
© Copyright Microsoft Corporation. All rights reserved.

Unlock the Power of AL

extension toolset

A detailed overview of AL code

debugging and navigation

Blanca Robledo

Thomas Pedersen

Agenda

• Troubleshooting

• Explorer

• Productivity boosters

Troubleshooting

Troubleshooting overview

• Overview of debugging capabilities

• Regular Debugging

 Debugging different type of sessions

 Breakpoints

REGULAR DEBUGGING​ SNAPSHOT DEBUGGING​

Supported environments​​

Launch Debugging​​

Attach to next session of type​​

Attach to existing session by ID​​

Attach to next session by user​​

Debug session belonging to another user​​

Real-time Control (pause, step over, etc.)​​

Profiling information​​

Replay debugged session​​

✘ ✔

✔ ✘

✔ ✘

✔

(Only supported from BC22)​​
✔

✔

(Only supported from BC22)​​
✔

✔

(Only supported from BC22)​​
✔

✔

(WebClient only supported from BC22)​​
✔

Sandbox​​ Sandbox + Production​​

✘ ✔

Debugging Overview - Capabilities

Regular and Snapshot Debugging use cases

REGULAR DEBUGGING​

• Good for validating extension behavior during

development.

• Traditional debug controls

• Faster publishing

• When you want to debug a scenario that

can be reproduced on a Sandbox.

SNAPSHOT DEBUGGING

• When you need debug information about a scenario from

a Production environment.

• When you need performance profiling information.

• When you want to share the debug results of a session.

Ways of regular debugging a session

• Launching your own session

• Attaching to the next session

• Attaching to an existing session

Debugging your own BC online session

User/Application

VS Code User

Cluster

Balancer

Cluster compute

nodes

Attaching to an existing BC online session

User/Application

VS Code User

Cluster

Balancer

Cluster compute

nodesWho has

this

session?

Attaching to the next BC online session

User/Application

VS Code User

Cluster

Balancer

Cluster compute

nodes

Ready to debug

session (10 min)

Launch​ Attach to Next​ Attach to Existing​

Target sessions belonging to other

users​

Target existing session​

Publishes extension before debugging​

Webclient sessions​

Non-webclient sessions (background,

webservice)​

Can specify startup options (object

type/ID)​

Available in​

✘ ✔ ✔

✘ ✘ ✔

✔ ✘ ✘

✔ ✔
(from BC22)

✔

✘ ✔

✔
(..technically. But getting the session ID of

a background/webservice session can be

difficult)​

✔ ✘ ✘

All versions of BC SaaS​ All versions of BC SaaS​ From BC 22 onwards​

Regular debugging – Capabilities

LAUNCH

• Most useful when you're actively developing

and need to quickly see changes​.

• Allows for rapid iteration with control over

how the extension is published​ (Especially

powerful with RAD).

ATTATCH TO NEXT

• Use this when you want to debug a non-

webclient session. Majority of the time this is

used for debugging service-to-service (S2S)

calls.

• This is also the only way you can debug

install and upgrade codeunits.​

• There is a 10-minute timeout on how long

the server will wait for the new session. If a

session matching the parameters in

the launch.json is not found, the debug

request will be aborted.

ATTATCH TO EXISTING

• If you have to target an existing session, so if

you have a user who is already in the middle of

doing something and it's already close to the

problem code or is able to reproduce it

consistently.

Regular debugging a session – When to use which?

LAUNCH

{
"name": "Publish: Microsoft cloud sandbox",
"type": "al",
"request": "launch",
"environmentType": "Sandbox",
"environmentName": "sandbox",
"startupObjectType": "page",
"startupObjectId": 22,
"tenant": "othertenant.onmicrosoft.com"

}

ATTATCH TO NEXT

{​
"name": "Attach: Microsoft cloud sandbox",​
"type": "al",​
"request": "attach",​
"environmentType": "Sandbox",​
"environmentName": "sandbox",​
"breakOnNext": "WebServiceClient",​
"user": "myuser@mytenant.onmicrosoft.com"​

}

ATTATCH TO EXISTING

{​
"name": "Attach: Microsoft cloud sandbox",​
"type": "al",​
"request": "attach",​
"environmentType": "Sandbox",​
"environmentName": "sandbox",​
"sessionId": 45355​

}

Regular debugging a session – Configurations

Demo

Debugging another user's session

• Regular breakpoints

• Conditional breakpoints

• Implicit breakpoints

• Break on error

• Break on record write

Breakpoints

Conditional breakpoints

{

"name": "Publish: Microsoft
cloud sandbox",

"type": "al",

"request": "launch",

"environmentType": "Sandbox",

"environmentName": "sandbox",

"startupObjectType": "page",

"startupObjectId": 22,

"tenant": "othertenant.onmicrosoft.com",

"breakOnError": "All",

"breakOnRecordWrite": "ExcludeTemporary",

}

"breakOnError“: what to do when it encounters an

error.
• All – on every error

• ExcludeTry – on any error that is not within the scope of a

try function

• None – do not break on any error

"breakOnRecordWrite“: what to do when a record

is modified.
• All – whenever any record is modified

• ExcludeTemporary – whenever a non-temporary record is

modified

• None – do not break when a record is modified

Implicit breakpoints

Demo

Implicit breakpoints: break when a record is modified

Navigate and
Debug in VS Code
from Web Client

From the labs

Explorer

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

Code Actions
Code Fixers Code Refactorings

• Explicit With

• Qualify Implicit With

• Implement Interface

• Spell Check

Code Cop

• AA0008 Use Parenthesis for Function calls

• AA0207 Make Procedure local

• AA0235 Add OnCompany Initialize Subscription

• AA0241 Use Lowercase For Keywords

UI Cop

• 0013 Hidden group with Promoted actions

• Promoted Action

• Application Area

• Event Subscriber literals

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

Productivity

boosters

• Code Actions

• Go To Implementation

• Type Hierarchy

• Semantic code coloring

• Sticky Scroll

• Global Launch Config

General Business Central resources,

Have a
question?

aka.ms/BCYammer

Join the
conversation

twitter.com/
MSDyn365BC

Looking for
resources?
aka.ms/BCAll

Submit
your ideas
aka.ms/BCIdeas

Join the office
hours

aka.ms/BCOfficeHours

Report an issue
Github.com/Microsoft/AL

Any Questions?

For more questions, meet us at the Microsoft booth tomorrow at 8:30, 13:00 or 15:00

	Welcome & Agenda
	Slide 1
	Slide 2: Agenda

	Troubleshooting
	Slide 3: Troubleshooting
	Slide 5: Troubleshooting overview
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Debugging your own BC online session
	Slide 10: Attaching to an existing BC online session
	Slide 11: Attaching to the next BC online session
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Demo
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Demo

	Launch VSCode
	Slide 21: Navigate and Debug in VS Code from Web Client

	Explorer
	Slide 22: Explorer

	Productivity boosters
	Slide 23: Productivity boosters
	Slide 24: Productivity boosters
	Slide 25
	Slide 26: Productivity boosters
	Slide 28: Productivity boosters
	Slide 30: Productivity boosters
	Slide 35: Productivity boosters
	Slide 38: Productivity boosters

	The End
	Slide 40: General Business Central resources, learn more!
	Slide 41
	Slide 42

