
JAVASCRIPT ARCHITECTURE:
TURNING PAIN INTO GAIN

VJEKOSLAV BABIĆ – CLOUD READY SOFTWARE



Vjekoslav Babić
consultant, trainer, blogger, author

Twitter: @vjekob
Mibuso: Vjeko
Blog: vjeko.com

Author of (too) many How Do I… videos for MSDN and PartnerSource for NAV 2013, NAV 2013 R2, 
and NAV 2015

Co-author of “Implementing Microsoft Dynamics NAV 2009” book

About me





404400



JavaScriptC/AL



Why Architecture?



Why Architecture?















For all my demos I use the control add-in template you can find here:

http://vjeko.com/vstemplate

Visual Studio



Part 1

Optimizing Framework



Control Add-ins:
• Get heavy and can cause performance issues
• Rigid due to C# interface and C/AL structure
• Require redeployment after any change

Problem statement



Demo 1

Simple but fat control add-in



1. Replace specific methods and events with generic ones
2. Move code from page to codeunit
3. Enable event-based communication
4. Move scripts, styles, and images from control add-in to setup

Step 1: Turning the control into a framework 



Demo 2

Generic methods and events



Business logic is blended with UI logic

Infrastructure logic (JSON management) is 
blended with both UI logic and business logic

Events could help!

Problem statement



Dynamic-Static

• Subscription is automatic
• No possibility of unsubscribing
• Every event is called in a fresh new 

instance of the subscriber codeunit

Manual

• Subscription is manual
• Subscriber can be unsubscribed
• All events are called in the same 

instance of the subscriber codeunit

C/AL statements:

BINDSUBSCRIPTION

UNBINDSUBSCRIPTION

Two flavors of event subscribers



Demo 3

Decoupling through events 



Depending on how page is accessed and 
navigated away, the OnClosePage event may 
not fire

Results:
• Multiplication of subscriber instances
• Subscribers remain subscribed
• No possibility to unsubscribe after the user 

navigates away from the page

Problem statement



Demo 4

Solving the page close problem



Loading of scripts is not optimal.

Reasons:
• Each control add-in lives in a separate IFRAME
• Scripts may be downloaded multiple times
• Especially scripts already loaded by NAV

Goals:
• Reduce script loading multiplication
• Optimize dependencies (scripts, styles, images)

Problem statement



Demo 5

Optimizing dependencies



This solution works only in the Web clients.

Dependencies are managed as hardcoded text.

Reason:
• Windows client has no “top” window to pull 

from.

Goal:
• Create a setup for storing dependency files.
• Create a framework for loading dependencies.

Problem statement



RequireJS is a module loader for JavaScript that can retrieve and load JavaScript modules 
on demand.

Modules are loaded from:
• Microsoft Dynamics NAV Web Client top window
• Back-end C/AL request/response exchange
• URL

Benefits:
• Control Add-in remains as lean as possible
• Scripts are loaded in the most efficient way possible
• Fallback mechanism ensures that scripts are always loaded
• Changes possible without redeploying add-in or modifying page code:

• Upgrading existing functionality
• Extending existing functionality with new features

RequireAL – a RequireJS for C/AL



Demo 6

Control Add-in Setup and RequireAL



Part 1

Optimizing Back End



Code is still tightly bound:
• Logic is removed from pages as much as 

possible; but
• UI logic, infrastructure logic and business 

logic are still tightly bound in a single 
codeunit

Problem statement

Solution:
• Applying design patterns



Polymorphism



Sad Truth About Polymorphism in C/AL

”There is no such thing as polymorphism in C/AL.”
(some very astute C/AL developer)



Polymorphic patterns

Builder

Prototype

Bridge
Composite

Facade

Proxy Twin

Command

Mediator

Servant

Factory

Strategy

Service Locator

Template Method

Visitor

Dependency InjectionProvider

Delegation

Repository
Plug-in

Producer-Consumer

Transfer Object



Polymorphic design patterns (most common)

Factory pattern
Service locator 

pattern
Strategy 
pattern

Dependency 
injection

Template 
method 
pattern

Inversion of Control



Inversion of Control - Problem

Consumer Object
(uses a dependency)

Dependency 1
tightly-bound

(compile time)

This is obviously a bad practice!

Dependency 2

What about that one?



Inversion of Control - Solution

Consumer Object
(needs a dependency)

Dependency Resolver
(retrieves dependency)

Dependency 1

Dependency 2

Dependency n...

loosely bound

(run time)

Problem solved!



“Handled” Pattern

Consumer Object
(needs a dependency)

“Handled” Facade
(publishes event)
(manages flow)

Subscriber 1
(subscribes to event)

Subscriber 2
(subscribes to event)

Subscriber n...
(subscribes to event)

invokes method



“Handled” Pattern Flow

SubscriberPublisher

Check if event is already handled

Check if this codeunit is in charge of the 
event

Execute logic

Set “handled” parameter

Find subscriber codeunit in charge of the 
event

Call the event

Make sure that event was handled



A Closer Look: “Handled” Pattern



“Handled” Pitfalls

Subscriber 
identification

Multiple 
active 

subscribers

Cross-call 
state 

preservation

Infrastructure 
separation

Infrastructure 
fragility

Obviously, we need to reach for the manual subscribers.



“Handled” Pitfalls after Manual Subscriptions

Subscriber 
identification

Multiple 
active 

subscribers

Cross-call 
state 

preservation

Infrastructure 
separation

Infrastructure 
fragility



Another event pattern can help…

Discovery Event
https://community.dynamics.com/nav/w/designpatterns/271.discovery-event



Discovery Event Pattern

Discoverer
(publishes discovery event)

Discovered modules Module 1
(subscribes to discovery event)

Module 2
(subscribes to discovery event)

Module n...
(subscribes to discovery event)



Demo 7

Discovery Event Pattern



“Handled” Pitfalls After Discovery

Subscriber 
identification

Multiple 
active 

subscribers

Cross-call 
state 

preservation

Infrastructure 
separation

Infrastructure 
fragility



Solution: Module Binder Pattern

Combines:
•Discovery Event Pattern
•“Handled” Pattern

Achieves:
•Logic and infrastructure separation
•Infrastructure stability



A Closer Look: Module Binder Pattern

Consumer Object
(calls interface)

Interface / Facade
(publishes business logic event)

Discovered 
interfaces

Binder Codeunit
(single instance)
(static binding)

Logic Codeunit
(manual binding)

Discovered 
modules

Interface/Module Setup

Module Manager

b
in

d
s

su
b

sc
ri
p

ti
o

n
s

invokes





Infrastructure
(static, does not change when new modules are provided)

A Closer Look: Module Binder Pattern

Consumer Object
(calls interface)

Interface / Facade
(publishes business logic event)

Module

b
in

d
s

su
b

sc
ri
p

ti
o

n
s

invokes

discovery

event

d
is

co
ve

ry

e
ve

n
t

business logic

event



Interface

Facade for the business logic
Publishes business logic event

Interface / Facade
(publishes business logic event)



Module

A two-codeunit block
Separates business logic from infrastructure
Retains state



Logic Codeunit
(manual binding)

Module: Business Logic Codeunit

Subscribes to interface event
Executes specific business logic



Binder Codeunit
(single instance)
(static binding)

Module: Binder

Binds/unbinds business logic codeunit
Discovers module for a specific interface



Module Manager

Module Manager

Handles discovery of interfaces and 
modules
Handles binding/unbinding of module 
binders



Challenges

Call 
multiplication

Explicit 
subscriptions

Rogue 
subscribers

Single 
subscribers



Solution

Use Event Subscription virtual table to:

•Verify that there
are only manual
subscribers

•Verify that there
are active
subscribers
before calling
the method



Demo 8

Module Binder Pattern



Specific Control Add-in functionality becomes a specific module:
• Control Add-in interface defines general functionality of (all) control add-ins
• Individual module binder handles infrastructure:

• Binds an individual module to the interface
• Responds to custom JavaScript events that are too generic for the interface itself
• Invokes module

• Individual module:
• Responds to specific Control Add-in events (e.g. requesting UI customizations)
• Performs specific Control Add-in behavior

Examples:
• Chess
• Twitter

Combining Module Binder with Control Add-ins



Reference to JavaScript Control Add-in may 
proliferate across the application.

Reason:
• Each object that requires JavaScript will have 

to be made aware of it explicitly

Issues:
• A lot of code duplication
• Bad maintainability

Goal:
• Enable event-based JavaScript discovery

Problem statement (and a crazy solution for the end)



Demo 9

Control Add-in Module Binder



THANK YOU!


