
COSMO CONSULT Group



COSMO CONSULT Group

Tobias Fenster

CTO at COSMO CONSULT Group

Dual Microsoft MVP for Business 

Applications and Azure

@tobiasfenster

tobiasfenster.io

tobias.fenster@cosmoconsult.com

tobiasfenster



Introduction to the scenario

Assumption: You know roughly what Docker is

Docker containers allow running multiple versions / CUs of Business Central 

on the same VM

Docker containers have a much lower resource overhead than full VMs

Creating / starting and stopping / deleting containers is a lot quicker than 

full VMs

→You want to run multiple containers “somewhere” to save resources and 

scale better

→ But how can you connect your development / test / etc. machines to 

those containers?



Agenda





Handle every
network port
individually



7249

Solution 1: Port mapping

Run your containers and map their ports to different host ports

Docker Host

7045-
7049

7045-
7049

7045-
7049

7245-
7249

7045-
7049

7145-
7149

70497149



7249

Solution 1: Port mapping

Run your containers and map their ports to different host ports

Docker Host

7045-
7049

7045-
7049

7045-
7049

7245-
7249

7045-
7049

7145-
7149 DEMO



Port mapping – the good and the bad

Good:

Easy to connect to from the client (if you know the right port)

Bad:

Always need to determine which ports are free for the next container

Don’t forget 80, 443, 1443, 8080

Need to open ports on the firewall of the VM

On Azure that becomes two firewalls (VM and Azure networking)

→ Possible but somewhat complicated and error prone







Handle every
container

individually



bc-bbc-cbc-a

Solution 2: Transparent networking

Run every container with its own IP (and name)

Docker Host

bc-b
192.168.1.2

bc-c
192.168.1.3

bc-a
192.168.1.1



bc-c

Solution 2: Transparent networking

Run every container with its own IP (and name)

Docker Host

bc-b
192.168.1.2

bc-c
192.168.1.3

bc-a
192.168.1.1

DEMO



Transparent netw. – the good and the bad

Good:

Easy to connect to from the client (you only need the name)

Creating a new container is easy as well

Bad:

Needs to be allowed on your network

Needs a specific setting on your hypervisor (MAC address spoofing)

Not directly possible on Azure VMs

→Good solution for on prem if allowed but not for Azure







All networking
goes through

one „pipe“



/bdev/adev/cdev

Solution 3: Reverse proxy

Run your containers behind a reverse proxy

Docker Host

bc-b

bc-c

bc-a
bc-a:7049

bc-b:7049

bc-c:7049

/adev/bdev/cdev



/cdev

Solution 3: Reverse proxy

Run your containers behind a reverse proxy

Docker Host

bc-b

bc-c

bc-a
bc-a:7049

bc-b:7049

bc-c:7049

/cdev
DEMO



Reverse proxy – some details

Implemented using traefik (https://traefik.io/)

Cloud-native, container-native reverse proxy

Easy to set up and run, e.g. integrated LetsEncrypt support

Picks new containers up by checking their labels

Regex-based rules for the mapping, e.g.

https://myvm.westeurope.cloudapp.azure.com/bc-arest/* 

maps to http://bc-a:7048/BC/OData/*

https://myvm.westeurope.cloudapp.azure.com/bc-a/* 

maps to http://bc-a:80/bc-a/*

https://traefik.io/


Reverse proxy – some details

Additional config for the Business Central container:

Set PublicODataBaseUrl, PublicSOAPBaseUrl, PublicWebBaseUrl

and PublicDnsName so that Business Central knows what it is called 

from the outside

Set WebServerInstance to a different name as it otherwise insists on 

redirecting to /NAV or /BC

Health check needs to be different: Traefik only picks up healthy 

containers but for the regular health check to work, traefik routing 

needs to be in place…

Traefik needs a setup file called traefik.toml



Reverse proxy – some details

Integrated into

aka.ms/getbc and related Azure ARM templates with a „Add Traefik“ 

toggle

navcontainerhelper with -useTraefik

Base setup needed

New containerhelper cmdlet Setup-TraefikContainerForBCContainers

→ Let’s check the connection and look at some of the details



Reverse proxy – the good and the bad

Good:

Easy to connect to from the client (you only need the path)

Creating a new container is easy and it works on Azure

You only need one entry point per reverse proxy in the firewalls

Bad:

One more component to set up and maintain

Non-HTTP-traffic needs more work (RTC and SQL/finsql) → traefik 2.0 

supports that, but I haven’t tested yet

URLs returned from SOAP and REST endpoints not correct

→Good solution for both worlds, especially with automated setup



Limitations of our previous approaches

Bound to 1 host

What happens when we run out of resources?

If we use multiple hosts, how to figure out what to put where?

How to let users know what is running where and how to reach it?

Scaling up and down still is problematic

Still running 1 SQL Server per container

Not very efficient

Scaling limits as above

And it’s SQL Server Express (max 10GB database size)





Docker Swarm



Part 1 of the solution: Docker Swarm

Built-in container orchestrator from Docker

Main benefits / features:

Brings resources of multiple container hosts together

Central management and control

Share configuration and secrets across the swarm

Declarative service model

Automatic “self-healing” concepts

Advanced networking for resiliency

What about Kubernetes and the recent Mirantis deal?



Part 1 of the solution: Docker Swarm

Some basics in the Docker Swarm world:

Service = declaration of the images, number of containers (tasks) and 

configurations you want to run; can be replicated or global

Node = container host / engine that joined the swarm

Manager = node with control rights

Worker = node that executes tasks

How to “run” something: 

1. Declare your service

2. Submit that to a manager node

3. Swarm creates necessary tasks on nodes and keeps desired state



Client

Part 1 of the solution: Docker Swarm

Docker Host

Docker Host

Docker Host

Goal: 5 containers
on 3 hosts



Client

Part 1 of the solution: Docker Swarm

Manager

Worker

Worker

Goal: 5 containers
on a Swarm with
3 hosts

Swarm



Client

Part 1 of the solution: Docker Swarm

Manager

Worker

Worker

Goal: Connect
to the service, no
matter which task

Swarm



Client

Part 1 of the solution: Docker Swarm

Manager

Worker

Worker

Goal: Connect
to the service, no
matter which task

Swarm



Client

Part 1 of the solution: Docker Swarm

Manager

Worker

Worker

Goal: Connect
to the service, no
matter which task

Swarm

Note: Doesn‘t
directly work with
BC as it requires a
stateless service



Client

Part 1 of the solution: Docker Swarm

Manager

Worker

Worker

Goal: Services are
able to find other
services, no matter 
which host

Swarm



Client

Part 1 of the solution: Docker Swarm

Manager

Worker

Worker

Goal: Services are
able to find other
services, no matter 
which host

Swarm



Part 1 of the solution: Docker Swarm

Demo scenario:

Create 1 service consisting of 2 containers

→ Show connections

Scale service up

→ See placement on nodes

Remove task

→ See recovery

→ Let’s see it!





Azure SQL
with elastic pool



Part 2 of the solution: Azure SQL

Platform as a Service (PaaS) offering

Always kept current by Microsoft

Scale up and down dynamically

(Almost) no resource limits

Elastic pools allow resource sharing across all databases (with 

configurable limits)

→No server maintenance, no limits; just cost…



Limitations of our previous approaches

Bound to 1 host

What happens when we run out of resources?

If we use multiple hosts, how to figure out what to put where?

How to let users know what is running where and how to reach it?

Scaling up and down still is problematic

Still running 1 SQL Server per container

Not very efficient

Scaling limits as above

And it’s SQL Server Express (max 10GB database size)



Bringing it together: Swarm & Azure SQL

Prereq: Azure SQL database with a “template” database

1 ARM template to deploy 

1 manager VMs and x worker VMs (note: SPOF manager!)

1 Azure SQL server with 1 elastic pool

Setup script to initialize the Swarm on the manager and join

it on the workers, set up Traefik, prepare access credentials for 

template DB and target pool and share them as secrets

Specific scenario: Start a BC Swarm service and connect to a DB 

created on demand as copy of the template

→ Let’s see it





Ideas I really, really like

Get rid of the 120kB size limit for dev
licenses: http://bit.ly/UnlimitedFlf

Get production support for Docker containers
with D365 BC: http://bit.ly/DockerProd

#bcalhelp

http://bit.ly/UnlimitedFlf
http://bit.ly/DockerProd



