
• Introduce ReadIsolation feature

Goals

Good

Performance

Good

Performance

And then someone wrote few lines of code…

Good

Performance

A Very Bad lock

AAAAA !!!!
IT IS SLOW!
FIX IT!!!

Throw in ReadIsolation
(writing few lines of code)

Read Isolation

Read Isolation

Read Isolation

Good

Performance

• Introduce ReadIsolation feature

• Increase your understanding on how the locking works

• Enable you to write a more performant code

Goals

• Test your knowledge – Lock Quiz

• Theory

• AL Interplay with DB

• Transaction scope

• How locking works

• Caching implications

• Practical

• ReadIsolation property

• Patterns

• Tooling

In this session:

?
Will it lock or not?

internal procedure FindsetOnAnEmptyTable()

var

Customer: Record Customer;

begin

Customer.LockTable();
Customer.FindSet();

end;

Question 1. LockTable

internal procedure FindsetOnAnEmptyTable()

var

Customer: Record Customer;

begin

Customer.LockTable();
Customer.FindSet();

end;

Question 1. LockTable

internal procedure FindsetOnAnEmptyTable()

var

Customer: Record Customer;

begin

Customer.LockTable();
Customer.FindSet();

end;

Question 1. LockTable

Locks

Question 2: Lock on a different variable

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.LockTable();
Customer2.FindSet();

end;

Question 2: Lock on a different variable

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.LockTable();
Customer2.FindSet();

end;

Question 2: Lock on a different variable

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.LockTable();
Customer2.FindSet();

end;

Locks

LockTable is not

connected to variable.

It is active on a table

until transaction ends.

Lock table – Actual syntax

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.LockTable();
Customer2.FindSet();

end;

Lock table – Actual syntax

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.LockTable();
Customer2.FindSet();

end;

LockTable(Database::Customer);

Question 3. Read after write

Question 3. Read after write

Question 3. Read after write

Question 3. Read after write

Locks

If there is a write

operation on a table

any read will lock

records

Question 4. Count after write

LastCustomer.Count();

Question 4. Count after write

LastCustomer.Count();

Locks

Question 5: Findset

internal procedure FindsetOnAnEmptyTable()

var

MyTable: Record MyTable;

begin

MyTable.DeleteAll();
// some other code…

if not MyTable.FindSet() then

exit;

end;

Question 5: Findset

internal procedure FindsetOnAnEmptyTable()

var

MyTable: Record MyTable;

begin

MyTable.DeleteAll();
// some other code…

if not MyTable.FindSet() then

exit;

end;

Locks

If no rows are

returned the entire

table is locked for

inserts until the

transaction ends.

Question 5: Findset

internal procedure FindsetOnAnEmptyTable()

var

MyTable: Record MyTable;

begin

MyTable.DeleteAll();
// some other code…

if not MyTable.FindSet() then

exit;

end;

Locks entire table

Could lock entire table

Question 6: Conditional Insert

Question 6: Catching errors on Insert

Locks

We are in a write

transaction even if the

insert fails

trigger OnAction()

var

dcle: Record "Detailed Cust. Ledg. Entry";

cust: Record Customer;

begin

dcle.LockTable();
cust.FindFirst();

cust.CalcFields(cust.Balance);

end;

Question 7: FlowFields

field(58; Balance; Decimal)
{

CalcFormula = Sum("Detailed Cust. Ledg. Entry".Amount
WHERE("Customer No." = FIELD("No.") …

FieldClass = FlowField;
}

trigger OnAction()

var

dcle: Record "Detailed Cust. Ledg. Entry";

cust: Record Customer;

begin

dcle.LockTable();
cust.FindFirst();

cust.CalcFields(cust.Balance);

end;

Question 7: FlowFields

field(58; Balance; Decimal)
{

CalcFormula = Sum("Detailed Cust. Ledg. Entry".Amount
WHERE("Customer No." = FIELD("No.") …

FieldClass = FlowField;
}

trigger OnAction()

var

dcle: Record "Detailed Cust. Ledg. Entry";

cust: Record Customer;

begin

dcle.LockTable();
cust.FindFirst();

cust.CalcFields(cust.Balance);

end;

Question 7: FlowFields

field(58; Balance; Decimal)
{

CalcFormula = Sum("Detailed Cust. Ledg. Entry".Amount
WHERE("Customer No." = FIELD("No.") …

FieldClass = FlowField;
}

trigger OnAction()

var

dcle: Record "Detailed Cust. Ledg. Entry";

cust: Record Customer;

begin

dcle.LockTable();
cust.FindFirst();

cust.CalcFields(cust.Balance);

end;

Question 7: FlowFields

field(58; Balance; Decimal)
{

CalcFormula = Sum("Detailed Cust. Ledg. Entry".Amount
WHERE("Customer No." = FIELD("No.") …

FieldClass = FlowField;
}

Locks

procedure local LockOnCustomerTable()

var

cust: Record Customer;

begin

cust.LockTable();
cust.FindFirst();

cust.CalcFields(cust.Balance);

end;

Question 8: FlowFields

field(58; Balance; Decimal)
{

CalcFormula = Sum("Detailed Cust. Ledg. Entry".Amount
WHERE("Customer No." = FIELD("No.") …

FieldClass = FlowField;
}

Maybe

Quiz summary

7 Locking, 1 maybe

LockTable works on the table until transaction ends (not on variable)

Starting a write operation will lock all records read from that table

Count, CalcFields, CalcSums and other operations can lock records

FindSet, ModifyAll, DeleteAll can lock entire table (if empty)

Write operation – exclusive lock on records modified

Fundamentals

AL table locking is done via the database.

Writes –> Lock done by SQL on rows modified

Can be escalated

AL’s interplay with the DB

Reads – We request via Hints (ReadUncommited, ReadCommited,
RepeatableRead, UpdLock)

Transactions

Database operations in AL are transactional.

Update locks taken are also transactional, and the time held is bound to the transaction,
meaning they are held for the same “length”.

Transactionality in AL

Example: Post Sales Order

Example: Post Sales Order – Tables Locked

• Sales Line

• Item Charge Assignment (Sales)

• Purchase Line

• Purchase Header

• Sales Invoice Header

• Sales Invoice Entity Aggregate

• Sales Shipment Line

• Item Ledger Entry

• Value Entry

• Avg. Cost Adjmt. Entry Point

• Item Register

• Post Value Entry to G/L

• Item Application Entry

• Sales Invoice Line

• G/L Entry

• VAT Entry

• G/L Register

• G/L Entry - VAT Entry Link

• Detailed Cust. Ledg. Entry

• Cust. Ledger Entry

• Sales Cr. Memo Entity Buffer

• Sales Header

• Office Invoice

• Sales Order Entity Buffer

• Tracking Specification

Locks explained

• READUNCOMMITTED (No Lock):

• Allows for reading uncommitted data which may disappear after read (dirty reads).

• No locks are taken, so no waiting for neither Update (U) or Exclusive (X) locks.

• UPDLOCK (U Lock):

• No uncommitted data, since U locks are placed on read rows, guaranteeing they are
valid for entire transaction.

• Due to U locks being incompatible with U locks, readers will block each other,
causing waits.

• Are held for the remainder of the transaction.

• Exclusive (X Lock)

SQL isolation explained

SQL server lock compatibility matrix

Requested

Lock Type

No lock Shared (S) Update (U) Exclusive (X)

No lock N N N N

Shared (S) N N N C

Update (U) N N C C

Exclusive (X) N C C C

• No Conflict: Both operations can happen concurrently.

• Conflict: The latter operation must wait till the former operation relinquish its held
lock.

SQL server lock compatibility matrix

Requested

Lock Type

No lock Shared (S) Update (U) Exclusive (X)

No lock N N N N

Shared (S) N N N C

Update (U) N N C C

Exclusive (X) N C C C

• No Conflict: Both operations can happen concurrently.

• Conflict: The latter operation must wait till the former operation relinquish its held
lock.

SQL server lock compatibility matrix

Requested

Lock Type

No lock Shared (S) Update (U) Exclusive (X)

No lock N N N N

Shared (S) N N N C

Update (U) N N C C

Exclusive (X) N C C C

• No Conflict: Both operations can happen concurrently.

• Conflict: The latter operation must wait till the former operation relinquish its held
lock.

SQL server lock compatibility matrix

Operations takes row level locks to start with.

Escalates to higher level based on SQL defined rules.

Main rule number of rows changed.

Means could lock the rows that were not read.

SQL lock escalation

Row

Page

Table

Runtime determined locking

1. Reads are done with READUNCOMMITTED as long as no writes (or LockTable) has been
done to the table in the current transaction.

2. If writes has been done to the table (or LockTable called) in the current transaction, further
reads will be done with UPDLOCK against the table.

1. Reads are done with READUNCOMMITTED as
long as no writes (or LockTable) has been done to
the table in the current transaction.

2. If writes has been done to the table (or LockTable
called) in the current transaction, further reads
will be done with UPDLOCK against the table.

trigger OnAction()
var

curr: Record Currency;
begin

curr.FindLast();

curr.Delete(); // Or LockTable,
// Rename, Modify, DeleteAll, etc

curr.FindFirst();

ShowContinued();
end;

local procedure ShowContinued()
var

otherCurr: Record Currency;
cust: Record Customer;

begin
otherCurr.FindLast();
cust.FindFirst();

end;

Runtime determined locking

1. Reads are done with READUNCOMMITTED as
long as no writes (or LockTable) has been done to
the table in the current transaction.

2. If writes has been done to the table (or LockTable
called) in the current transaction, further reads
will be done with UPDLOCK against the table.

trigger OnAction()
var

curr: Record Currency;
begin

curr.FindLast(); // READUNCOMMITTED

curr.Delete(); // Or LockTable,
// Rename, Modify, DeleteAll, etc

curr.FindFirst();

ShowContinued();
end;

local procedure ShowContinued()
var

otherCurr: Record Currency;
cust: Record Customer;

begin
otherCurr.FindLast();
cust.FindFirst();

end;

Runtime determined locking

1. Reads are done with READUNCOMMITTED as
long as no writes (or LockTable) has been done to
the table in the current transaction.

2. If writes has been done to the table (or LockTable
called) in the current transaction, further reads
will be done with UPDLOCK against the table.

trigger OnAction()
var

curr: Record Currency;
begin

curr.FindLast(); // READUNCOMMITTED

curr.Delete(); // Or LockTable,
// Rename, Modify, DeleteAll, etc

curr.FindFirst(); // UPDLOCK

ShowContinued();
end;

local procedure ShowContinued()
var

otherCurr: Record Currency;
cust: Record Customer;

begin
otherCurr.FindLast();
cust.FindFirst();

end;

Runtime determined locking

1. Reads are done with READUNCOMMITTED as
long as no writes (or LockTable) has been done to
the table in the current transaction.

2. If writes has been done to the table (or LockTable
called) in the current transaction, further reads
will be done with UPDLOCK against the table.

trigger OnAction()
var

curr: Record Currency;
begin

curr.FindLast(); // READUNCOMMITTED

curr.Delete(); // Or LockTable,
// Rename, Modify, DeleteAll, etc

curr.FindFirst(); // UPDLOCK

ShowContinued();
end;

local procedure ShowContinued()
var

otherCurr: Record Currency;
cust: Record Customer;

begin
otherCurr.FindLast(); // UPDLOCK
cust.FindFirst();

end;

Runtime determined locking

1. Reads are done with READUNCOMMITTED as
long as no writes (or LockTable) has been done to
the table in the current transaction.

2. If writes has been done to the table (or LockTable
called) in the current transaction, further reads
will be done with UPDLOCK against the table.

trigger OnAction()
var

curr: Record Currency;
begin

curr.FindLast(); // READUNCOMMITTED

curr.Delete(); // Or LockTable,
// Rename, Modify, DeleteAll, etc

curr.FindFirst(); // UPDLOCK

ShowContinued();
end;

local procedure ShowContinued()
var

otherCurr: Record Currency;
cust: Record Customer;

begin
otherCurr.FindLast(); // UPDLOCK
cust.FindFirst(); // READUNCOMMITTED

end;

Runtime determined locking

Locks in VS Code debugger

Advanced analysis SQL query
BEGIN TRAN

-- Enter your query

SELECT * FROM [Navision_PlatformCore].[dbo].[CRONUS International Ltd_$Customer$437dbf0e-84ff-417a-965d-ed2bb9650972] WITH (UPDLOCK)

WHERE No_ > '0000000' and No_ < '3000000';

WITH locks AS (

SELECT

dm_tran_locks.request_owner_id,

dm_tran_locks.request_session_id,

dm_tran_locks.resource_type,

dm_tran_locks.request_mode,

dm_tran_locks.request_status,

dm_tran_locks.resource_associated_entity_id

FROM sys.dm_tran_locks WITH (NOLOCK)

WHERE

resource_associated_entity_id > 0

)

SELECT

objects.name AS object_name,

locks.request_owner_id,

locks.request_session_id,

locks.resource_type,

locks.request_mode,

locks.request_status

FROM locks

LEFT JOIN sys.partitions WITH (NOLOCK) ON partitions.hobt_id = locks.resource_associated_entity_id

JOIN sys.objects WITH (NOLOCK) ON sys.objects.object_id =

(CASE WHEN resource_type = 'OBJECT' THEN locks.resource_associated_entity_id ELSE partitions.object_id END)

Rollback

Telemetry

• Slides 17 – 21

• BCTech/samples/AppInsights/Presentations/decks/telemetry-app-scenarios.pptx at
master · microsoft/BCTech · GitHub

https://github.com/microsoft/BCTech/blob/master/samples/AppInsights/Presentations/decks/telemetry-app-scenarios.pptx
https://github.com/microsoft/BCTech/blob/master/samples/AppInsights/Presentations/decks/telemetry-app-scenarios.pptx

FlowFields?

• Lock decisions are based on target table, not defining table.

field(58; Balance; Decimal)
{

CalcFormula = Sum("Detailed Cust. Ledg. Entry".Amount WHERE("Customer No." = FIELD("No.")
…

FieldClass = FlowField;
}

Explicit control (ReadIsolation)

From V22+ read behavior can be controlled on a per-record instance

basis.

Lock state from table state is ignored.

Doesn’t influence other record instances.

Only read scenarios. Writes are not affected.

Controlling reads explicitly

• READUNCOMMITTED:

• Allows for reading uncommitted data which may disappear after read (dirty reads).

• No locks are taken, so no waiting for neither Update (U) or Exclusive (X) locks.

• UPDLOCK:

• No uncommitted data, since U locks are placed on read rows, guaranteeing they are
valid for entire transaction.

• Due to U locks being incompatible with U locks, readers will block each other,
causing waits.

• Are held for the remainder of the transaction.

ReadIsolation values – Used by default

• READCOMMITTED:

• Shared (S) locks are taken for the duration of the read, NOT duration of transaction.

• No reading of uncommitted data, but data read might be removed since S locks are
only held while reading.

• Recommended as default for reads

• REPETABLEREAD:

• Shared (S) locks are taken for the duration of the transaction.

• No reading of uncommitted data and data is guaranteed to stay consistent for the
duration of transaction.

• RangeLock - With set range nobody will be able to insert the record in between

• Recommended if you want to ensure parallel reads and that nobody changes the
data

ReadIsolation values

Question 2: Improved – Control example

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.LockTable();

Customer1.FindLast();
Customer2.Count();

end;

Question 2: Improved – Control example

internal procedure FindsetOnAnEmptyTable()

var

Customer1: Record Customer;

Customer2: Record Customer;

begin

Customer1.ReadIsolation := IsolationLevel::UpdLock;

Customer1.FindLast();

Customer2.ReadIsolation := IsolationLevel::ReadCommited;
Customer2.Count();

end;

Pattern - Temporary heightening

local procedure GetNextEntryNo(): Integer

var

GLEntry: Record "G/L Entry";

begin

GLEntry.LockTable();

GLEntry.FindLast();

exit(GLEntry."Entry No." + 1)

end;

GLEntry.ReadIsolation := IsolationLevel::UpdLock;

More controlled locking

because it is defined on a

variable.

ReadIsolation is better

than Locktable for most

(all) scenarios.

[EventSubscriber(ObjectType::Table, Database::"Customer", 'OnBeforeInsertEvent', '', false, false)]
local procedure EventSubscriberCount(var Rec: Record Customer; RunTrigger: Boolean)
var

Customer: Record Customer;
begin

// Some code
Customer.FindSet();
// Some code

end;

Pattern - Temporary lowering

Impossible to know the context
called in, so be explicit.

Strongly recommended for event

subscribers

Customer.ReadIsolation := IsolationLevel::ReadCommitted;
Customer.FindSet();
// Some code

end;

ReadIsolation with FlowFieds

• Uses the ReadIsolation on the record over target table state.

trigger OnAction()
var

cust: Record Customer;
dcle: Record "Detailed Cust. Ledg. Entry";

begin
cust.CalcFields(cust.Balance); // READUNCOMMITTED

dcle.LockTable();
cust.CalcFields(cust.Balance); // UPDLOCK

end;
cust.ReadIsolation := ReadIsolation::ReadCommitted;
cust.CalcFields(cust.Balance); // READCOMMITTED

end;

Question 5: Avoid locking the entire table

internal procedure FindsetOnAnEmptyTable()

var

MyTable: Record MyTable;

begin

MyTable.DeleteAll();
// some other code…

if not MyTable.FindSet() then

exit;

end;

Question 5: Avoid locking the entire table

internal procedure FindsetOnAnEmptyTable()

var

MyTable: Record MyTable;

begin

MyTable.ReadIsolation := ReadIsolation::ReadUncommited;

if not MyTable.IsEmpty() then

MyTable.DeleteAll();

// some other code…

if not MyTable.FindSet() then

exit;

end;

Pattern – Transaction read lock

local procedure LockReadRecordsForTransaction(): Integer

var

Customer: Record Customer;

begin

GLEntry.LockTable();

Customer.FindSet();

end;

Customer.ReadIsolation := IsolationLevel::RepeatableRead;

Records read will be locked for

updates until the end of

transaction

Existing code – Refactor as you need, incrementally, eliminate bad locks

New code – Use ReadIsolation

• If possible, read before writing to the table

• Cache read results, don’t call too often

• Smaller short transactions

• Longer transactions - make code re-entrant + commit (avoid partial commits)

Think smart

Any Questions?

	Agenda slide options
	Slide 1: Goals
	Slide 2: Good Performance
	Slide 3: Good Performance
	Slide 4: Good Performance
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Good Performance
	Slide 12: Goals
	Slide 13: In this session:
	Slide 14
	Slide 15: Question 1. LockTable
	Slide 16: Question 1. LockTable
	Slide 17: Question 1. LockTable
	Slide 18: Question 2: Lock on a different variable
	Slide 19: Question 2: Lock on a different variable
	Slide 20: Question 2: Lock on a different variable
	Slide 21: Lock table – Actual syntax
	Slide 22: Lock table – Actual syntax
	Slide 23: Question 3. Read after write
	Slide 24: Question 3. Read after write
	Slide 25: Question 3. Read after write
	Slide 26: Question 3. Read after write
	Slide 27: Question 4. Count after write
	Slide 28: Question 4. Count after write
	Slide 29: Question 5: Findset
	Slide 30: Question 5: Findset
	Slide 31: Question 5: Findset
	Slide 32: Question 6: Conditional Insert
	Slide 33: Question 6: Catching errors on Insert
	Slide 34: Question 7: FlowFields
	Slide 35: Question 7: FlowFields
	Slide 36: Question 7: FlowFields
	Slide 37: Question 7: FlowFields
	Slide 38: Question 8: FlowFields
	Slide 39: Quiz summary

	Fundamentals
	Slide 40: Fundamentals
	Slide 41

	Transactions
	Slide 42: Transactions
	Slide 43: Transactionality in AL
	Slide 45: Example: Post Sales Order
	Slide 46: Example: Post Sales Order – Tables Locked
	Slide 47: Locks explained
	Slide 48: SQL isolation explained
	Slide 49: SQL server lock compatibility matrix
	Slide 50: SQL server lock compatibility matrix
	Slide 51: SQL server lock compatibility matrix
	Slide 52: SQL server lock compatibility matrix
	Slide 53: SQL lock escalation
	Slide 54: Runtime determined locking
	Slide 55: Runtime determined locking
	Slide 56: Runtime determined locking
	Slide 57: Runtime determined locking
	Slide 58: Runtime determined locking
	Slide 59: Runtime determined locking
	Slide 60: Locks in VS Code debugger
	Slide 61: Advanced analysis SQL query
	Slide 62: Telemetry
	Slide 64: FlowFields?
	Slide 65: Explicit control (ReadIsolation)

	ReadIsolation
	Slide 66: Controlling reads explicitly
	Slide 67: ReadIsolation values – Used by default
	Slide 68: ReadIsolation values
	Slide 69: Question 2: Improved – Control example
	Slide 70: Question 2: Improved – Control example
	Slide 71: Pattern - Temporary heightening
	Slide 72: Pattern - Temporary lowering
	Slide 73: ReadIsolation with FlowFieds
	Slide 74: Question 5: Avoid locking the entire table
	Slide 75: Question 5: Avoid locking the entire table
	Slide 76: Pattern – Transaction read lock
	Slide 77: Think smart
	Slide 78
	Slide 79

