

Development Methodologies for
The future

The future

Symbols

Extensions

DevOpsMigration

AL

AI

DotNet

Don’tNet

Wrappers

Dependencies
API

VSCode

Table Extensions

Page Extensions

Profiles

FileNameConventions

Builds

Testability

Docker

NAVContainerHelper

PerTenantExtensions

Apps

CodeCops

Code Analysis
Page Inspector

Events

Event Recorder

In-Client Designer

Profiles Page Customization

Label Syntax

XLIFF

JSON

ControlAddin

UserControl

SaaS - OnPrem

Sandbox

Git
Publish

Install

Sync

Upgrade

Web Client

Manifest

Views

Personalization

Development Methodologies

A matter of applying simple rules…

Development Methodologies

A matter of applying simple rules…

Development Methodologies

A matter of applying simple rules…

Don’tNet

Development Methodologies

A matter of applying simple rules…

Don’tNet

Embracing Dependencies

Development Methodologies

A matter of applying simple rules…

Don’tNet

Embracing Dependencies

Strict guidelines

Development Methodologies

A matter of applying simple rules…

Don’tNet

Embracing Dependencies

Strict guidelines

No Test, no approval

Development Methodologies

A matter of applying simple rules…

Don’tNet

Embracing Dependencies

Strict guidelines

No Test, no approval

Extendable patterns

Development Methodologies

A matter of applying simple rules…

Don’tNet

Embracing Dependencies

Strict guidelines

No Test, no approval

Extendable patterns

Avoid breaking changes

Development Methodologies

A matter of applying simple rules…

Don’tNet

Embracing Dependencies

Strict guidelines

No Test, no approval

Extendable patterns

Avoid breaking changes

When it's hard in al, it doesn't belong in al

Development Methodologies

A matter of applying simple rules…

Don’tNet
Embracing Dependencies

Strict guidelines
No Test, no approval
Extendable patterns

Avoid breaking changes
When it's hard in al, it doesn't belong in al

…

Embracing Dependencies
when moving to AL

moving to AL

Migrate to

Code Customized AL

Migrate to a
Monolith extension

Rebuild monolith
from scratch

Rebuild a set of apps
with Dependencies

moving to AL

Migrate to

Code Customized AL Migrate to a
Monolith extension

Rebuild monolith
from scratch

Rebuild a set of apps
with Dependencies

moving to AL

Migrate to

Code Customized AL

Migrate to a
Monolith extension

Rebuild monolith
from scratch

Rebuild a set of apps
with Dependencies

moving to AL

Rebuild monolith
from scratch

Migrate to a
Monolith extension

Migrate to

Code Customized AL

Rebuild a set of apps
with Dependencies

moving to AL

Rebuild a set of apps
with Dependencies

Migrate to

Code Customized AL

Rebuild monolith
from scratch

Migrate to a
Monolith extension

Dependencies

Dependencies – Why?

• An extension can depend on another extension

• Help structure more complex deployment scenarios

• Boost code and business logic reusability

• Increase maintenance flexibility

• Sell independently

• Frameworking

• Secure parts of the product

• Force modules design

• ...

Dependencies – How?

• Dependency is declared in the manifest file (app.json)

• Dependency declaration must include

• Guid (app id)

• Name
• Publisher

• Version

Dependencies

BASE

FINBaseApp

SystemApp

Let’s look at an example…

Dependencies

BASE

FINBaseApp

SystemApp

Dependencies

BASE

FIN

BaseApp

SystemApp

BASE-Test

FIN-Test

Assert

Test Libraries

Test Libraries

Please think things through ...

Think things through, how do I

Think things through, how do I
when moving to AL, I am

Think things through, how do I
when moving to AL, I am

all there is, a monolith is?

Dependency Analysis

c/al

Dependency Analysis based on c/al

Before we start coding, we should know which apps we end up with

• Startpoint: one big codebase (txt-file)
• Endpoint: a collection of apps which work together

• Automated:
To not leave anything behind
Because the product is too big for your memory

• Tools:
waldo.Model.Tools
PowerShell Scripts to analyze code
Business Central as database & business logic

waldo.Model.Tools

A tool to perform source code analysis on C/AL

Based on Microsoft.Dynamics.Nav.Model.Tools, which:

is used by the PowerShell Merge Tools (modeltools)

builds an object model from a txt file

does not include the actual code

Available in PowerShell

→scripts to automate Source Code Analysis

https://github.com/waldo1001/Waldo.Model.Tools

https://github.com/waldo1001/Waldo.Model.Tools

Some examples…

Flow

Get all objects
from C/AL

Manually
correcting /

ignoring
modules

Get Where-
Used per object

Analyze
dependencies

per module

Solve circular
dependencies

Manually create
App-layer

Analyze
dependencies

per app

Solve circular
dependencies

Get all objects from C/AL & tag all
objects with a “module”

• Goal:

• define an intent for each object
• Intent = module

• Save it to a database

• So we can manually edit it to refine the new product architecture

• Tag automatically

Get all objects
from C/AL

Get all objects from C/AL & tag all
objects with a “module”

Get all objects
from C/AL

• Goal:

• define an intent for each object
• Intent = module

• Save it to a database

• So we can manually edit it to refine the new product architecture

• Tag automatically

Manually correcting/ignoring modules

• Goal:

• Every single object needs to be categorized in a module

• Why?

• Unknown Objects

• Refactoring is necessary
• Some modules might have become useless

• How?

• Ignore useless modules

• Create new modules when necessary

Manually
correcting
/ ignoring
modules

Get all objects
from C/AL

Get Where-Used per object

• Goal?

• Find the dependencies between modules

• How?

• Use “Where-Used” links from Model.Tools

• Save in database so it can be analysed (and edited)

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Get all objects
from C/AL

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Get all objects
from C/ALGet Where-Used per object

Analyze dependencies per module

• Goal: Find “circular dependency”

• Graphical with Webgraphviz

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/AL

http://www.webgraphviz.com/

What is a circular dependency?

FIN RH

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/AL

Sales

FINRH

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/ALWhat is a circular dependency?

Sales

FIN

RHLT

Base

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/ALWhat is a circular dependency?

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/AL

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/AL

Solve circular dependencies

• Why?

• You can’t create apps with circular dependencies

• How?

• Remove (ignore) modules

• Combine modules

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Solve circular
dependencies

Get all objects
from C/AL

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/AL

Solve circular
dependencies

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Get all objects
from C/AL

Solve circular
dependencies

Manually create App-layer

• Why?

• Define
• Sellable apps

• Reuseable apps

• Framework apps
• Protected apps

• Base apps

• ...

• How?

• Create record in Apps-table

• Assign an app to each module

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Solve circular
dependencies

Manually
create App-

layer

Get all objects
from C/AL

Analyze dependencies per app

Why?

You might have ended up with circular dependencies (again)

App B

App A

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Solve circular
dependencies

Manually
create App-

layer

Analyze
dependencies

per app

Get all objects
from C/AL

Mod X Mod Z

Mod Y

Solve circular dependencies

• Why?

• You can’t create apps with circular dependencies

• How?

• Combine modules in one app

• Move modules to a new or existing app
• Split objects/modules into new apps

• Remove modules

Solve circular
dependencies

Manually
correcting
/ ignoring
modules

Get
Where-

Used per
object

Analyze
dependencies

per module

Solve circular
dependencies

Manually
create App-

layer

Analyze
dependencies

per app

Get all objects
from C/AL

Result

Tools we used are available for you …

• Waldo.Model.Tools

• https://github.com/waldo1001/Waldo.Model.Tools
• Analyze C/AL Code in PowerShell

• PowerShell

• (Web)graphviz

• to visualize the dependencies
• http://www.webgraphviz.com/

• Custom BC Extension
• With API to upload data from PowerShell

• https://github.com/waldo1001/ALDependencyAnalysis

https://github.com/waldo1001/Waldo.Model.Tools
http://www.webgraphviz.com/
https://github.com/waldo1001/ALDependencyAnalysis

Let’s take this dependency-stuff a bit
further…

Invoicing

Support

Presales

How to architect?

“challenges”

Just break it down into
understandable and feasible

challenges

To be able to invoice …

Read data from Mantis

Read data from TopDesk

Get that data in Business Central

And use it for invoicing

Read data from ION

To be able to invoice …

To be able to invoice …

To be able to invoice …

- Only know how to “talk” to the software.

- Contain the (interfaced) data

- Raise events

- Contain a clear and understandable interface to the functionality

- Nothing more!

→ “no” dependencies

To be able to invoice …

- Connects the functionality

- Enhances Business Central with (e.g.) the invoicing
functionality, like:

- Suggest timesheet lines from planning

- Calculate invoiceable amount from planning
- Throw warning when something is planned, but

no issues at hand

- Reporting / Forecasting with combined data

- Automatically create records in all systems
- Role Center

- Raise alerts

To be able to set up demo environments..

Software where users can request a new
environment

Software that can handle that
request

To be able to set up demo environments..

Software where users can request a new
environment

Software that can handle that
request

Create an environment in the
right localization and version

To be able to set up demo environments..

Software where users can request a new
environment

Software that can handle that
request

Make it available from
the cloud

To be able to set up demo environments..

Software where users can request a new
environment

Software that can handle that
request

Install the right
extensions right
away

To be able to set up demo environments..

How it looks in the app

How it looks in code

The App Catalogue

OpenSource software

https://www.graphviz.org/download/

Has an API

https://www.graphviz.org/download/

Graphviz

REST

Don’t miss …

Tomorrow 11am

DotNet

Don’t Net

Don’t forget

Don’t forget

In the future, on-premises will
follow the cloud rules

Some other more hands-on
development methodologies

Where do we put business logic?

Where do we put business logic?

Extendable
Confirm

Ack
EncapsulationTestableDecoupleable
Method
Codeunit

Where do we put business logic?

Extendable

Confirm
Ack

Encapsulation

Testable

Decoupleable

Method
Codeunit

Where do we put business logic?

Method
Codeunit

Extendable

Confirm
Ack

Encapsulation

Testable

Decoupleable

Table.Method

“Class”
Codeunit

My Extension

Where do we put business logic?

Method
Codeunit

Extendable

Confirm
Ack

Encapsulation

Testable

Decoupleable

Table.Method

“Class”
Codeunit

Page

Codeunit

…

My Extension

Where do we put business logic?

Method
Codeunit

Extendable

Confirm
Ack

Encapsulation

Testable

Decoupleable

Table.Method

“Class”
Codeunit

Page

Codeunit

…

Dependent
Extension

My Extension

Where do we put business logic?

Method
Codeunit

Extendable

Confirm
Ack

Encapsulation

Testable

Decoupleable

Table.Method

“Class”
Codeunit

Page

Codeunit

…

Dependent
Extension

Page

Codeunit

…

Let’s see this in practice

One App, One Repository

One Repo contains:

- The app

- The unit-test-app

- The pipeline

- The workspace settings

- ..

One App is responsible for himself, not for
the ones that is dependent from it.

Test Driven Development

Code Review: No Test, No Approval

Unit Tests
- Methods
- Bugs
- In DevOps – only the app’s tests will be executed

Integration Tests
- Tests when all apps in the db
- Also the methods – but altered if necessary
- Microsoft tests that make sense
- Separate app with dependencies to all apps that need to be integrated

Breaking Changes

There is no “force” when you need it…

Number Series

• Create a management tool to manage

• Object Numbers
• Field Numbers

• Make sure 1 person is doing 1 functional area at a time

• Never use object numbers in code.

Translations

• At the end of a development cycle (sprint, release, …)

• Automate as much as possible

- lcs.dynamics.com

- MultiLingual Editor

• Do not translate after each workitem

• Consider to put the translation-file in the .gitignore

Development Methodologies

Don’tNet
Embracing Dependencies

Strict guidelines
No Test, no approval
Extendable patterns

Avoid breaking changes
When it's hard in al, it doesn't belong in al

…

Is that
your lightsaber?

