
Andrzej Zwierzchowski
The NAV People

About me

• Development Standards Lead at The Nav People

• C#, C/AL, AL and (sometimes) JS developer

• Author of “AZ AL Dev Tools” extension

• Twitter: https://twitter.com/anzwdev

• Blog: https://anzwdev.wordpress.com/

https://twitter.com/anzwdev
https://anzwdev.wordpress.com/

Session subject

Improve the quality and readability of your

code using tools from Microsoft and the BC

Community

Quality and readability

• Source of information for other developers

• Reading to writing ratio is usually greater than 10:1

• We are part of a team

• Anybody should be able to fix or extend our code

• Bad code slows us down

• Source control

• Development guidelines and patterns

https://alguidelines.dev

Community run and Microsoft endorsed.

• Code Analyzers
• Microsoft
• BusinessCentral.LinterCop by Stefan Maron

• VS Code Extensions
• Snippets
• Commands
• Code Actions
• Additional information (VS Code panels)

What can help us

https://alguidelines.dev/

Setup

• User settings for VS Code

• Workspace settings for the solution

• Keep workspace settings in the source control
.vscode\settings.json
Don’t add it to the .gitignore file

Magic numbers

• Values with unexplained meaning

• It breaks one of the oldest rules of programming (Robert C Martin – “Clean Code”)

• Use enums

procedure ProcessDocument(ActionType: Integer; var SalesHeader: Record "Sales Header")
begin

case ActionType of
1:

SendEmail(SalesHeader);
2:

PostDocument(SalesHeader);
3:

PrintDocument(SalesHeader);
end;

end;

Hardcoded Object Ids

• Do not hardcode object ID

• Assign Id and forget it

• Use system enum types (DATABASE::name, REPORT::name, ...)

• Detect using BusinessCentral.LinterCop (Stefan Maron)

• Fix with “Convert Object Ids to Names” (AZ AL Dev Tools)

• Reserve IDs

• Your own solution

• AL Object ID Ninja (Vjeko)

Hardcoded Object Ids

• Do not keep object IDs inside file names

• Use Waldo's CRS AL Language Extension

“CRS: Configure Best-practice File Naming” command

"CRS.FileNamePattern": "<ObjectNameShort>.<ObjectTypeShortPascalCase>.al",

"CRS.FileNamePatternExtensions": "<ObjectNameShort>.<ObjectTypeShortPascalCase>.al",

"CRS.FileNamePatternPageCustomizations": "<ObjectNameShort>.<ObjectTypeShortPascalCase>.al"

Demo
Object IDs

Procedures

• Should be small

• Should do one thing

• Robert C Martin – One thing means that you cannot extract another procedure

• Use “Extract Procedure” from “AL Code Actions”

• Name should explain functionality

• Rename of you have a better name (F2 in VS Code)

Demo
Extract Procedure

Procedures –A problem

Hyrum's Law

With a sufficient number of users of an API,

it does not matter what you promise in the contract

all observable behaviours of your system

will be depended on by somebody.

https://www.hyrumslaw.com/

It makes refactoring harder

https://xkcd.com/1172/

https://www.hyrumslaw.com/
https://xkcd.com/1172/

Procedures – Solution

Keep implementation private

• Use local procedures

• Façade pattern - https://alguidelines.dev/docs/patterns/facade-pattern/

• Consider using interfaces

•“Interface Wizard” and “Create Interface” code action from “AZ AL Dev Tools” can help

• Design your event publishers, don’t create them for every procedure

https://alguidelines.dev/docs/patterns/facade-pattern/

Demo
Create interface

Avoid duplication

• Move duplicated code to a procedure

• Group procedures in codeunits if they are related

• Use "Find Duplicate AL Code" from "AZ AL Dev Tools"

Demo
Duplicate code

Variable names

• Names should reveal intention

• Avoid names that look similar

• Rename if you have a better name (VS Code - F2)

• Detect problems with “CodeCop” Code Analyzer

• Use "Add variable" code actions (AL Navigator)

• Snippets from AL Variable Helper

• Code completion (AZ AL Dev Tools)

Demo
Create variables

Detect variable names issues

Comments

• “My experience suggests that other human beings don't read comments and

compilers don't read comments, so who you writing them for.”

Kevlin Henney - Seven Ineffective Coding Habits of Many Programmers

https://www.youtube.com/watch?v=ZsHMHukIlJY

• “A common fallacy is to assume authors of incomprehensible code will

somehow be able to express themselves lucidly and clearly in comments.”

https://twitter.com/KevlinHenney/status/381021802941906944

https://www.youtube.com/watch?v=ZsHMHukIlJY
https://twitter.com/KevlinHenney/status/381021802941906944

Comments

• Code should explain itself

• Avoid noisy code

• You have source control for "metadata" or old code

• Comments should add value

// Find item price
procedure FindItemPrice(ItemNo: Code[20]): Decimal

Comments

• XML Comments

Additional help if you are creating libraries

“AL Xml Documentation” extension by “365 Business Development”

• TO-DO Comments

Todo Tree VS Code Extension

• Mandatory comment next to COMMIT

BusinessCentral.LinterCop (Stefan Maron)

Demo
Comments

Formatting

• Our code is a document for other developers

• It could be hart to read

• Too much noise

• Bad formatting

• Random order of methods

Formatting

• Variables, procedure or properties sorting

• Does it help you?

• Think about regions

• Use CodeCop for variable sorting issues

• Use AZ AL Dev Tools commands or OnSave actions

• Clean it with “AZ AL Dev Tools” commands

• Remove empty lines or sections

• Remove empty triggers and event subscribers

• Fix identifiers and keywords case

Demo
Sorting

Removing empty elements

Code Analyzers

• From Microsoft

• From Community - BusinessCentral.LinterCop by Stefan Maron

https://github.com/StefanMaron/BusinessCentral.LinterCop

• Create your own

https://anzwdev.wordpress.com/2019/11/09/custom-al-code-analyzers/

• Don't use them if you don't want to fix warnings

• "Show Code Analyzers Rules” command from “AZ AL Dev Tools“

https://github.com/StefanMaron/BusinessCentral.LinterCop
https://anzwdev.wordpress.com/2019/11/09/custom-al-code-analyzers/

Change how rules are reported

• suppressWarnings property in app.json
There is no “suppressWarningReasons”, don’t use it

• Ruleset files
Visual editor in “AZ AL Dev Tools”

• #pragma warning disable/restore in code
• “Surround with Pragma” Code Action from “AL Toolbox”

• “AZ AL Dev Tools” improvements
• “Show warning directives” command

• Hover and “Find all references” on rule id

• Avoid overriding safeties
AL0432 - "{0} '{1}' is marked for removal. {2}“

Demo
Code Analyzers

Transforming code

• Code actions

• Commands (AZ AL Dev Tools)

• Code clean-up (AZ AL Dev Tools)

Demo
Code Cleanup

Extensions used during this session

• AL CodeActions by David Feldhoff

• AL Navigator by Waldemar Brakowski

• AL Object Ninja by Vjeko

• AL Toolbox by Bart Permentier

• AL Variable Helper by Rasmus Aaen

• AL Xml Documentation by 365 Business Development

• AZ AL Dev Tools by Andrzej Zwierzchowski

• BusinessCentral.LinterCop by Stefan Maron

• Todo Tree by Gruntfuggly

• Waldo's CRS AL Language Extension by Waldo

