
mibuso.com

27 & 28 Sept 2012, Antwerp (Belgium)

mibuso.com

Jesper Falkebo, Lars Hammer, Bardur Knudsen

mibuso.com

A main theme for NAV 2013 was to improve
performance significantly. To reach this goal we had
to rewrite the data stack completely! Join us in this
session to hear about how you can adopt the changes
and achieve even better performance. We will go
through new extensions to the record API, how/when
to use the Query object.

C/AL Coding for Performance

mibuso.com

1. Lars: Architectural overview

2. Bardur: C/AL Coding for performance

3. Jesper: Data Stack, improvements

mibuso.com

• Server Deployment

• Classic Runtime Discontinued

• Server Features, Optimizations and Architecture

• Query – the new Application Object Type

• C/AL Programming Constructs

Relevant High Level NAV 2013 Changes

mibuso.com

NAV 5.0 ‘Classic’ 2-tier

Classic
Client 1

SQL
Server

NAV

Classic
Client 2

NAS

mibuso.com

NAV 2009 3-tier (mixed mode)

Nav
Server

Session 1

Session 2

RTC
Client 1

SQL
Server

User1User1

NAV

RTC
Client 2Classic

Client

NAS

User2User2

Active Directory, Service Principal Names DelegationActive Directory, Service Principal Names Delegation

Active
Directory

User 1

User 2

User 1

User 2

Domain (typically)

mibuso.com

NAV 2013 – back to Simple J

Nav
Servers

Windows
Client –

Windows
User

SQL
Server

Single
account
Single

account

NAV

Development
Environment

NAS

(Many other
authentication options…)

Session 1

Session 2

Web Client
- LiveID

mibuso.com

• Only SQL Server

• No Classic Reports

• No Forms

• No C/AL execution in the Development
Environment

mibuso.com

• SQL Server only

• Managed Data Access
• Optimized for SQL server

• Improved caching

• Connection pooling

• Query Application Object

• Background Sessions

mibuso.com

NAV Server
64-bit NAV Service Process

NS

NCL

The Navision Class Library that
the application can utilize

NCLCSRT.DLL

Contains unmanaged components

SOAP
Web Services

DATA ACCESS LAYER

Managed data access layer

APPLICATION

The application is dynamically
compiled from C/AL to IL

.NET

Load and
interact with
any user or

system
assemblies

NS

Handles client
requests

NAS

oData
Web Services

Management

Debug

SharePoint

IIS

Managed Code

Unmanaged Code

Managed Code

Unmanaged Code

Normal
Session

Debug
Session

Managed Code

Unmanaged Code

Managed Code

Unmanaged Code

Query

mibuso.com

• Read-only

• Joining Tables

• Grouping

• Totaling

• Single SELECT

• Ambition: The way of reading data in NAV

mibuso.com

• Query
• OPEN, READ, CLOSE

• Background Sessions, NAS replacement
• STARTSESSION, STOPSESSION

mibuso.com

mibuso.com

// filters are cleared
// in the real code

~12 sec.

~5 sec.

~1 sec.

mibuso.com

Example:

We want to summarize some Value Entries
(5802) by ”Item No.” and ”Document Type”:

1. We create a (temp) table to hold values
while we iterate through the entries.

2. Then we write our code...

mibuso.com

// function 1

WITH ValueEntry DO BEGIN

SETFILTER("Item No.",'7*');

IF FINDSET THEN

REPEAT

VEBuffer.AddVE("Item No.","Document Type",…);

UNTIL NEXT = 0;

END;

// function 2

WITH ValueEntry DO BEGIN

SETCURRENTKEY("Item No.","Posting Date","Item Ledger Entry Type”,…);

SETFILTER("Item No.",'7*');

IF FINDSET THEN

REPEAT

VEBuffer.AddVE("Item No.","Document Type",…);

UNTIL NEXT = 0;

END;

~74s

~412s

Item ‘7*’ -> ~0.86 mill. entries out of ~6 mill.

~212s

~1015s

Item ‘1*’ -> ~2.4 mill. entries out of ~6 mill.

mibuso.com

WITH ValueEntryQry DO BEGIN

SETFILTER(Item_No,'7*');

IF OPEN THEN

WHILE READ DO

VEBuffer.AddVE(Item_No,Document_Type,…

~53s~0.9 mill. entries out of ~6 mill.

~56s~2.4 mill. entries out of ~6 mill.

mibuso.com

~350ms

~12ms

mibuso.com

Description
Average

Duration (s)

Query on Table 32, first 6 fields 61

Query on Table 32, first 9 fields 64

Query on Table 32, first 12 fields 86

Record Table 32, all 72 fields 222

A simple iteration over the Item Ledger Entry table (~6 mill. records) with
three queries with different number of fields and one full-record loop:

mibuso.com

• Historically we have had a lot CurrForm.UPDATEs

• Most of them are not necessary in Pages.

mibuso.com

ItemLedgEntry.FINDFIRST;

ValueEntry.FINDFIRST;

FOR i := 1 TO 1000000 DO

MyFunc(ItemLedgEntry,ValueEntry);

1) MyFunc(ItemLedgEntry;ValueEntry);

2) MyFunc(VAR ItemLedgEntry;VAR ValueEntry);

5.8s
0.3s

mibuso.com

[{Ok} :=] STARTSESSION(

SessionId, CodeunitId [, Company] [, Record])

• + Great for off-loading user sessions

• - Performance cost of an extra session (a Windows
handle, login time, memory etc.); approx. 10ms +
~20kB to start one session.

• Use JobQueue to process async. and to serialize
execution.

mibuso.com

• Towards the end of cod80/90, we have this code:
• UpdateAnalysisView.UpdateAll(0,TRUE);

• UpdateItemAnalysisView.UpdateAll(0,TRUE);

• We did actually implement the UpdateAll to launch
background sessions to update Analysis Views, but
changed it back, because the overhead was bigger
than the gain in a fully loaded system.

mibuso.com

• REP84 - Update Analysis Views

• Start many sessions...

mibuso.com

• SETFILTER/-RANGE instead of IF …
• Loops (~NEXT) are

• Use CALCSUM instead of loops

• Only use SETCURRENTKEY if you need sorting

• Use Queries for large data sets

• Clean out those left over CurrPage.UPDATEs

mibuso.com

mibuso.com

Utilizing a background session to get UI responsiveness
=> percieved performance

mibuso.com

• Completely rewritten. NDBCS.DLL is no longer used by
the server

• Based on ADO
• ADO is maintained by the SQL team and supports new SQL

Server functionality

• Better performing, more scalable
• Vastly reduced managed/unmanaged transitions
• Internal measurements show better performance than classic

client and use far less memory

mibuso.com

• Use a single powerful account to connect with SQL
Server
• No need for setting up delegation

• Reduce memory consumption (Multiple users can
share the same connection)

• Every user-session has a preferred connection

mibuso.com

• Data only read by the NST once
• In NAV2009 caching was done for each user

• Affects all record API calls for retrieving data

• Query result-sets not cached in NAV 2013

• Cross NST cache synchronization
• Caches up-to-date within one minute

mibuso.com

• Permission evaluation takes place in the NST only.

• No need for Synchronize All Logins

• No need for the XP_NDO extended stored
procedure

mibuso.com

• Now using Multiple Active Result Set (MARS) instead
of cursors

• Impact:
• Less SQL Server roundtrips

• SQL Server has increased freedom to choose the best
access plan

• FIND and FINDSET are equally fast

• Supporting dynamic result-sets is more expensive
(Consider using query)

mibuso.com

SalesLine.SETCURRENTKEY(SalesLine.DocumentNo, SalesLine.LineNo);
SalesLine.SETRANGE(SalesLine.DocumentNo, 30);
SalesLine.LockTable;
IF (SalesLine.FindSet('-')) THEN ;

mibuso.com

• Changed isolation level from SERIALIZABLE to
REPEATABLE READ
• Prevents blocking by examply when posting sales orders

SalesLine.LockTable;
SalesLine.SetFilter(“Document No.”, 10);
SalesLine.SetRange(“Line No.”, ‘1000..2000’);
IF (SalesLine.FINDSET) THEN
REPEAT

UNTIL (SalesLine.NEXT()=0);With SERIALIZABLE all lines +
the first line on the next order

are locked. Other users are
prevented from inserting new

lines inbetween

With REPEATABLE READ only
lines that exist are locked

mibuso.com

• Unicode support

• Only support for latest Windows Collations
• Server leverages this knowledge and optimize SQL

statements

• Conversion takes place during database conversion
in one step

mibuso.com

• Data from different codepages can be stored in the
database with no loss

• Still only one sorting

mibuso.com

• Temporary tables and normal tables sorted the
same way

• Retrieval of marked records respects the chosen
sorting
• Retrieves marked records with one statement if possible

• @ operator use SQL COLLATE keyword

mibuso.com

• Can use SIFT even for Count and Average formulas

• SIFT indices are no longer a requirement for
CalcSum / CalcField calls

• Use Min/Max SQL functions instead of multiple SQL
statements

• No longer traverse data when Validated security
filter mode is used

mibuso.com

• New command to calculate flow-fields automatically
for find calls
• Translated into a single SQL-Statement (Internally named

”Smart-SQL”)

• Used when filters are applied on flow-fields to only
retrieve records that pass the filter from SQL Server

• Used behind the scenes by pages and reports

mibuso.com

customers.SETAUTOCALCFIELDS("Sales (LCY)“, "Balance (LCY)");

IF (customers.FINDSET) THEN
REPEAT

IF (customers."Sales (LCY)" <> 0) THEN
BEGIN

IF (((customers."Balance (LCY)" / customers."Sales (LCY)") * 100) > 40) THEN
BEGIN

customers.LOCKTABLE;
customers.Blocked := customers.Blocked::Invoice;
customers.MODIFY;

END;
END;

UNTIL (customers.NEXT()=0);

IF (customers.FINDSET) THEN
BEGIN

REPEAT
customers.calcFields("Sales (LCY)");
IF (customers."Sales (LCY)" <> 0) THEN
BEGIN

customers.calcFields("Balance (LCY)");
IF (((customers."Balance (LCY)" / customers."Sales (LCY)") * 100) > 40) THEN
BEGIN

customers.LOCKTABLE;
customers.Blocked := customers.Blocked::Invoice;
customers.MODIFY;

END;
END;

UNTIL (customers.NEXT()=0);
END;

mibuso.com

• Query definitions always translated into a single
SQL statement

• Underlying engine for ”Smart SQL”
• Utilizing features like sub-queries, const column values

and apply joins which are not yet available through the
designer

mibuso.com

• Utilizes SIFT
• The query engine will use a SIFT index to cover retrieval of

data for a data-item whenever possible

• Flow-Field support
• Flow-Fields can be used in a query making it easier to keep

business logic consistent.*

• Flow-Filter support
• Flow-Filters can be used in join conditions to ensure

consistency among joined data-items and flow-fields

mibuso.com

• Query results are not cached!

• Query is not guaranteed to deliver a dynamic
result-set
• On the other hand it is not guaranteed that it won’t deliver

a dynamic result-set either

• Ordering of tables in query matters!
• Nested Loop and Force Ordering hints are applied

mibuso.com

• Buffered inserts used more often:
• Tables containing RecordId’s and/or SqlVariant columns

now supported

IF (JnlLine.Find('-')) THEN
BEGIN

GLEntry.LockTable;
IF (NOT GLEntry.FindLast) THEN

GLEntry."Entry No.":=0;
REPEAT

GLEntry."Entry No.":= GLEntry."Entry No.“ +1;
…
GLEntry.Insert;

UNTIL (JnlLine.Find('>') = 0)
END;
Commit;

The records are sent to the
database here

mibuso.com

• Enabled through the debugger UI

mibuso.com

mibuso.com

mibuso.com

• Follow up questions & comments?
• Post them in the NAV TechDays 2012 Sessions forum on

mibuso.com

• Will be reviewed by presenters from R&D

• Attend online meetings (organized by MDCC)

• Recorded sessions will be made available for
download on mibuso.com

mibuso.com

mibuso.com

See you back
in 30 minutes

