

Builders often

live in unfinished
houses

Chefs rarely cook

extravagant meals at home

recognize

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiQ1pfKnrDPAhURw2MKHYXYBMMQjRwIBw&url=https://www.pinterest.com/rmtome/programming-stuff/&bvm=bv.133700528,d.amc&psig=AFQjCNEtALA-gf0OaZPJteGffoDJ8AiK6w&ust=1475089237628816
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwilpoSpnrDPAhUURmMKHXmSArQQjRwIBw&url=https://www.pinterest.com/rmtome/programming-stuff/&bvm=bv.133700528,d.amc&psig=AFQjCNEtALA-gf0OaZPJteGffoDJ8AiK6w&ust=1475089237628816
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=&url=http://geekandpoke.typepad.com/geekandpoke/twitter/page/2/&bvm=bv.133700528,d.amc&psig=AFQjCNEtALA-gf0OaZPJteGffoDJ8AiK6w&ust=1475089237628816

Developers develop bad habits
because…

Old habits die hard…

GlobalTriggerManagement

This is bad

This is ridiculous

• Object IDs in file names

• Compulsive object ranges

Numerology has many faces

Range Functional Area

50000..50099 General setup and functionality

50100..50199 Sales customizations

50200..50299 Purchases customizations

50300..50499 Finances and G/L customizations

• Order Fields

Numerology has many faces

What used to be good, is not necessarily
still good

Modification comments

YELLING AT COMPILER

No extensibility

Creating keys for sorting

IT COMPILES

SHIP IT!

• Can somebody else read it?

• Can somebody else maintain it?

• Does it follow “the guidelines”?

• Does it conflict with anything else in the system?

• Do we want these dependencies?

• Is it upgradable?

• ..

What is good enough?

• New releases in “waves” - every month an update

• There’s a lot that can go wrong ..

• This happened to us after the latest update

AppSource comes with Maintenance

Data changed in the CRONUS database

Obsoletion / Deprecation
• Tables
• Procedures
• Entire functional modules 😱

Options to enums

Implicit/Explicit Withs

...

There’s a lot that can go wrong

Code Review

CodeCops

It’s a good practice to comply with as many cops as at all possible.

CodeCops

BCLinterCop

https://marketplace.visualstudio.com/items?itemName=StefanMaron.businesscentral-lintercop

• Always build against current

• Schedule nightly builds
• Against NextMinor
• Against NextMajor

• FAIL the build when you don’t comply
with the codecops

• WARN for any Next-version

Implement CI/CD

Probably – you’ll have to manage a set of apps:

- The entire dependency flow
- Deploy dependencies of your app
- Deploy the ISV app
- Build/ Deploy the apps that are dependent from your apps

- Deploy Swagger descriptions of your custom APIs

- Deploy azure functions

- Deploy WebApps

- …

Deployment is not just about your app..

SaaS

Automation API

OnPrem

Automation API

Blog: ALOps.ExternalDeployer

Automated deployment

https://www.waldo.be/2020/06/15/deploying-from-devops-the-right-way-enabling-external-deployment-in-onprem-business-central-environments/
https://devops.ifacto.be/tfs/iFacto%20Customers/Arseus%20Medical/_build/results?buildId=23870&view=results

- Tihomir!
- Huh?

- Do you like the machine?
- Uh-huh!

- You know how to work with it?
- Uh-huh!

- Come on, show us!- Bravo!

• … save a lot of time.

• … help consistency.

• … allow you to focus on the task at hand.

• … can be per project!

Snippets…

• Seasoned C/AL developers took pride into how fast they can keyboard

• Visual Studio Code allows so much more!

Keyboard Shortcuts…

Master the shortcuts

• User settings

• Workspace settings

• Folder settings

Tree layers of settings

• User settings
%appdata%\code\user\settings.json

All my projects on this machine

• Workspace settings
workspace-file.code-workspace

All my projects in this (multi-root) workspace

• Folder settings
.vscode\settings.json

All my projects on this machine

Tree layers of settings

• al.codeAnalyzers

• al.enableCodeAnalysis

• editor.formatOnSave

• Specific extensions settings (AL Object ID Ninja, CRS.*, and similar)

• Settings that do not apply to the app at hand DO NOT BELONG in
.vscode\settings.json
(especially user-preference kinds of settings, like themes, icons, etc.)

Which settings would you want to enforce

• Extensions are there to make life easier

• So many good AL extensions out there – take advantage of them!

Extensions

App With
only Table
Extensions

Library

AppA

AppB

AppC

AppD

Table extensions as a design pattern

Table extensions as a design pattern

Architectural shortcut to avoid performance problems

Huge interdependency between all apps

Unnecessary fields - confusion

Possible unintentional usages of fields in wrong apps

Causes complexity:

apps have access to all fields, but not all business logic

App With
only Table
Extensions

Library

AppA

AppB

AppC

AppD

Partial Records

It’s easier on the short term, but harder to maintain on long term

Generally conceived as “Lazy Architecture”

Not a walk in the park:

- Hard to read

- Hard to maintain

- Slow to compile

- Slow for CodeCops

- ...

Monoliths

Modular Software Design

- Easier to split into multiple teams

- Easier to understand

- Easier to maintain

- Easier to extend

- Easier to test/debug

- Easier to document

- Easier to replace

- …

Embrace Dependencies

Only create dependencies when

- You really need them

- They make sense

- They don’t break the independency of an app

DevOps can help:

- don’t use an automatic dependency resolver

- But do use automatic dependency deployer

Manage Dependencies

• Differentiate user experience by hiding irrelevant
• Fields
• Actions
• ..

• You should:
• Extend ApplicationAreas with your own (if it makes sense in your

solution)
• Use the existing out-of-the-box ApplicationAreas

ApplicationArea actually has a purpose

NOT because Tooltips are useless

But we MAKE them useless

Why?

It’s not that simple…

• … but not that complicated, either

It’s not that simple…

• … but not that complicated, either

Pure functions

Impure functions

Side
effects

• Anything that invokes events is impure (which is all Record.Validate)

• Invoking impure functions without being aware of side effects is mindless

Mindless about impure functions

• Routinely not invoking Record.Validate is mindless (because all of them
have side effects, even when you don’t directly see them)

• Mindlessly invoking Record.Validate could be dangerous
(…but it shouldn’t be!)

• Writing code that’s not validate-proof is… as mindless as it gets

• Other extensions will call your validate triggers!

Don’t be mindless about validations

Before you start using these services as part of your solution

Is it going to be reusable?

Is this PowerApp part of my ISV solution?

What if the customer wants customization?

Is this PowerBI report dependent on a certain version of my product?

What happens if I upgrade?

How do I do version management?

How will we support this?

How does deployment work? To all users?...

Think..

Not minding Permission Sets

The worst command was ...

The two worst commands are ...

• We need to give the ability for users to assign proper permissions

• THINK about your permissions.

For example:

Permission Sets

Is “testability” a good habit?

Crunching numbers….

Yes

Yes (but in yellow)

Is “testability” a good habit?

• Each individual app has its test app

• Install-codeunit to install apps

• Only test the app that is being built

Unit Testing

https://devops.ifacto.be/tfs/iFacto%20Apps/Distri%20Apps/_build/results?buildId=34526&view=ms.vss-test-web.build-test-results-tab

Integration testing

• Separate App

• Runs all Unit tests
• this time not isolated,

but when integrated
• test the app

combinations
•Provide mechanisme to

“replace” tests

• Schedule pipeline

Integration testing

1. Disable the test in the original app

2. Copy the test to the IntegrationTest-app

3. Fix it

When a test fails in the integration test,
but should succeed

ATDD: Build “Testability” into the core of your development process

Make sure you don’t “just” do unit tests, or “just” do integration tests. You
need input from both.

Recommendation

• Anything that better fits in another language/runtime especially if:
• It neither modifies nor accesses data in BC
• It performs better there
• It (already) has a HTTP API

• Complex algorithms

• Anything that’s not cloud-ready (that is: doesn’t work in BC SaaS)
• .NET Interoperability
• On-prem only stuff (you should have already started phasing that out)

• Forking Base App for on-prem purposes

Things that do not belong in AL

We need to:

- delete a field

- remove a table

- remove a function

- ..

What do we do?

Options:

- Obsolete the object and go through a default upgrade process

- Delete the code and deploy by ...

Context: Per Tenant Extension

... using the “Force” ..

• Unexpected code removals

• Unexpected data loss

• Broken dependencies

• Runtime errors

• ..

Dangers ...

• Don’t use the “Force”

• Only use it in an “isolated” deployment:
• After giving dependent apps enough time to be

redesigned
• 1 PullRequest that removes all obsolete code
• Snapshots / backups are in place

• NEVER automate such a step

Recommendations

Overloading

Overloading

One day, a piece of code is bugging me…

• Why was it commented out?
• … causing problems?
• … unfinished work?
• … refactoring in progress?
• … meant to be deleted?

• Should it be
• …deleted?
• …uncommented?
• …refactored?

• Was it already refactored?

Questions that are difficult to answer

• The best: never leave commented out code for later.

• CI rejects any blocks of commented code of more than n lines.

• Use pragmas instead of comments.

What to do?

