

Objectives

Introducing…

A Twitter hashtag for the AL community

Follow #bcalhelp on Twitter to learn about other people’s issues
(and help out if you can)

Include #bcalhelp in a tweet with a question. Maybe someone out
there knows the answer

This is not controlled by Microsoft.

Let’s kick this off, shall we?

Many questions
System

Application
?How to upgrade to

the latest version
(15.x)

? How to convert
existing code to

extensions
?

How to get to
the cloud?

What was
discontinued?

The Discontinuation Overview

Discontinued: Planning to discontinue:

C/AL – replaced with AL

Cside – Replaced by VS Code

Windows Client – replaced by Web Client
Tomorrow: 9:00 Levering the power of the cloud - Accessing on-prem hardware/resources
from the cloud

XML Profiles – AL Profiles (in code)

Refactoring:

System App

Integration management – replaced by $systemId

(Integration Records)

Upgrade journey

MS

Base App

MS System Application

– The Destination

Upgrade journey – the plan

Important considerations

AL is amazing!!! It has one weakness:
SQL Schema changesInterfaces

No Breaking SQL Schema changes

Keys (primary,
secondary)

Field name, type,
length

Table namesSounds hard But it is not

Not on the
backlog

Breaking SQL Changes C/AL

C/AL Handles breaking
changes well

Refactor out any
breaking SQL change on
Microsoft owned objects

before going to 15.x

You have direct access to SQL and Server

MVPs have written some tooling

No official tooling supports this

AL Breaking changes OnPrem

Additive changes

Upgrade to 14.x Important considerations

Make sure SQL Schema contains ONLY ADDITIVE changes

Renumber and rename to ISV Range (App store) or PTE Range
(Per tenant extension) if you want to get to SaaS now

Platform support may come soon (Feature is investigated)

Minimize the number of modified objects (Ideally only added fields)

Upgrade Journey

Step 1.

Upgrade to 14.x

Step 3.

Uplift data to cloud

15.x Target architectures

Let’s climb the 15.x mountain

14.X

15.X
Prepare solution before conversion and convert directly to extension…

Convert to code customized solution and refactor to extension…

No breaking SQL Schema changes
Clean up Properties and Code (for txt2al)
Move Code Customizations to events
No modifications of objects in System App
No deleted fields, no deleted controls
No code modifications

Uptake System Application changes

No breaking SQL Schema changes
Clean up Properties and Code (for txt2al)
Convert 14.x C/AL to 14.x AL

Merge with 15.x AL
Uptake System Application changes
Move Table Customizations to Table Extensions
Move Page Customizations to Page Extensions
Move Code Customizations to Events

14

14.X

15.X

PROD

PROD

14.X
Code Customized C/AL

Code Conversion
Step 1: Create 14.x dev container
Step 2: Import Objects
Step 3: Compile Objects
Step 4: Convert my modifications to AL app
Step 5: Create AL Project
Step 6: Compile AL Project

BC14

Convert to AL extension

Data Upgrade
New Table - ✓
Customized Table - 

PROD

PROD

14.X
Code Customized C/AL

Code Conversion
Step 1: Create 14.x dev container
Step 2: Import Objects
Step 3: Compile Objects
Step 4: Create 14.x baseline in AL
Step 5: Create my baseapp (14.x) in AL
Step 6: Create 15.x dev container
Step 7: Create 15.x baseline in AL
Step 8: Merge

BC14

Convert to code customized solution

14.x baseline

14.x my baseapp

BC15

15.x baseline

14.X – baseline 14.X – my baseapp 15.X –baseline

BaseApp
All unmodified files (14.x)

Modified
Customer page (org. 14.x version)
Customer table (org. 14.x version)

My
Empty folder

BaseApp
All unmodified files (14.x)

Modified
Customer page (my 14.x version)
Customer table (my 14.x version)

My
All my added objects

BaseApp
All unmodified files (15.x)

Modified
Customer page (org. 15.x version)
Customer table (org. 15.x version)

My
Empty folder

15.X – my baseapp (merge result)

BaseApp
All unmodified files (15.x)

Modified
Customer page (my 15.x version)
Customer table (my 15.x version)

My
All my added objects

C
o

p
yM
o

d
if

ic
at

io
n

s

Merge

PROD

PROD

14.X
Code Customized C/AL

Code Conversion
Step 1: Create 14.x dev container
Step 2: Import Objects
Step 3: Compile Objects
Step 4: Create 14.x baseline in AL
Step 5: Create my baseapp (14.x) in AL
Step 6: Create 15.x dev container
Step 7: Create 15.x baseline in AL
Step 8: Merge

BC14

Convert to code customized AL

14.x baseline

14.x my baseapp

BC15

15.x baseline

Data Upgrade
New Table - 
Customized Table – (✓)

15.x my baseapp

14.X

“AL Hybrid”

Prepare solution before conversion and convert directly to extension
but leave table modifications behind…

No breaking SQL Schema changes
Clean up Properties and Code (for txt2al)
Move Code Customizations to events
No modifications of System App objects
No deleted fields, no deleted controls
No code modifications

Uptake System Application changes
Move Table Customizations to Table Extensions

15.X

PROD

PROD

14.X
Code Customized C/AL

Code Conversion
Step 1: Create 14.x dev container
Step 2: Import Objects
Step 3: Compile Objects
Step 4: Create 14.x baseline in AL
Step 5: Create my baseapp (14.x) in AL
Step 6: Create 15.x dev container
Step 7: Create 15.x baseline in AL
Step 8: Merge table mods only
Step 9: Convert my modifications to AL app
Step 10: Remove Table Ext. & Create Project
Step 11: Compile BaseApp and App

BC14

Convert to “AL Hybrid”

14.x baseline

14.x my baseapp

BC15

15.x baseline

15.x my baseapp

Data Upgrade
New Table - ✓
Customized Table – (✓)

Let’s upgrade

Step 1.

Upgrade to 14.x

Step 3.

Uplift data to cloud

Freddy

Let’s upgrade – Step 2

Step 1.

Upgrade to 14.x

Step 3.

Uplift data to cloud

Freddy

Upgrade a tenant in Docker
Run tests to ensure that the code is correct

Cannot move between extensions – in progress

Looking into allowing renumbering and renaming during the move

Added tables – Moved automatically if Name
and ID Match
C/AL – Base App Freddy’s app

Moving fields to table extensions

Feature:
Move fields
automatically AL to AL
Currently In Progress

DestinationAppsForMigration

1. Resolves references for manifests before 15.x

2. Installs apps automatically during upgrade

(Publish the extension, Sync and call Start-NAVDataUpgrade)

Old manifest file

DestinationAppsForMigration
will resolve missing application
version to the extension if it is
listed

Start-NAVDataUpgrade will upgrade only destination app for migration

If it is not marked as a migration app after DestinationAppForMigration upgrade, you
need to:
1. Publish-NAVApp
2. Sync-NAVApp
3. Start-NAVAppDataUpgrade

How to upgrade an app

Integration Record to $systemId

Every record got a new immutable key – $systemId (Guid)

We plan to remove Integration records

Integration ID === $systemId (for now)

Upgrade moves Integration Id to system ID

during sync step:
• Make sure Integration record table is up to date before upgrade
• Delete Int. Records if you don’t use them

Back to demo

Let’s upgrade a tenant !!!

Before operating a zeppelin
you need to learn some theory….

Where is the upgrade toolkit?

Included in every app

Stays as part of the app

Close to the code it
upgrades

Base app upgrade toolkit

In upgrade folder
(because it is not fun to search in
6151 objects)

Separate areas =
Separate codeunits
(the order must not matter)

Upgrade codeunit structure

Check Preconditoins and Validate
methods can be time consuming

Make sure methods run only if
necessary (not on every upgrade)

Upgrade codeunit – Execution order

Upgrade codeunit structure

Check Preconditoins and Validate
methods can be time consuming

Make sure methods run only if
necessary (not on every upgrade)

Fixing upgrade gone wrong

Version numbers, version number everywhere…

+5 other
codeunits

Upgrade tags – Wrap code within upgrade tag

Unique ID – we use TFS IDs

Upgrade tags table

Fixing upgrade gone wrong

Upgrade tags Definition

New companies
First time app installation
Need to register the
existing tags

RegisterUpgradeTags – used to
register on Company Initialization

SetAllUpgradeTags – register all
tags on the system:

It is safe
This code cannot fail

Famous last words

What is the worst thing that can happen?
The proper question

What is the worst that can happen?

Hindenbugs

No Hindenbug’s
1. Design for upgrade
Disaster Recovery plans in place and tested (Detection,
backups…)
Are we able to upgrade? Review if the features are upgradable
(blobs, large amount of data…)

2. Keep the upgrade code simple
Short upgrade codeunits, no hacks
5 min code review rule

3. Test the upgrade
Correct data is written
Ensure we do not run upgrade twice

Hindenbug example – Obsolete removed

Customer has spent the points

We upgrade next version – he is back
on 50.000 pointsObsolete removed fields

– reward points 50.000

Not safe to run twice – example 2

IRS 1099 upgrade code

Writing safe upgrade code
1. Use upgrade tags

2. Add safety checks

3. Add tests

4. Register for new
companies / fresh app
installation

Execution context API

Defending Sensitive code example

Upgrade journey – Step 3.

Step 1.

Upgrade to 14.x

Step 2.

Upgrade to 15.x

Step 3.

Uplift data to cloud

Upgrade journey: The cloud – Friday 22nd

What about SaaS to SaaS Upgrade?

Have you forgotten?

Broken extension – What to do?

1. If you had the CI/CD then you will already
know. Otherwise we will call you

2. Fix the issue
+ Set the application / platform

dependencies

4. Publish new extension to app store
(Upload if it is PTE – Per tenant Extension)

Once we update the tenant to specified
application/platform version we will
upgrade the app automatically

Getting the docker builds

https://blogs.msdn.microsoft.com/freddyk/2018/04/16/which-docker-image-
is-the-right-for-you/

https://blogs.msdn.microsoft.com/freddyk/2018/04/16/which-docker-image-is-the-right-for-you/

Both SaaS and OnPrem OnPrem Only

Compatible Builds – version numbers

…

…
Both SaaS and OnPrem

October NovemberSeptemberApril May …

Always upgrade to Latest Compatible CU

Contains the latest bug fixes and ported features

15.1 contains a number of fixes in upgrade

Do not attempt upgrade to a version released before:

Do not try upgrading 14.6 released in November to 15.0 released in October

You risk undoing bug fixes / ported features

CU Article will contain the minimum supported target upgrade build

Thank you!

Please join, review, provide feedback if something is
unclear or incorrect and ask questions.

We will upgrade the upgrade deck based on your feedback.

The BIG Deck

https://aka.ms/BCUpgradeDeck

Summary

Refactor away breaking SQL changes before moving to AL

Functionality to move fields automatically is currently being developed

We are looking into renumbering and renaming tables and fields

(no promises if and when it will be done)

Write safe upgrade code (No Hindenbugs)

Use Docker to extract extensions

Use Docker to test the upgrade process (setup CI/CD)

