2;

Key[1] = 0;

DBL_SetCurrentKey(hTable, Key);

printf("The current key on hTable contains these fields:\n");

for (Field = DBL_GetCurrentKey(hTable); *Field; Field++)

printf("%d\n", *Field);

/* Scan all records sorted by field 2 in ascending order */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))

do

{

} while (DBL_NextRec(hTable, hRec, 1));

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_SetExceptionHandler()

Function Installs a user-written exception handler.

Category Exception-handling function.

Syntax void* DBL_SetExceptionHandler(DBL_pFuncExceptionHandler ExceptionHandler);

ExceptionHandler: The function to be installed as the exception handler for

the library. If set to NULL, the default exception handler is restored.

Remarks This function installs ExceptionHandler as the exception handler that is used by the
library. DBL_SetExceptionHandler returns the address of the previous exception
handler. If you want to reinstall the default exception handler later, you must store this
address, and use it in a call to DBL_SetExceptionHandler. Installing another handler,
for example, the default one, is also the only way to disable a customized exception
handler.

Example void main(DBL_S16 argc, DBL_U8 *argv[], DBL_U8 *envp[])
119

Chapter 5. The Library Functions
{

/* ... */

DBL_SetExceptionHandler(My_ExceptionHandler);

/* ... */

}

void DBL_CDECL My_ExceptionHandler(DBL_S32 ErrorCode, DBL_BOOL IsFatal)

{

char *Fatal = (IsFatal) ? " Fatal" : "";

char *dbError = (19 == (ErrorCode/0x10000L)) ? "Database " :

""; /* Module No in high word */

ErrorCode &= 0xffffL; /* Error Code in low word */

printf("Exception Handler called with%s %sError: %d.\n",

Fatal, dbError, ErrorCode);

if(IsFatal)

exit(ErrorCode);

}

DBL_SetFilter()

Function Assigns a filter to a specified field.

Category Filter function.

Syntax void DBL_SetFilter(DBL_HTABLE hTable, DBL_S32 FieldNo, DBL_U8* FilterStr,

void* ValuePtr1, ...);

hTable: Handle to the table

FieldNo: Number of the field for which a filter will be set

FilterStr: Filter expression for the field, consisting of alphanumeric

characters and one or more of the following operators: < > ? & | =

ValuePtr1..9: Replacement values for FilterStr. For example, if FilterStr

contains the parameter %4, it is replaced by the fourth

argument in this list. The list of replacement values must

end with the parameter NULL.

Remarks DBL_SetFilter assigns a filter to the field specified by FieldNo. Any filter that is already
assigned to FieldNo for this table handle is removed before the new filter is attached.
If FilterStr is empty or contains a NULL pointer, no filter will be assigned to FieldNo,
and any filter that is currently assigned will be removed.

For more information about filter syntax and relational operators, see the Application
Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_S16 MaxValue;

DBL_U8 FilterStr[100];

DBL_Init();
120

5.2 Library Functions in Alphabetical Order
DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Set filter on field 3 */

MaxValue = 500;

DBL_SetFilter(hTable, 3, ">=200&<=%1", &MaxValue, NULL);

/* Retrieve filter on field 3 */

DBL_GetFilter(hTable, 3, FilterStr, sizeof(FilterStr));

/* Variable FilterStr now contains the string ">=200&<=500" */

printf("Current filter on field 3 is %s\n", FilterStr);

/* Scan records with a value in field 3 in the range 200-500 */

DBL_Allow(DBL_Err_RecordNotFound);

if (DBL_FindRec(hTable, hRec, (DBL_U8*)"-"))

do

{

} while (DBL_NextRec(hTable, hRec, 1) != 0);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_SetMessageShowHandler

Function Installs a customized message handler that will be used instead of the default
message handler.

Category Error function

Syntax void* DBL_SetMessageShowHandler(DBL_pFuncMessageShowHandler ShowFunc);

ShowFunc: pointer to the function to use for showing messages.

Remarks DBL_SetMessageShowHandler installs a customized function for showing messages.

Example void main(DBL_S16 argc, DBL_U8 *argv[], DBL_U8 *envp[])

{

/* ... */

DBL_SetMessageShowHandler(My_MessageShowHandler);

/* ... */

}

void DBL_CDECL My_MessageShowHandler(DBL_U8 *Msg, DBL_U32 MsgType, DBL_S32

ErrorCode)
121

Chapter 5. The Library Functions
{

DBL_S32 LnWidth = 70;

do {

DBL_U8 *Ret = (DBL_U8*)memchr(Msg,'\r',strlen((char*)Msg));

if (Ret > Msg+LnWidth) {

DBL_U8 *Space = (DBL_U8*)memchr_bckwrd(Msg,LnWidth,' ');

if (Space)

Ret = Space;

}

if (Ret)

*Ret++ = 0;

printf("%s\n",Msg);

Msg = Ret;

} while(Msg && *Msg != 0);

fflush(stdout);

}

static void* memchr_bckwrd(const void *Dst, DBL_S32 Size, DBL_U8 Chr)

{

DBL_U8 *pS = (DBL_U8*)Dst+Size;

while(--pS >= Dst)

if (*pS == Chr)

return(pS);

return(NULL);

}

DBL_SetNavisionPath()

Function Sets the path to the directory where Navision is installed.

Category Initialization function.

Syntax void DBL_SetNavisionPath(DBL_U8 *Path);

Path: Path to the directory containing the Navision files.

Remarks Normally the C/FRONT library (cfront.dll) reads the registry in order to locate the
Navision DBMS system. However, if multiple Navision Systems are installed or if
Navision is not present on the system, the function DBL_SetNavisionPath should be
called with the path to the directory of the Navision installation or to a directory
containing the following files from a Navision installation:

dbm.dll
nc_netb.dll
nc_tcp.dll
122

5.2 Library Functions in Alphabetical Order
slave.exe
fin.flf

DBL_SetNavisionPath must be called before any other function in the library, except
DBL_Init, DBL_SetExceptionHandler and DBL_SetMessageShowHandler

DBL_SetRange()

Function Sets a range filter for a field.

Category Filter function.

Syntax void DBL_SetRange(DBL_HTABLE hTable, DBL_S32 FieldNo, const void* MinValue,

const void* MaxValue);

hTable: Handle to the table

FieldNo: Number of the field for which the filter is to be set

MinValue: Starting value. If set to NULL, the filter is removed,

regardless of the contents of MaxValue.

MaxValue: Ending value. If NULL, the range is set to MinValue..MinValue.

Remarks DBL_SetRange provides a quick way to set a simple filter on a field. Any filter already
assigned to the field is removed.

If MaxValue is set to NULL, the range is set to MinValue alone.

Both MinValue and MaxValue must be of the same type as FieldNo.

Example DBL_HTABLE hTable;

DBL_S16 MinValue;

DBL_S16 MaxValue;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

/* Set range filter on field 3 */

/* Equals DBL_SetFilter(hTable, 3, ">=200&<=500") */

MinValue = 200;

MaxValue = 500;

DBL_SetRange(hTable, 3, &MinValue, &MaxValue);

/* Retrieve range limits from current filter on field 3 */

DBL_GetRange(hTable, 3, &MinValue, &MaxValue);

/* Retrieve range minimum limit from current filter on field 3 */

DBL_GetRange(hTable, 3, &MinValue, NULL);

/* Retrieve range maximum limit from current filter on field 3 */

DBL_GetRange(hTable, 3, NULL, &MaxValue);

/**********/
123

Chapter 5. The Library Functions
/* Set one value filter on field 3 */

/* Equals DBL_SetFilter(hTable, 3, "=200") */

MinValue = 200;

DBL_SetRange(hTable, 3, &MinValue, NULL);

/* Retrieve range limits from current filter on field 3 */

DBL_GetRange(hTable, 3, &MinValue, &MaxValue);

printf("MinValue and MaxValue now both contain the value 200\n");

/**********/

/* Remove filter on field 3 */

/* Equals DBL_SetFilter(hTable, 3, "") */

DBL_SetRange(hTable, 3, NULL, NULL);

/* Calling DBL_GetRange(hTable, 3, ..) now causes an exception */

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Str_2_Alpha()

Function Converts a string to an ALPHA variable.

Category Conversion function.

Syntax void DBL_Str_2_Alpha(DBL_U8* Alpha, DBL_S16 AlphaSize, DBL_U8* Str);

Alpha: Variable to receive the converted string

AlphaSize: Size of Alpha, in bytes

Str: String to be converted

Remarks DBL_Str_2_Alpha converts a string to a variable of the ALPHA type and stores it in
Alpha. If Alpha is not long enough to hold the converted string, the function raises an
exception.

For more information about ALPHA variables, see Appendix B.

Example DBL_U8 Alpha[12];

DBL_U8 Str[11];

DBL_Init();

DBL_Str_2_Alpha(Alpha, sizeof(Alpha), "Number10");

/* Variable Alpha now contains the alpha value "Number10" */

DBL_Alpha_2_Str(Str, sizeof(Str), Alpha);

/* Variable Str now contains the string value "Number10" */
124

5.2 Library Functions in Alphabetical Order
printf("Variable Str now contains the string value %s\n", Str);

DBL_Exit();

DBL_Str_2_BCD()

Function Converts a string to a BCD (decimal number).

Category Conversion function.

Syntax void DBL_Str_2_BCD(DBL_BCD* Bcd, DBL_U8* Str);

Bcd: BCD variable in which the converted string is placed

Str: String to be converted

Remarks DBL_Str_2_BCD converts Str to a BCD variable and stores it in Bcd. Str must be in a
format that prefixes negative numbers with a minus sign (-) and uses the period
character as a decimal point (U.S.format). Leading and trailing blanks are ignored
during conversion.

If Str does not contain a valid decimal number and cannot be converted, the function
will raise an exception.

Example DBL_BCD Bcd;

DBL_U8 Str[11];

DBL_Init();

DBL_Str_2_BCD(&Bcd, "-1.2345");

/* Variable Bcd now contains the value -1.2345 */

DBL_BCD_2_Str(Str, sizeof(Str), &Bcd);

/* Variable Str now contains the string value "-1.2345" */

printf("Variable Str now contains the string value %s\n", Str);

DBL_BCD_2_Str(Str, 6+1, &Bcd);

/* Variable Str now contains the string value "******" */

printf("Variable Str now contains the string value %s\n", Str);

Value String

1234 "1234"

-1234 "-1234"

1234.00 "1234"

1234.050 "1234.05"

11234.56 "1234.56"

.005 "0.005"
125

Chapter 5. The Library Functions
DBL_Exit();

DBL_Str_2_Date()

Function Converts a string to a DATE value.

Category Conversion function

Syntax void DBL_Str_2_Date(DBL_DATE *Date, DBL_U8 *Str);

Date: variable in which to place the converted value.

Str: string containing to value to convert.

Remarks The Str string must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_U8 Str[50];

DBL_DATE cDate;

/* ... */

/* Place date as string in Str. Note that the format depends */

/* upon the Regional Setting selected for the operating system */

sprintf(Str,"07-06-96");

/* Convert Str to DATE value */

DBL_Str_2_Date(&cDate,Str);

/* ... */

DBL_Str_2_Time()

Function Converts a string to a TIME value.

Category Conversion function

Syntax void DBL_Str_2_Time(DBL_TIME *Time, DBL_U8 *Str);

Time: variable in which to place the converted value

Str: string containing the value to convert

Remarks The Str string must conform to the format that has been set in the Regional Settings in
the Control Panel. If the format is not correct, the function will raise an exception.

Example DBL_U8 Str[50];

DBL_TIME cTime;
126

5.2 Library Functions in Alphabetical Order
/* ... */

/* Place time as string in Str. Note that the format depends */

/* upon the Regional Setting selected for the operating system */

sprintf(Str,"17.05.57");

/* Convert Str to TIME value */

DBL_Str_2_Time(&cTime,Str);

/* ... */

DBL_TableName()

Function Retrieves the name of an open table.

Category Table function.

Syntax DBL_U8* DBL_TableName(DBL_HTABLE hTable);

hTable: Handle to a table

Remarks DBL_TableName returns the name of the table to which handle hTable is bound. The
handle was created and bound to the table when DBL_OpenTable was called.

This function cannot be used to change the table name. Table names can only be
changed in C/SIDE.

For more information about tables, see the Application Designer’s Guide.

Example DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

printf("Table number 15 is named %s\n", DBL_TableName(hTable));

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();
127

Chapter 5. The Library Functions
DBL_TableNo()

Function Retrieves the number of the table with a specified table name.

Category Table function.

Syntax DBL_S32 DBL_TableNo(DBL_U8* TableName);

TableName: Table name

Remarks This function is only needed by applications that do not support a table number. It is
used to convert a name into a number for use by the DBL_Open Table function.

If TableName does not exist, 0 is returned.

For more information about tables, see the Application Designer’s Guide.

Example DBL_S32 TableNo;

DBL_HTABLE hTable;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

/* Look up the number of TestTable */

TableNo = DBL_TableNo("TestTable");

if (TableNo != 0)

{

DBL_OpenTable(&hTable, TableNo);

/* ... */

DBL_CloseTable(hTable);

}

else

printf("Table does not exist\n");

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_Time_2_HMST()

Function Converts a TIME variable to hours, minutes, seconds, and thousandths of a second.

Category Conversion function.

Syntax void DBL_Time_2_HMST(DBL_S32* h, DBL_S32* m, DBL_S32* s, DBL_S32* t, DBL_TIME

Time);
128

5.2 Library Functions in Alphabetical Order
h: Variable to receive the value for hours

m: Variable to receive the value for minutes

s: Variable to receive the value for seconds

t: Variable to receive the value for thousandths of a second

Time: TIME variable to be converted

Remarks DBL_Time_2_HMST dismantles a TIME variable and creates values for hours,
minutes, seconds and thousandths of a second. Any of the four output variables (h, m,
s and t) can be set to NULL, if they are not needed.

If this function is called with Time=zero (undefined), an exception is raised. To prevent
an exception being raised, test the value of the Time variable before you call this
function.

Example DBL_TIME Time;

DBL_S32 h,m,s,t;

DBL_Init();

DBL_HMST_2_Time(&Time, 14, 23, 30, 1);

/* Variable Time now contains the time 14:23:30.1 */

DBL_Time_2_HMST(&h, &m, &s, &t, Time);

/* Variables h,m,s and t now contain 14, 23, 30 and 1 */

printf("h,m,s and t now contain values %d, %d, %d and %d\n",

h,m,s,t);

DBL_Exit();

DBL_Time_2_Str()

Function Converts a TIME value to a string.

Category Conversion function.

Syntax void DBL_Time_2_Str(DBL_U8 *Str, DBL_S16 StrSize, DBL_TIME Time);

Str: string in which to place the converted value

StrSize: size (in bytes) of Str

Time: variable containing the TIME value to convert

Remarks DBL_Time_2_Str converts the TIME value in Time to a string. StrSize is the size of the
destination string: the number of bytes to place in Str. It is your responsibility to ensure
that the converted value is not truncated.

Example DBL_HTABLE hTable;

DBL_HREC hRec;

DBL_U8 resStr[50];
129

Chapter 5. The Library Functions
DBL_TIME *pTime;

DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

DBL_OpenCompany("Test Company");

DBL_OpenTable(&hTable, 15);

hRec = DBL_AllocRec(hTable);

/* Retrieve a record: */

DBL_FindRec(hTable,hSrcRec,(DBL_U8*)"-")

/* Get pTime from field 30: */

pTime = (DBL_TIME*)DBL_GetFieldDataAddr(hTable,hRec,30);

/* Convert pTime to a string: */

DBL_Time_2_Str(resStr,sizeof(resStr),*pTime);

/* Print out the string: */

printf("Time as string: %s\n", resStr);

DBL_FreeRec(hRec);

DBL_CloseTable(hTable);

DBL_CloseCompany();

DBL_CloseDatabase();

DBL_Exit();

DBL_UseCodeUnitsPermissions

Function Allows you to use the permissions of a specific codeunit.

Category Security Function.

Syntax void DBL_UseCodeUnitsPermissions(DBL_S32 CodeUnitID);

CodeUnitID: the ID of the codeunit whose permissions you want to use.

Remarks In order to run this function your permissions in this database must include execute
permission for the codeunit whose permissions you want to use. The code unit you
point to must have the property CFRONTMayUsePermissions set to Yes.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* use the permissions for codeunit 55000 */

DBL_UseCodeUnitsPermissions(55000);

/* ... */

DBL_CloseDatabase();

DBL_Exit();
130

5.2 Library Functions in Alphabetical Order
DBL_UserCount()

Function Counts the user IDs in the database.

Category Database function.

Syntax DBL_S32 DBL_UserCount(void);

Remarks DBL_UserCount returns the number of users that are permitted to access the
database tables. Users are created and assigned user IDs in C/SIDE.

This function is used to determine whether the function DBL_Login is needed. If at
least one user is registered, all users are required to log in. The value returned by this
function does not reflect how many users are currently connected.

Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Test whether login is required */

if (DBL_UserCount() > 0)

{

/* Log into database */

DBL_Login("MyUserID", "MyPassWord");

printf("Current userid is %s\n", DBL_UserID());

}

/* ... */

DBL_CloseDatabase();

DBL_Exit();

DBL_UserID()

Function Retrieves the login name of the current user.

Category Database function.

Syntax DBL_U8* DBL_UserID(void);

Remarks DBL_UserID returns the User ID that was used to connect to the current database
from CFRONT and accepted by DBL_Login. The returned value is a pointer to a string
containing the current User ID. If no DBL_Login has been issued, the function returns
a pointer to an empty string.

User IDs can only be created, modified and deleted within C/SIDE.
131

Chapter 5. The Library Functions
Example DBL_Init();

DBL_OpenDatabase("test.fdb", 2000, 0);

/* Test whether login is required */

if (DBL_UserCount() > 0)

{

/* Log into database */

DBL_Login("MyUserID", "MyPassWord");

printf("Current userid is %s\n", DBL_UserID());

}

/* ... */

DBL_CloseDatabase();

DBL_Exit();

DBL_YMD_2_Date()

Function Converts year, month, day to a DATE variable.

Category Conversion function.

Syntax void DBL_YMD_2_DATE(DBL_DATE* Date, DBL_S32 y, DBL_S32 m, DBL_S32 d, DBL_BOOL

Closing);

Date: DATE variable into which the converted date will be

placed

y: Value for a year in the range 0001..9999

m: Value for a month in the range 1..12

d: Value for a day in the range 1..31

Closing: 1 if Date is designated a closing date, otherwise 0

Remarks DBL_YMD_2_Date constructs a DATE variable.

Example DBL_DATE Date;

DBL_S32 y,m,d;

DBL_BOOL c;

DBL_Init();

DBL_YMD_2_Date(&Date, 2000, 5, 17, 0);

/* Variable Date now contains the date May 17, 2000 */

DBL_Date_2_YMD(&y, &m, &d, &c, Date);

/* Variables y,m,d and c now contain 2000, 5, 17 and 0 */

printf("y,m,d and c now contain %d, %d, %d and %d\n",

y,m,d,c);

DBL_Exit();
132

Appendix A
C/FRONT Library Specifications

This appendix contains the specifications for the C/FRONT
library functions.

· C/FRONT Library Specifications

Appendix A. C/FRONT Library Specifications
A.1 C/FRONT LIBRARY SPECIFICATIONS

The following sections describe the specifications of the C/FRONT library functions.

Type and Constant Definitions

The library offers an expanded variety of alphanumeric, numeric, boolean and string
types, known collectively as the DBL_ types.

Field Types

Data fields in a record can use any of the following nine field types. The right hand
column shows the sizes of the different field types:

typedef unsigned char DBL_U8;

typedef unsigned short int DBL_U16;

typedef signed long int DBL_S16;

typedef unsigned long int DBL_U32;

typedef signed long int DBL_S32;

typedef DBL_U32 DBL_BOOL;

typedef DBL_U32 DBL_DATE;

typedef DBL_U32 DBL_TIME;

typedef DBL_O32 DBL_O32

typedef DBL_TABLE* DBL_HTABLE;

typedef struct { DBL_U8 Exp; DBL_U8 Mant[9]; DBL_U8 Slack[2] } DBL_BCD;

typedef double DBL_DOUBLE

typedef biginteger { DBL_U32 LowPart; DBL_S32 HighPart } DBL_S64

typedef DBL_S64 DBL_Duration

typedef DBL_S64 DBL_Datetime

typedef struct { DBL_U32 Data1; DBL_U16 Data2; DBL_U16 Data3;
DBL_U8 Data4[8] }

DBL_GUID

#define DBL_Type_O32 /* 4 bytes */

#define DBL_Type_BOOL /* 4 bytes */

#define DBL_Type_BCD /* 12 bytes */

#define DBL_Type_STR /* Max Field Len + 1 byte */

#define DBL_Type_DATE /* 4 bytes */

#define DBL_Type_TIME /* 4 bytes */

#define DBL_Type_ALPHA /* Max Field Len + 2 bytes */

#define DBL_Type_S32 /* 4 bytes */

#define DBL_Type_BLOB /* Max 2 GB*/
134

A.1 C/FRONT Library Specifications
New field types cannot be defined. The type of a field can be retrieved with the
function DBL_FieldType.

Declaration of Variables

Record field variables are declared as shown in the following table. The right hand
column shows how the variable is supposed to be represented in the database.

#define My_Max_Len 10

/* Note that it is the length of the specific field */

/* in the database. *

The names of the variables describe how the corresponding field types are
represented in the C/SIDE Table Designer.

Field Classes

Data fields in a record belong to one of the following three classes:

The class of a field can be retrieved with the function DBL_FieldClass.

#define DBL_Type_S64 /* 8 bytes */

#define DBL_Type_Duration /* 8 bytes */

#define DBL_Type_Datetime /* 2 x 4 bytes */

#define DBL_TYPE_GUID /* 16 bytes (4+2+2+8) */

DBL_O32 Option; /* DBL_Type_O32 */

DBL_BOOL Boolean; /* DBL_Type_BOOL */

DBL_BCD Decimal; /* DBL_Type_BCD */

DBL_U8 Text[My_Max_Len+1]; /* DBL_Type_STR */

DBL_Date Date; /* DBL_Type_DATE */

DBL_Time Time; /* DBL_Type_TIME */

DBL_U8 Code[My_Max_Len+2]; /* DBL_Type_ALPHA */

DBL_S32 Integer; /* DBL_Type_S32 */

DBL_BLOB BLOB; /* DBL_Type_BLOB */

DBL_S64 BigInteger /* DBL_Type_S64 */

DBL_Duration Duration /* DBL_Type_DUR */

DBL_Datetime DateTime /* DBL_Type_DATETIME */

DBL_GUID GUID /* DBL_Type_GUID */

#define DBL_Class_Normal 0

#define DBL_Class_FlowField 1

#define DBL_Class_FlowFilter 2
135

Appendix A. C/FRONT Library Specifications
Other C-Library Constant Definitions

See the cf.h file for definitions of all the constants.
136

Appendix B
The Alpha Type

This appendix contains a description of the Alpha data type
– an extended C string type.

Appendix B. The Alpha Type
B.1 ALPHA TYPE

An Alpha type is an extended C string (zero-terminated string). The contents of the
first byte differ, depending upon the contents of the string:

If the string contains only the numeric characters '0'..'9', the first byte contains the
length of the string.

If the string contains non-numeric characters, the first byte contains the hex value FF.

This extra byte is used to give the correct weight to the strings when comparing two
alpha type fields.

Ordinary strings
char a[] = "990";

char b[] = "1000";

When compared, a is greater than b, and is sorted as follows:

"1000"

"990"

Alpha strings
char a[] = "\3""990"; /* \3 is the length of 990 */

char b[] = "\4""1000"; /* \4 is the length of 1000 */

When compared, a is less than b, and is sorted as follows:

"\3""990"

"\4""1000"
138

	Table of Contents
	Introduction to C/FRONT
	1.1 Introduction to C/FRONT
	This Manual
	The Contents of C/FRONT
	Installation
	System Requirements
	Standby and Hibernation
	Multilanguage

	Review of Standard Operations
	2.1 The Standard Operations
	Determining which DLL to Use
	Initializing the Library
	Connecting to a Server and Opening a Database
	SQL Server Option
	Navision Database Server

	Opening a Company
	Opening a Table
	Using Filters
	Using Keys
	The Current Key

	Finding a Record
	Inserting a Record
	Modifying a Record
	Deleting a Record
	Editing a Field in a Record
	Handling Errors and Exceptions

	A Sample Application
	3.1 Building and Running the Sample Application
	The Sample Application
	Building the C/FRONT Sample Application
	Running the Sample Application on SQL Server
	Running the Sample Application
	Example

	Moving From the C-Toolkit to C/FRONT
	4.1 Overview
	4.2 New and Changed Functions
	New Functions
	Changed functions
	Removed Functions
	General Changes

	4.3 Changes to Constants

	The Library Functions
	5.1 Library Functions Grouped by Use
	5.2 Library Functions in Alphabetical Order
	DBL_AddKey()
	DBL_AddTableField()
	DBL_AllocRec()
	DBL_Allow()
	DBL_Alpha_2_Str()
	DBL_Ansi2OemBuff
	DBL_AssignField()
	DBL_AWT()
	DBL_BCD_2_Double()
	DBL_BCD_2_S32()
	DBL_BCD_2_Str()
	DBL_BCD_Abs()
	DBL_BCD_Add()
	DBL_BCD_Cmp()
	DBL_BCD_Div()
	DBL_BCD_IsNegative()
	DBL_BCD_IsPositive()
	DBL_BCD_IsZero()
	DBL_BCD_Make()
	DBL_BCD_Mul()
	DBL_BCD_Neg()
	DBL_BCD_Power()
	DBL_BCD_Round()
	DBL_BCD_RoundUnit()
	DBL_BCD_Sgn()
	DBL_BCD_Sub()
	DBL_BCD_Trunc()
	DBL_BWT()
	DBL_CalcFields()
	DBL_CalcSums()
	DBL_CheckLicenseFile()
	DBL_CloseCompany()
	DBL_CloseDatabase()
	DBL_CloseTable()
	DBL_CmpRec()
	DBL_CompanyName()
	DBL_ConnectServerandOpenDatabase()
	DBL_ConnectServer()
	DBL_CopyRec()
	DBL_CreateTable()
	DBL_CreateTableBegin()
	DBL_CreateTableEnd()
	DBL_CryptPassword()
	DBL_Date_2_Str()
	DBL_Date_2_YMD()
	DBL_DeleteRec()
	DBL_DeleteRecs()
	DBL_DeleteTable()
	DBL_DisconnectServer()
	DBL_Double_2_BCD()
	DBL_EWT()
	DBL_Exit()
	DBL_Field_2_Str()
	DBL_FieldClass()
	DBL_FieldCount()
	DBL_FieldDataOffset()
	DBL_FieldLen()
	DBL_FieldName()
	DBL_FieldNo()
	DBL_FieldOptionStr()
	DBL_FieldSize()
	DBL_FieldType()
	DBL_FindRec()
	DBL_FreeRec()
	DBL_GetCurrentKey()
	DBL_GetDatabaseName()
	DBL_GetFieldData()
	DBL_GetFieldDataAddr()
	DBL_GetFieldDataSize()
	DBL_GetFilter()
	DBL_GetLastErrorCode
	DBL_GetRange()
	DBL_GetVersion()
	DBL_HMST_2_Time()
	DBL_Init()
	DBL_InitRec()
	DBL_InsertRec()
	DBL_KeyCount()
	DBL_KeySumFields()
	DBL_LoadLicenseFile()
	DBL_LockTable()
	DBL_Login()
	DBL_ModifyRec()
	DBL_NextCompany()
	DBL_NextField()
	DBL_NextKey()
	DBL_NextRec()
	DBL_NextTable()
	DBL_Oem2AnsiBuff
	DBL_OpenCompany()
	DBL_OpenDatabase()
	DBL_OpenTable()
	DBL_OpenTemporaryTable()
	DBL_RecCount()
	DBL_ReleaseAllObjects()
	DBL_SelectLatestVersion()
	DBL_S32_2_BCD()
	DBL_SetCurrentKey()
	DBL_SetExceptionHandler()
	DBL_SetFilter()
	DBL_SetMessageShowHandler
	DBL_SetNavisionPath()
	DBL_SetRange()
	DBL_Str_2_Alpha()
	DBL_Str_2_BCD()
	DBL_Str_2_Date()
	DBL_Str_2_Time()
	DBL_TableName()
	DBL_TableNo()
	DBL_Time_2_HMST()
	DBL_Time_2_Str()
	DBL_UseCodeUnitsPermissions
	DBL_UserCount()
	DBL_UserID()
	DBL_YMD_2_Date()

	C/FRONT Library Specifications
	A.1 C/FRONT Library Specifications
	Type and Constant Definitions
	Field Types
	Declaration of Variables

	The Alpha Type
	B.1 Alpha Type

