
MBS-Navision 4.00 SP1 Quick Reference Page 8

Use this function to write a specified number of bytes to the stream. Data is written in binary format.
OutStream.WRITETEXT [{Written} :=] OutStream.WriteText([Text, [Length]])

Use this function to write text to an OutStream object. Data is written in text format.
KEYREF
This complex data type identifies a key in a table and the fields in this key. This gives you access to the key and the fields it
contains. The keyref object can refer to any key in any table in the database.

ACTIVE Ok := KeyRef.ACTIVE
Use this function to find out if the key is enabled or not.

FIELDCOUNT No := KeyRef.FIELDCOUNT
Use this function to return the number of fields that have been defined in a key. These functions
returns an error if no key is selected.

FIELDINDEX FieldRef := KeyRef.FIELDINDEX(Index)
Use this function to return the fieldref of the field that has this index in the key referred to by the
keyref variable.

RECORD RecordRef := KeyRef.RECORD
Use this function to return the recordref of a key. This function returns an error if no key is selected.

NUMERIC
The following numeric data types exists: BIGINTEGER, DECIMAL, INTEGER.

ABS NewNumber := ABS(Number)
Use this function to calculate the absolute value of a number. ABS always returns a positive numeric
value or zero.

POWER NewNumber := POWER(Number, Power)
Use this function to raise a number to a power.

RANDOM Number := RANDOM(MaxNumber)
Use this function to return a pseudo-random number.

RANDOMIZE RANDOMIZE([Seed])
Use this function to generate a set of random numbers, from which RANDOM will select a random
number.

ROUND NewNumber := ROUND(Number [, Precision] [, Direction])
Use this function to round the value of a number variable. The optional parameter tells the system
how to round Number. The default rounding method is '='. There are three different options for
rounding: '=', '>', '<'

RECORD
This complex data type corresponds to a row in a table. Each record consist of fields (which form the columns of the table). A
record is typically used to hold information about a fixed number of properties.

ASCENDING [IsAscending] := Record.ASCENDING([SetAscending])
Use this function to change or check the order in which the system will search through a C/SIDE
table.

CALCFIELDS [Ok :=] Record.CALCFIELDS(Field1, [Field2],...)
Use this function to update the FlowFields in a record.

CALCSUMS [Ok :=] Record.CALCSUMS(Field1, [Field2],...)
Use this function to calculate the total of a column of SumIndexFields in a C/SIDE table.

CHANGECOMPANY [Ok :=] Record.CHANGECOMPANY([CompanyName])
Use this function to redirect references to table data from one company to another.

CLEARMARKS Record.CLEARMARKS
Use this function to remove all marks on a record.

CONSISTENT Record.CONSISTENT(Consistent)
Use this function to mark a C/SIDE table as being consistent or inconsistent from an administrative
point of view, which you define.

COPY Record.COPY(FromRecord)
Use this function to copy a record from a table. All filters, marks, and keys are included in the copy.

COPYFILTER Record.COPYFILTER(FromField, ToRecord.ToField)
Use this function to copy the filter set for one field and apply it to another field.

COPYFILTERS Record.COPYFILTERS(FromRecord)
Use this function to copy all filters set by SETFILTER or SETRANGE from one record to another.

COUNT Number := Record.COUNT
Use this function to count the number of records in a C/SIDE table.

COUNTAPPROX Number := Record.COUNTAPPROX
Use this function to obtain an approximate count of the number of records in the table, for example,
for updating progress bars or displaying informational messages. The count is approximate because
it uses statistical information maintained by SQL Server, which is not kept precisely in
synchronization with modifications to the table and is not under transaction control.

CURRENTKEY CurrentKey := Record.CURRENTKEY
Use this function to return the current key of a database table.

DELETE [Ok :=] Record.DELETE([RunTrigger])
Use this function to delete a record in a C/SIDE table.

DELETEALL Record.DELETEALL([RunTrigger])

MBS-Navision 4.00 SP1 Quick Reference Page 9

Use this function to delete all records in a C/SIDE table that fall within a specified range.
FIELDACTIVE Ok := Record.FIELDACTIVE(Field)

Use this function to check whether a field is enabled or not.
FIELDCAPTION Caption := Record.FIELDCAPTION(Field)

Use this function to return the current caption of a field as a string.
FIELDERROR Record.FIELDERROR(Field, [Text])

Use this function to stop the execution of the code (cause a run-time error, in fact) and create an
error message for a field.

FIELDNAME Name := Record.FIELDNAME(Field)
Use this function to return the name of a field as a string.

FIELDNO Number := Record.FIELDNO(Field)
Use this function to return the number assigned to a field in the table description.

FILTERGROUP [CurrGroup] := Record.FILTERGROUP([NewGroup])
Use this function to select a filtergroup and to find the number of the current filtergroup. A filtergroup
can contain a filter for a Record that has been set earlier with SETFILTER or SETRANGE. The total
filter applied is the combination of all the filters set in all the filtergroups. C/SIDE uses 7
FILTERGROUPS internally: 0 Std, 1 Global, 2 Form, 3 Exec, 4 Link, 5 Temp, 6 Security.

FIND Ok := Record.FIND([Which])
Use this function to find a record in a C/SIDE table based on the values stored in keys. [Which] tells
the system how to perform the search. If SearchStr contains '=', '>' or '<', you must assign values to
all fields of the current and primary keys before you call FIND.

FINDFIRST Ok := Record.FINDFIRST
Use this function to find the first record in a table based on the current key and filter.

FINDLAST Ok := Record.FINDLAST
Use this function to find the last record in a table based on the current key and filter.

FINDSET Ok := Record.FINDSET([ForUpdate][, UpdateKey])
Use this function to find a set of records in a table based on the current key and filter. The records
can only be retrieved in ascending order.

GET [Ok :=] Record.GET([Value] ,...)
Use this function to find a record based on values stored in primary key fields. This function always
uses the primary key for the table and ignores any filters. The system does not change the current
key and filters after you call this function.

GETFILTER String := Record.GETFILTER(Field)
Use this function to return a list of the filters within the current filter group that are applied to a field.

GETFILTERS String := Record.GETFILTERS
Use this function to return a string which contains a list of the filters within the current filter group for
all fields in a record. In addition, this function also returns the state of MARKEDONLY.

GETPOSITION String := Record.GETPOSITION([UseNames])
Use this function to return a string that contains the primary key of the current record.

GETRANGEMAX Value := Record.GETRANGEMAX(Field)
Use this function to return the maximum value in a range for a field.

GETRANGEMIN Value := Record.GETRANGEMIN(Field)
Use this function to return the minimum value in a range for a field.

GETVIEW String := Record.GETVIEW([UseNames])
Use this function to return a string that describes the current sort order, key and filters on a table.

HASFILTER Ok := Record.HASFILTER
Use this function to determine if the system has attached a filter to a record within the current filter
group.

INIT Record.INIT
Use this function to initialize a record in a C/SIDE table. The system does not initialize primary key or
timestamp fields.

ISEMPTY Empty := Record.ISEMPTY
Use this function to find out whether a C/SIDE table or a filtered set of records is empty. When you
are using SQL Server, this function is faster than using the Record.COUNT function and then testing
the result for zero.

INSERT [Ok :=] Record.INSERT([RunTrigger])
Use this function to insert a record into a C/SIDE table.

LOCKTABLE Record.LOCKTABLE([Wait] [, VersionCheck])
Use this function to lock a C/SIDE table to protect it from write transactions that conflict with each
other. The SQL Server Option for Navision only supports the default values for the parameters of the
LOCKTABLE function – LOCKTABLE(TRUE,FALSE).

MARK [IsMarked] := Record.MARK([SetMarked])
Use this function to mark a record. You can also use this function to find out if a record is marked.

MARKEDONLY [IsMarkedOnly] := Record.MARKEDONLY([SetMarkedOnly])
Use this function to tell the system to activate a special filter. After you use this function, your view of
the table only includes records marked by this function.

MODIFY [Ok :=] Record.MODIFY([RunTrigger])
Use this function to modify a record in a C/SIDE table.

MODIFYALL Record.MODIFYALL(Field, NewValue [, RunTrigger])
Use this function to modify a field in all records within a range you specify.

NEXT Steps := Record.NEXT([Steps])
Use this function to step through a specified number of records and retrieve a record. Steps is used
to define the direction of the search and how many records to step over. > 0: Search Steps records

MBS-Navision 4.00 SP1 Quick Reference Page 10

forwards in the table. < 0: Search Steps records backwards in the table. = 0 No effect. If you do not
specify Steps, the system finds the next record.

READCONSISTENCY Ok := Record.READCONSISTENCY
Use these functions to determine whether the table supports read consistency.

READPERMISSION Ok := Record.READPERMISSION
Use this function to find out if you can read from a table. This function can test for both full read
permission and a partial read permission that has been granted with a security filter.

RECORDLEVELLOCKINGOk := Record.RECORDLEVELLOCKING
Use these functions to find out whether the table supports record level locking. When you are using
SQL Server, you can use record level locking. When you are using the Navision Database Server,
you cannot use record level locking.

RELATION TableNumber := Record.RELATION(Field)
Use this function to find out the table relationship of a given field.

RENAME [Ok]:= Record.RENAME(Value1, [Value2],...)
Use this function to change a primary key in a C/SIDE table.

RESET Record.RESET
Use this function to remove all filters, including any special filters set by MARKEDONLY, and change
the current key to the primary key. The system also removes any marks on the record and clears any
C/AL variables on the record.

SETCURRENTKEY [Ok :=] Record.SETCURRENTKEY(Field1, [Field2],...)
Use this function to select a key for a table.

SETFILTER Record.SETFILTER(Field, String, [Value],...)
Use this function to assign a filter to a field you specify.

SETPERMISSIONFILTER Record.SETPERMISSIONFILTER
Use this function to apply the user's security filter to a Record variable. The security filter is combined
with any other filters that are placed on the Record variable with SETFILTER or SETRANGE. This
C/AL function only applies to the SQL Server Option for Navision.

SETPOSITION Record.SETPOSITION(String)
Use this function to set the fields in a primary key on a record to the values specified in the supplied
string. The remaining fields are left untouched.

SETRANGE Record.SETRANGE(Field [,FromValue] [.ToValue])
Use this function to set a simple filter, such as a single range or a single value, on a field.

SETRECFILTER Record.SETRECFILTER
Use this function to set the values in the current key of the current record as a record filter.

SETVIEW Record.SETVIEW(String)
Use this function to set the current sort order, key and filters on a table.

TABLECAPTION Caption := Record.TABLECAPTION
Use this function to return the current caption of a table as a string.

TABLENAME Name := Record.TABLENAME
Use this function to return the name of a C/SIDE table.

TESTFIELD Record.TESTFIELD(Field, [Value])
Use this function to test to see if the contents of a field match a given value. If the contents differ
from the given value, the system displays an error message. If you omit Value and the content of
Fields is zero or blank (empty string), the system also displays an error message.

TRANSFERFIELDS Record.TRANSFERFIELDS(FromRecord [, InitPrimaryKeyFields])
Use this function to copy all matching fields in one record to another record. Fields are copied based
on the Field No. property of the fields.

VALIDATE Record.VALIDATE(Field [, NewValue])
Use this function to call the triggers for the field you specify.

WRITEPERMISSION Ok := Record.WRITEPERMISSION
Use this function to find out if you can write to a table. This function can test for both full write
permission and a partial write permission that has been granted with a security filter. A write
permission consists of Insert, Delete and Modify permissions.

RECORDID
This data type contains the table number and the primary key of a table. You can store a RecordID in the database but you
cannot set filters on a RecordID.

GETRECORD RecordRef := RecordID.GETRECORD
Use this function to return a recordref that refers to the record identified by recordID.

TABLENO No := RecordID.TABLENO
Use this function to return the table number of the table identified by recordid. This function returns
an error if the record is blank.

RECORDREF
This complex data type identifies a row in a table. Each record consist of fields (which form the columns of the table). A record is
typically used to hold information about a fixed number of properties. The RecordRef object can refer to any table in the
database. Use the RecordRef.OPEN function to select the table you want to access. When you use the RecordRef.OPEN
function a new object is created. This object contains references to the open table, filters and the record itself and all the fields
it contains.

MBS-Navision 4.00 SP1 Quick Reference Page 7

Use this function to return the current setting of the MinimizedOnOpen property of a form, and to set
this property to a new value.

OBJECTID String := Form.OBJECTID([UseNames])
This function returns a string in the "form xxx" format, where xxx is the name or number of the
application object.

RUN Form.RUN
Use this function to create and launch a form you specify. You can use CLEAR to remove the form.

RUNMODAL [Action] := Form.RUNMODAL
Use this function to create, launch, and close the form you specify. The optional return code tells you
what action the user took. The possible return values are: OK, Cancel, LookupOK, LookupCancel,
Yes, No, Close, Helpform, RunObject, RunSystem.

SAVERECORD CurrForm.SAVERECORD
Use this function to save the current record shown on the form.

SETRECORD Form.SETRECORD(Record)
Use this function to select the current record shown on the form.

SETSELECTIONFILTER CurrForm.SETSELECTIONFILTER(Record)
Use this function to have the system note the records the user has selected on the form, mark those
records in the table specified, and set the filter to "marked only".

SETTABLEVIEW SETTABLEVIEW(Record)
Use this function to apply the Table View on the current record as the table view for the form, report
or dataport.

UPDATE CurrForm.UPDATE[(SaveRecord)]
Use this function to save the current record and then update the controls in the form. If you set the
SaveRecord parameter to FALSE, this function will not save the record before the system updates
the form.

UPDATECONTROLS CurrForm.UPDATECONTROLS
Use this function to reload the captions of all controls on the current form. This is necessary when
the user changes the caption class of a control after the form has been loaded.

UPDATEEDITABLE UPDATEEDITABLE(Editable)
Use this function to dynamically change the setting of the Editable property of a field, form or control.

URL String:=Form.URL([UseNames])
This function returns a string that contains the full URL to a form.

VISIBLE [IsVisible] := Form.VISIBLE([SetVisible])
Use this function to return the current setting of the Visible property of a form or control, and to
change the setting of the property.

WIDTH [CurrWidth] := Form.WIDTH([NewWidth])
Use this function to return the current setting of the Width property of a form or control, and to set this
property to a new value.

XPOS [CurrXPos] := Form.XPOS([NewXPos])
Use this function to return the current setting of the XPos property of a form or control, and to set this
property to a new value.

YPOS [CurrYPos] := Form.YPOS([NewYPos])
Use this function to return the current setting of the YPos property of a form or control, and to set this
property to a new value.

GUID
Use this data type to give a unique identifying number to any database object. The Globally Unique Identifier (GUID) data type
is a 16 byte binary data type. This data type is used for the global identification of objects, programs, records and so on. The
important property of a GUID is that each value is globally unique. The value is generated by an algorithm, developed by
Microsoft, which assures this uniqueness. The standard textual representation is {12345678-1234-1234-1234-1234567890AB}.

CREATEGUID Guid :=CREATEGUID()
Use this function to create a new unique GUID. The value can then be assigned to a GUID data type
or a text data type. Use the text data type if you want to compare the GUID to another text string.

ISNULLGUID Ok := ISNULLGUID(Guid)
Use this function to check whether or not a value has been assigned to a GUID. A null GUID that
consists only of zeros is valid but must never be used for reference purposes.

INSTREAM & OUTSTREAM
The InStream (input stream) and OutStream (output stream) data types are generic stream objects that you can use to read
from or write to files and BLOBs. In addition, the InStream and OutStream data types enable data to be read from and sent to
objects of the types Automation and OCX. The Microsoft XML DOM can read from an InStream object and write to an
OutStream object.

InStream.EOS IsEOS:= InStream.EOS()
Use this function to find out whether or not an input stream has reached End of Stream (EOS).

InStream.READ [{Read}:=] InStream.Read(Variable, [Length])
Use this function to read a specified number of bytes from an InStream object. Data is read in binary
format.

InStream.READTEXT [{Read}:=] InStream.ReadText(Text, [Length])
Use this function to read text from an InStream object. READTEXT reads the specified number of
bytes, the maximum length of the string or until the end of the line. Data is read in text format.

OutStream.WRITE [{Written}:=] OutStream.Write(Variable, [Length])

MBS-Navision 4.00 SP1 Quick Reference Page 6

OPEN [Ok] := File.OPEN
Use this function to open an existing ASCII or binary file. As compared to CREATE, this function
does not create the file if it does not exist.

POS Position := File.POS
Use this function to return the current position of the file pointer in an ASCII or binary file.

QUERYREPLACE [IsQueryreplace :=] File.QUERYREPLACE([SetQueryreplace])
This function is used to determine whether the system should query the user before overwriting a file
if it already exists.

READ [Read] := File.READ(Variable)
Use this function to read from an ASCII or binary file. If TEXTMODE is set to TRUE, the system
reads a line of text from the file, evaluates it and sets the variable equal to the result. If TEXTMODE
is set to FALSE, the system determines the number of bytes to read based on the size of the
variable.

RENAME [Ok:=] File.RENAME(OldName, NewName)
Use this function to rename an ASCII or binary file.

SEEK File.SEEK(Position)
Use this function to set a file pointer to a new position in an ASCII or binary file.

SETSTAMP [Ok] := File.SETSTAMP(Name, Date [, Time])
Use this function to set a time stamp for a file.

TEXTMODE [IsTextmode] := File.TEXTMODE([SetTextmode])
This function is used to set whether a file should be opened as an ASCII file or a binary file.

TRUNC File.TRUNC
Use this function to truncate an ASCII or binary file to the current position of the file pointer.

WRITE File.WRITE(Value)
Use this function to write to an ASCII or binary file. If TEXTMODE is set to TRUE and Value is an
integer, the system formats the integer into text and writes the result, followed by a new line
character. If Value is a record, the system separates each field with a tab character. If TEXTMODE is
FALSE and Value is an integer, the system writes the integer as an integer which is four bytes long.

WRITEMODE [IsWritemode :=] File.WRITEMODE([SetWritemode])
Use this function before you use OPEN to set or test whether you can write to a file in later calls.

FORM
Variables of this complex data type store forms. Forms contain simpler elements called controls. Controls are used to display
information to the user or to receive information from the user.

ACTIVATE [Ok :=] Form.ACTIVATE
Use this function to make a form or control active.

ACTIVE IsActive := Form.ACTIVE
Use this function to find out if the current form is active or inactive.

CAPTION [CurrCaption] := Form.CAPTION([NewCaption])
Use this function to return the current caption of an object as a string, and to set a new caption for
the object.

CLOSE Form.CLOSE
Use this function to close the current form.

EDITABLE [IsEditable] := Form.EDITABLE([SetEditable])
Use this function to return the current setting of the Editable property, and to change the setting of
the property.

FORM Subform := Form.FORM
Use this function to access a form that is a subform of the current form - that is, the form that is
defined as the SubFormID of a subform control.

FORM.RUN FORM.RUN(Number [, Record] [, Field])
Use this function to create and launch a form object, which you specify.

FORM.RUNMODAL [Action] := Form.RUNMODAL(Number [, Record] [, Field])
Use this function to create, run, and close a form object, which you specify. The system runs the
form modally.

GETRECORD Form.GETRECORD(Record)
Use this function to retrieve the current record shown on the form.

HEIGHT [CurrHeight] := Form.HEIGHT([NewHeight])
Use this function to return the current setting of the Height property of a form or control, and to set
this property to a new value.

LOGHEIGHT [CurrLogHeight] := Form.LOGHEIGHT([NewLogHeight])
Use this function to return the current setting of the LogHeight property of a form, and to set this
property to a new value.

LOGWIDTH [CurrLogWidth] := Form.LOGWIDTH([NewLogWidth])
Use this function to return the current setting of the LogWidth property of a form, and to set this
property to a new value.

LOOKUPMODE [CurrLookupMode] := Form.LOOKUPMODE([NewLookupMode])
Use this function to return the current setting of the LookupMode property of a form, and to set this
property to a new value.

MAXIMIZEDONOPEN [CurrMaximized] := Form.MAXIMIZEDONOPEN([NewMaximized])
Use this function to return the current setting of the MaximizedOnOpen property of a form, and to set
this property to a new value.

MINIMIZEDONOPEN [CurrMinimized] := Form.MINIMIZEDONOPEN([NewMinimized])

MBS-Navision 4.00 SP1 Quick Reference Page 11

ASCENDING [IsAscending :=] RecordRef.ASCENDING([SetAscending])
Use this function to change or check the order in which the system will search through the table
referred to by the recordref.

CAPTION Caption := RecordRef.CAPTION
Use this function to return the caption of the table that is currently selected. This function returns an
error if no table is selected.

CLOSE RecordRef.CLOSE
Use this function to close the current table.

COUNT Number := RecordRef.COUNT
Use this function to count the number of records that are within the filters that are currently applied to
the table referred to by the recordref.

COUNTAPPROX Number := RecordRef.COUNTAPPROX
Use this function to obtain an approximate count of the number of records in the table, for example,
for updating progress bars or displaying informational messages.

CURRENTKEY CurrentKey := RecordRef.CURRENTKEY
Use this function to return the current key of the table referred to by the recordref. The current key is
returned as a string.

CURRENTKEYINDEX [CurrKeyIndex :=] RecordRef.CURRENTKEYINDEX([NewKeyIndex])
Use this function to return or set the current key of the table referred to by the recordref. The current
key is set or returned as a number.

DELETE [Ok :=] RecordRef.DELETE([RunTrigger])
Use this function to delete a record in a C/SIDE table.

DELETEALL RecordRef.DELETEALL([RunTrigger])
Use this function to delete all records in a C/SIDE table that fall within a specified range.

DUPLICATE RecordRef := RecordRef.DUPLICATE
Use this function to duplicate the table that contains the recordref.

FIELD Field := RecordRef.FIELD(FieldNo)
Use this function to return the recordref of the field that has the number fieldno in the table that is
currently selected. If no field has this number, the function returns an error.

FIELDCOUNT Count := RecordRef.FIELDCOUNT
Use this function to return the number of fields in the table that is currently selected or to return the
number of fields that have been defined in a key. These functions returns an error if no table or no
key is selected

FIELDEXIST Exist := RecordRef.FIELDEXIST(FieldNo)
Use this function to find out if the field that has the number fieldno exists in the table that is referred
to by the recordref. The function returns an error if no table is currently selected.

FIELDINDEX Field := RecordRef.FIELDINDEX(Index)
Use this function to return the fieldref of the field that has this index in the table referred to by the
recordref.

FILTERGROUP [CurrGroup :=] RecordRef.FILTERGROUP([NewGroup])
Use this function to change the filter group that is being applied to the table. A filtergroup can contain
a filter for a RecordRef that has been set earlier with SETFILTER or SETRANGE. The total filter
applied is the combination of all the filters set in all the filtergroups.

FIND [Ok :]= RecordRef.FIND([Which])
Use this function to find a record in a table based on the values stored in the key fields.

FINDFIRST Ok := Record.FINDFIRST
Use this function to find the first record in a table based on the current key and filter.

FINDLAST Ok := Record.FINDLAST
Use this function to find the last record in a table based on the current key and filter.

FINDSET Ok := Record.FINDSET([ForUpdate][, UpdateKey])
Use this function to find a set of records in a table based on the current key and filter. The records
can only be retrieved in ascending order.

GET [Ok:=]RecordRef.GET(RecordID)
Use this function to find a record based on the ID of the record.

GETFILTERS String := RecordRef.GETFILTERS
Use this function to find out which filters have been applied to the table referred to by the recordref.

GETPOSITION String := RecordRef.GETPOSITION([UseNames])
Use this functions to return a string that contains the primary key of the current record.

GETTABLE RecordRef.GETTABLE(rec)
Use this function to make a recordref variable use the same table instance as a record variable.

GETVIEW String := RecordRef.GETVIEW([UseNames])
Use this function to return a string that describes the current sort order, key and filters on a table.

HASFILTER Ok := RecordRef.HASFILTER
Use this function to find out whether or not a filter has been applied to the table referred to by a
recordref.

INIT RecordRef.INIT
Use this function to initialize a record in a table.

INSERT [Ok :=] RecordRef.INSERT([RunTrigger])
Use this function to insert a record into a table.

ISEMPTY Empty := RecordRef.ISEMPTY
Use this function to find out whether any records exist within a filtered set of records in a table.

KEYCOUNT Count := RecordRef.KEYCOUNT

MBS-Navision 4.00 SP1 Quick Reference Page 12

Use this function to return the number of keys that exist in the table that is referred to by the
recordref. This function returns an error if no table is selected.

KEYINDEX Key := RecordRef.KEYINDEX(Index)
Use this function to return the keyref of the key that has this index in the table that is currently
selected.

LOCKTABLE RecordRef.LOCKTABLE([Wait] [, VersionCheck])
Use this function to lock a table to protect it from write transactions that conflict with each other.

MODIFY [Ok :=] RecordRef.MODIFY([RunTrigger])
Use this function to modify a record in a C/SIDE table.

NAME Name := RecordRef.NAME
Use this function to return the name of the table that is currently selected. This function returns an
error if no table is selected.

NEXT [Steps :=] RecordRef.NEXT([Steps])
Use this function to step through a specified number of records and retrieve a record.

NUMBER No := RecordRef.NUMBER
Use this function to return the table ID (number) of the table that contains the record referred to by
the recordref.

OPEN RecordRef.OPEN(No[, Temp][, CompanyName])
Use this function to make a RecordRef variable refer to a table which is identified by its number in a
particular company.

READCONSISTENCY Ok := RecordRef.READCONSISTENCY
Use this function to know whether or not read consistency is supported.

READPERMISSION Ok := RecordRef.READPERMISSION
Use this function to find out if you can read from a table. This function can test for both full read
permission and a partial read permission that has been granted with a security filter.

RECORDID RecordID := RecordRef.RECORDID
Use this function to return the RecordID of the record that is currently selected in the table. If no table
is selected, an error is generated.

RECORDLEVELLOCKING Ok := RecordRef.RECORDLEVELLOCKING
Use this function to find out whether the table supports record level locking.

RESET RecordRef.RESET
Use this function to remove all filters, including any special filters set by MARKEDONLY and change
the current key to the primary key. The system also removes any marks on the record and clears any
C/AL variables on the record.

SETPERMISSIONFILTER RecordRef.SETPERMISSIONFILTER
Use this function to apply the user's security filter to a RecordRef variable. The security filter is
combined with any other filters that are placed on the RecordRef variable with SETFILTER or
SETRANGE.

SETPOSITION RecordRef.SETPOSITION(String)
Use this function to set the fields in a primary key on a record to the values specified in the supplied
string. The remaining fields are left untouched.

SETRECFILTER RecordRef.SETRECFILTER
Use this function to set a filter on a record that is referred to by a recordref.

SETTABLE RecordRef.SETTABLE(rec)
Use this function to make a record variable use the same table instance as a recordref variable.

SETVIEW RecordRef.SETVIEW(String)
Use this function to set the current sort order, key and filters on a table.

WRITEPERMISSION Ok := RecordRef.WRITEPERMISSION
Use this function to find out if you can write to a table. This function can test for both full write
permission and a partial write permission that has been granted with a security filter. A write
permission consists of Insert, Delete and Modify permissions.

REPORT
Use this complex data type to store reports. Reports contain a number of simpler elements called controls. Controls are used to
display information to the user or receive information from the user.

BREAK BREAK
Use this function to exit from a loop or a trigger in a data item trigger of a dataport, report or XMLport.

CREATETOTALS CREATETOTALS(Var1 [, Var2] ,...)
Use this function to maintain totals for a variable in the same way as totals are maintained for fields
by using the TotalFields property.

NEWPAGE NEWPAGE
Use this function to force a page break when printing a report.

NEWPAGEPERRECORD [IsNewPagePerRecord] := NEWPAGEPERRECORD([SetNewPagePerRecord])
Use this function to return the current setting of the NewPagePerRecord property, and to set this
property to a new value.

OBJECTID String:=Report.OBJECTID([UseNames])
Us this function to return the name of a report.

PAGENO [CurrPageNo] := PAGENO([NewPageNo])
Use this function to return the current page number of a report, and to set a new page number.

PAPERSOURCE CurrReport.PAPERSOURCE(PaperBinNo [, PhysicalPage])

MBS-Navision 4.00 SP1 Quick Reference Page 5

Use this function to update a FlowField in a record.
CALCSUM [Ok:=] FieldRef.CALCSUM

Use this function to calculate the total of a SumIndexField in a table.
CAPTION Caption := FieldRef.CAPTION

Use this function to return the current caption of a field referred to by a fieldref as a string.
CLASS Class := FieldRef.CLASS

Use this function to return the fieldclass of the field that is currently selected.
FIELDERROR FieldRef.FIELDERROR([Text])

Use this function to stop the execution of the code (cause a run-time error, in fact) and create an
error message for a field.

GETFILTER String := FieldRef.GETFILTER
Use this function to return the filter within the current filter group that are applied to a field.

GETRANGEMAX Value := FieldRef.GETRANGEMAX
Use this function to return the maximum value in a range for a field.

GETRANGEMIN Value := FieldRef.GETRANGEMIN
Use this function to return the minimum value in a range for a field.

LENGTH Length := FieldRef.LENGTH
Use this function to return the maximum size of the field (the size specified in the DataLength
property of the field).

NAME Name := FieldRef.NAME
Use this function to return the name of a field as a string.

NUMBER No := FieldRef.NUMBER
Use this function to return the number of the field.

OPTIONCAPTION OptionCaption := FieldRef.OPTIONCAPTION
Use this function to return the option caption of the field that is currently selected.

OPTIONSTRING OptionString := FieldRef.OPTIONSTRING
Use this function to return the list of options that are available in the field that is currently selected.

RECORD RecordRef := FieldRef.RECORD
Use this function to return the recordref of the field that is currently selected.

RELATION TableNumber := FieldRef.RELATION
Use this function to find out the table relationship of a given field.

SETFILTER FieldRef.SETFILTER(String [, Value],...)
Use this function to assign a filter to a field you specify.

SETRANGE FieldRef.SETRANGE([FromValue] [, ToValue])
Use this function to set a simple filter, such as a single range or a single value, on a field.

TESTFIELD FieldRef.TESTFIELD([Value])
Use this function to see if the contents of a field match a given value.

TYPE Type := FieldRef.TYPE
Use this function to return the data type of the field that is currently selected.

VALIDATE FieldRef.VALIDATE([NewValue])
Use this function to enter a new value into a field and have the new value validated by the properties
and code that have been defined for that field.

VALUE [CurrValue :=] FieldRef.VALUE([NewValue])
Use this function to set or get the value of the field that is currently selected.

FILE
Variables of this data type give you access to files. Files can be opened in text or binary mode.

CLOSE File.CLOSE
Use this function to close a file which has been opened by OPEN.

COPY [Ok :=] File.COPY(FromName, ToName)
Use this function to copy a file.

CREATE [Ok :=] File.CREATE(Name)
Use this function to create and open an ASCII or binary file. If the file exists, the system will truncate
it and then open it.

CREATEINSTREAM File.CREATEINSTREAM(Stream)
Use this function to create an InStream object for a file. This enables you to stream data into the file.

CREATEOUTSTREAM File.CREATEOUTSTREAM(Stream)
Use this function to create an OutStream object for a file. This enables you to stream data out of the
file.

CREATETEMPFILE File.CREATETEMPFILE
Use this function to create a temporary file. This enables you to save data of any format to a
temporary file. This file has a unique name and will be stored in the temporary files folder.

ERASE [Ok] := File.ERASE(Name)
Use this function to erase a file.

EXISTS [Ok :=] File.EXISTS(Name)
Use this function to determine if a file exists.

GETSTAMP [Ok] := File.GETSTAMP(Name, Date [, Time])
Use this function to find out the time at which a file was last written to (return a time stamp).

LEN Length := File.LEN
Use this function to return the length of an ASCII or binary file.

NAME Name := File.NAME
Use this function to return the name of an ASCII or binary file.

MBS-Navision 4.00 SP1 Quick Reference Page 4

datetimes, in milliseconds. This value can be negative. It is a 64 bit integer. Use the simple data type TIME to denote a time.
The system defines an undefined time as 0T. Any time between 00:00:00 to 23:59:59 is valid.

CALCDATE NewDate := CALCDATE(DateExpression [, Date])
Calculates a new date based on a date expression and a reference date.

CLOSINGDATE ClosingDate := CLOSINGDATE(Date)
Use this function to return the closing date for a Date.

CREATEDATETIME DateTime := CREATEDATETIME(Date, Time)
Use this function to create a datetime from a date and a time.

CURRENTDATETIME Datetime := CURRENTDATETIME
Use this function to return the current datetime.

DATE2DMY Number := DATE2DMY(Date, What)
Returns the day, month, or year based on a date.

DATE2DWY Number := DATE2DWY(Date, What)
Returns the day of the week, week number, and year based on the input Date.

DATI2VARIANT Variant := DATI2VARIANT(Date, Time)
Use this system date function to create a variant that contains a VT_DATE.

DMY2DATE Date := DMY2DATE(Day [, Month] [, Year])
Use this function to return a Date based on a day, month, and year.

DT2DATE Date := DT2DATE(Datetime)
Use this function to return the date part of a datetime.

DT2TIME Time := DT2TIME(Datetime)
Use this function to return the time part of a datetime.

DWY2DATE Date := DWY2DATE(WeekDay [, Week] [, Year]))
Use this function to return a Date based on a weekday, a week, and a year.

NORMALDATE NormalDate := NORMALDATE(Date)
Use this function to return the normal date (as opposed to the closing date) for the argument Date.

ROUNDDATETIME NewDateTime := ROUNDDATETIME(Datetime [, Precision][, Direction])
Use this function to round a datetime.

TIME Time := TIME
Use this function to retrieve the current time from the operating system.

TODAY Date := TODAY
Use this function to return the current date set in the operating system.

VARIANT2DATE Date := VARIANT2DATE(Variant)
Use this system date function to return a date from a VT_DATE variant.

VARIANT2TIME Time := VARIANT2TIME(Variant)
Use this system date function to return a time from a VT_DATE variant.

WORKDATE [WorkDate]:= WORKDATE([NewDate])
Use this function to return the current work date or to set a new work date.

DIALOG
Variables of this complex data type store dialog windows. These variables also give you access to a number of dialog functions,
such as OPEN, CLOSE, and so on.

BEEP BEEP(Frequency, Duration)
Use this function to sound a tone through the computer's speaker.

CLOSE Dialog.CLOSE
Use this function to close a dialog window which has been opened by OPEN.

CONFIRM Ok := Dialog.CONFIRM(String [, Default] [, Value1] ,...)
Use this function to create a dialog box which prompts the user for a yes or no answer.

ERROR ERROR(String [, Value1, ...])
Use this function to display an error message and end the execution of C/AL code.

INPUT NewControlID := Dialog.INPUT([ControlID] [,Variable])
Use this function to read what a user enters into a field in a window.

MESSAGE MESSAGE(String [, Value1, ...])
Use this function to display a text string in a message window.

OPEN Dialog.OPEN(String [, Variable1], ...)
Use this function to open a dialog window.

STRMENU OptionNumber := Dialog.STRMENU(OptionString [, DefaultNumber])
Use this function to create a menu window that displays a series of options.

UPDATE Dialog.UPDATE([Number] [, Value])
Use this function to update the value of a '#'-or '@' field in the current window.

YIELD YIELD
Use this function to pass control to the operating system, specifically DOS/Windows 3.x, so it can
process events. Once the operating system finishes, you regain control.

FIELDREF
This complex data type identifies a field in a table and gives you access to this field. The fieldref object can refer to any field in
any table in the database.

ACTIVE Ok := FieldRef.ACTIVE
Use this function to check whether the field that is currently selected is enabled or not.

CALCFIELD [Ok :=] FieldRef.CALCFIELD

MBS-Navision 4.00 SP1 Quick Reference Page 13

Use this function to return the paper source used for the current page or a specified page, and to set
a new paper source.

PREVIEW IsPreview := PREVIEW
Use this function to determine whether a report is being printed in preview mode or not.

PRINTONLYIFDETAIL [IsPrintOnlyIfDetail] := PRINTONLYIFDETAIL([SetPrintOnlyIfDetail])
Use this function to return the current setting of the PrintOnlyIfDetail property, and to set this property
to a new value.

QUIT QUIT
Use this function to abort the processing of a dataport, report or XMLport.

REPORT.RUN REPORT.RUN(Number [, ReqWindow] [, SystemPrinter] [, Record])
Use this function to load and execute the report you specify.

REPORT.RUNMODAL REPORT.RUNMODAL(Number [, ReqWindow] [, SystemPrinter] [, Record])
Use this function to load and execute the report you specify.

RUN Report.RUN
Use this function to load and execute the report you specify.

RUNMODAL Report.RUNMODAL
Use this function to load and execute the report you specify.

SAVEASHTML [Ok :=] Report.SAVEASHTML(Number, FileName [,SystemPrinter] [, Rec])
[Ok :=] Report.SAVEASHTML(FileName)
Use this function to save a report as an HTML file. A browser that supports HTML version 3.0 or later
is recommended for viewing the file.

SAVEASXML [Ok :=] Report.SAVEASXML(Number, FileName [,SystemPrinter] [, Rec])
[Ok :=] Report.SAVEASXML(FileName)
Use this function to save a report as an XML file. The report can then be exported to User Portal.

SETTABLEVIEW SETTABLEVIEW(Record)
Use this function to apply the Table View on the current record as the table view for the form, report
or dataport.

SHOWOUTPUT [IsShow] := SHOWOUTPUT ([SetShow])
Use this function to return the current setting of whether a section should be outputted or not, and to
change this setting.

SKIP SKIP
Use this function to skip the current iteration of the current dataport, report or XMLport.

TOTALSCAUSEDBY FieldNo := TOTALSCAUSEDBY
Use this function to determine which field caused a group total to be calculated - meaning
determining which field changed contents and thereby concluded a group.

URL String:=Report.URL([UseNames])
This function returns a string with the full URL to a report.

USEREQUESTFORM [IsUseRequestForm] := USEREQUESTFORM([SetUseRequestForm])
Use this function to return the current setting of the UseReqForm property, and to set this property to
a new value. This function should be used before the request form is run - that is, in the OnInitReport
trigger. Although it will not cause an error if it is used elsewhere, it will have no effect.

STRINGS
The following string data types exists: BIGTEXT, CODE, TEXT. The normal string functions cannot be used with a
BigText variable.

BIGTEXT
ADDTEXT BigText.ADDTEXT(Variable [,Position])

Use this function to add a text string to a BigText variable. The string can be inserted anywhere in
the Variable or added at the end of the variable.

GETSUBTEXT [RetLength] := BigText.GETSUBTEXT(Variable, Position [,Length])
Use this function to retrieve part of a BigText variable.

LENGTH Length := BigText.LENGTH
Use this function to retrieve the length of a BigText variable.

READ [Ok :=] BigText.READ(InStream)
Use this function to stream a BigText that is stored as a BLOB in a table to a BigText variable.

TEXTPOS Position := BigText.TEXTPOS(String)
Use this function to retrieve the position at which a specific string first occurs in a BigText.

WRITE [Ok :=] BigText.WRITE(OutStream)
Use this function to stream a BigText to a BLOB field in a table.

STRING
CONVERTSTR NewString := CONVERTSTR(String, FromCharacters, ToCharacters)

Use this function to convert the characters in a string based on the characters in the strings
FromCharacters and ToCharacters, which serve as conversion tables.

COPYSTR NewString := COPYSTR(String, Position [, Length])
Use this function to copy a substring of any length from a specific position in a string (text or code) to
a new string. If you omit Length, the resulting string includes all characters from Position to the end
of the string.

DELCHR NewString := DELCHR(String [, Where] [, Which])

MBS-Navision 4.00 SP1 Quick Reference Page 14

Use this function to delete one or more characters in a string.
DELSTR NewString := DELSTR(String, Position [, Length])

Use this function to delete a substring inside a string (text or code).
FORMAT String := FORMAT(Value [, Length] [, FormatStr/Number])

Use this function to format a value into a string.
INCSTR NewString := INCSTR(String)

Use this function to increase a positive number or decrease a negative number inside a string by one
(1).

INSSTR NewString := INSSTR(String, SubString, Position)
Use this function to insert a substring into a string.

LOWERCASE NewString := LOWERCASE(String)
Use this function to convert all letters in a string to lowercase.

MAXSTRLEN MaxLength := MAXSTRLEN(String)
Use this function to return the maximum defined length of a string variable.

PADSTR NewString := PADSTR(String, Length [, FillCharacter])
Use this function to change the length of a string to a length you define. The system does this by
either truncating the string or adding filler characters at the end of the string.

SELECTSTR NewString := SELECTSTR(Number, CommaString)
Use this function to retrieve a substring from a comma-separated string.

STRCHECKSUM CheckNumber :=STRCHECKSUM(String [, WeightString] [, Modulus])
Use this function to calculate a checksum for a string containing a number.

STRLEN Length := STRLEN(String)
Use this function to return the length of a string you define.

STRPOS Position := STRPOS(String, SubString)
Use this function to search for a substring inside a string.

STRSUBSTNO NewString := STRSUBSTNO(String [,Value1, ...])
Use this function to replace %1, %2, %3... and #1, #2, #3... fields in a string with the values you
provide as optional parameters.

UPPERCASE NewString := UPPERCASE(String)
Use this function to convert the letters in a string to uppercase.

SYSTEM
ARRAY
ARRAYLEN Length := ARRAYLEN(Array [, Dimension])

Use this function to return the total number of elements in an array or the number of elements in a
specific dimension.

COMPRESSARRAY [Count =:] COMPRESSARRAY(StringArray)
Use this function to move all non-empty strings (text) in an array to the beginning of the array. The
resulting StringArray has the same number of elements as the input array, but empty entries and
entries that contain only blanks appear at the end of the array.

COPYARRAY COPYARRAY(NewArray, Array, Position [, Length])
Use this function to copy one or more elements in an array to a new array. You can only copy from
one-dimensional arrays. Repeat the COPYARRAY function to copy two- and three-dimensional
arrays.

CODECOVERAGE
CODECOVERAGELOG [IsActive]:= CODECOVERAGELOG([NewIsActive])

Use this function to start and stop the logging of code. You can also use it to retrieve the current
logging status. You must only start the Code Coverage tool from the command prompt when you
want to get a total overview of the code used when running Navision or when you are testing the
application. To start Navision with the Code Coverage tool on, enter the following command:
“fin.exe COVERAGELOG”

LANGUAGE
GLOBALLANGUAGE [LanguageID]:= GLOBALLANGUAGE([NewLanguageID])

Use this function to set and retrieve the current C/SIDE global language setting The LanguageID is a
standard Windows language ID. The Windows Language virtual table contains a list of these IDs and
the corresponding names and short names..

LANGUAGE [CurrLanguage]:= LANGUAGE([NewLanguage])
Use this function to set and retrieve the current language setting for an object (form, report or
dataport).

WINDOWSLANGUAGE LanguageID:= WINDOWSLANGUAGE
Use this function to retrieve the current Windows language setting.

OPERATING SYSTEM
COMMANDLINE String := COMMANDLINE

Use this function to return a list of the parameters used to start Navision.
CONTEXTURL String:=CONTEXTURL

Use this function to return a context string that defines the current position of the running objects.
Here are two examples of a context string:
navision://client/run?database=filename&company=companyname
navision://client/run?server=servername&company=companyname&servertype=MSSQL

ENVIRON String := ENVIRON(Name)

MBS-Navision 4.00 SP1 Quick Reference Page 3

VISIBLE [IsVisible] := Form.VISIBLE([SetVisible])
Use this function to return the current setting of the Visible property of a form or control, and to
change the setting of the property.

WIDTH [CurrWidth] := Form.WIDTH([NewWidth])
Use this function to return the current setting of the Width property of a form or control, and to set this
property to a new value.

XPOS [CurrXPos] := Form.XPOS([NewXPos])
Use this function to return the current setting of the XPos property of a form or control, and to set this
property to a new value.

YPOS [CurrYPos] := Form.YPOS([NewYPos])
Use this function to return the current setting of the YPos property of a form or control, and to set this
property to a new value.

DATABASE

CHECKLICENSEFILE CHECKLICENSEFILE(KeyNumber)
Use this function to check a key in the license file of the system.

COMMIT COMMIT
Use this function to end the current write transaction.

COMPANYNAME Name := COMPANYNAME
Use this function to return the current company name.

CURRENTTRANSACTIONTYPE [TransactionType :=] CURRENTTRANSACTIONTYPE([TransactionType])
This function can be used both to return the current transaction type and set a new type to
be assigned. The following basic transaction types are available: Browse, Snapshot,
UpdateNoLocks, Update, Report. [SQL]

LOCKTIMEOUT [LockTimeout :=] LOCKTIMEOUT([LockTimeout])
This function has been specifically designed for use in long running processes that
shouldn't be terminated because of a lock timeout, for example batch jobs that run
overnight.

SELECTLATESTVERSION SELECTLATESTVERSION
This function forces the latest version of the database to be used.

SERIALNUMBER String := SERIALNUMBER
Use this function to return a string which contains the serial number of the license file for
your Navision system.

TRANSACTIONTYPE Use variables of this complex data type to store the current transaction type. You can then
use the value to set the transaction type. You can only change the transaction type when
there is no current transaction, in other words immediately after a commit.

USERID ID := USERID
Use this function to have the system return the ID of the current user.

DATAPORT
Dataports are objects that are used for importing data from and exporting data to external text files.

BREAK BREAK
Use this function to exit from a loop or a trigger in a data item trigger of a dataport, report or XMLport.

DATAPORT.RUN DATAPORT.RUN(Number [, ReqWindow] [, Record])
Use this function to load and execute the dataport you specify.

DATAPORT.RUNMODAL DATAPORT.RUNMODAL(Number [, ReqWindow] [, Record])
Use this function to load and execute the dataport you specify.

FILENAME [CurrFileName] := FILENAME([NewFileName])
Use this function to return the current setting of the FileName property of a dataport, and to set this
property to a new value.

IMPORT [IsImport] := IMPORT([SetImport])
Use this function to return the current setting of the Import property, and to change the setting of the
property.

QUIT QUIT
Use this function to abort the processing of a dataport, report or XMLport.

RUN Dataport.RUN
Use this function to load and execute the dataport you specify.

RUNMODAL Dataport.RUNMODAL
Use this function to load and execute the dataport you specify.

SETTABLEVIEW SETTABLEVIEW(Record)
Use this function to apply the Table View on the current record as the table view for the form, report
or dataport.

SKIP SKIP
Use this function to skip the current iteration of the current dataport, report or XMLport.

DATES & TIMES
Use this simple data type DATE to denote dates ranging from January 1, 0 (the year zero) to December 31, 9999. The system
defines an undefined date as 0D. Use the data type DATETIME to denote the date and time of day. The datetime is stored in
the database as Coordinated Universal Time (UTC). Use the data type DURATION to represent the difference between two

MBS-Navision 4.00 SP1 Quick Reference Page 2

AUTOMATION
The Automation data type is used to reference an automation server. In order to use an automation server in C/SIDE, define a
variable of type Automation and give it a name. C/SIDE can receive events from an Automation server.

CREATE [Ok :=] CREATE(Automation [,NewServer])
Use this function to create an Automation object.

ISCLEAR Ok := ISCLEAR(Automation)
Use this variable function to check whether an automation object has been created or not.

VARIABLEACTIVE IsActive := VARIABLEACTIVE(Variable)
Use this function to determine if a variable, such as field or a control, is active or inactive.

BLOB
The maximum size of a BLOB is normally determined by your system's disk storage capacity. However, the maximum size in
C/SIDE is 2GB.

CREATEINSTREAM Blob.CreateInStream(Stream)
Use this function to create an InStream object for a BLOB (Binary Large Object).
This enables you to stream data into the BLOB.

CREATEOUTSTREAM Blob.CreateOutStream(Stream)
Use this function to create an OutStream object for a BLOB (Binary Large Object).
This enables you to stream data out of the BLOB.

EXPORT [ExportName :=] Blob.EXPORT([Name [, CommonDialog]])
Use this function to export a BLOB (Binary Large Object).

HASVALUE HasValue := Blob.HASVALUE
Use this function to determine if a BLOB (Binary Large Object) has a value.

IMPORT [ImportName :=] Blob.IMPORT([Name [, CommonDialog]])
Use this function to import a BLOB (Binary Large Object).

CODEUNIT
Use this complex data type to store units of C/AL code. Codeunits contain a number of user-defined functions.

Codeunit.RUN [Ok] := Codeunit.RUN(Number [, Record])
Use this function to load and execute the unit of C/AL code you specify.

RUN [Ok] := Codeunit.RUN(VAR Record)
Use this function to load and execute the unit of C/AL code you specify. To use this function, you can
specify a C/SIDE table associated with the codeunit when you defined the codeunit properties. This
lets you pass a variable with the function. The transaction that the codeunit contains is always
committed due to the boolean return value.

CONTROLS

ACTIVATE [Ok :=] Form.ACTIVATE
Use this function to make a form or control active.

DECIMALPLACESMAX [CurrMaxDecimals] := DECIMALPLACESMAX([NewMaxDecimals])
Use this function to return the current setting of the maximum number of decimal places for a control
(field or text box), and to set a new value.

DECIMALPLACESMIN [CurrMinDecimals] := DECIMALPLACESMIN([NewMinDecimals])
Use this function to return the current setting of the minimum number of decimal places for a control
(field or text box), and to set a new value.

EDITABLE [IsEditable] := Form.EDITABLE([SetEditable])
Use this function to return the current setting of the Editable property, and to change the setting of
the property.

ENABLED [IsEnabled] := ENABLED([SetEnabled])
Use this function to return the current setting of the Enabled property of a control, and to change the
setting of the property.

HEIGHT [CurrHeight] := Form.HEIGHT([NewHeight])
Use this function to return the current setting of the Height property of a form or control, and to set
this property to a new value.

INLINEEDITING [IsInLineEditing] := INLINEEDITING([SetInLineEditing])
Use this function to return the current setting of the InLineEditing property of a table box or a matrix
box, and to change the setting of the property.

UPDATEEDITABLE UPDATEEDITABLE(Editable)
Use this function to dynamically change the setting of the Editable property of a field, form or control.

UPDATESELECTED UPDATESELECTED(Selected)
Use this function to mark a control as selected (which will normally be displayed in reverse video, but
this depends upon the Windows color scheme that the end user has chosen.)

UPDATEFONTBOLD UPDATEFONTBOLD(FontBold)
Use this function to dynamically change the setting of the FontBold property of a control.

UPDATEFORECOLOR UPDATEFORECOLOR(ForeColor)
Use this function to dynamically change the setting of the ForeColor property of a control.

UPDATEINDENT UPDATEINDENT(Indent)
Use this function set the Indent property of a text box.

MBS-Navision 4.00 SP1 Quick Reference Page 15

Use this function to return a string associated with an environment variable. If the environment
variable does not exist, the string that is returned may contain garbage.

GUIALLOWED [Ok:=] GUIALLOWED()
Use this operating system function to check whether the C/AL code is allowed to show any
information on the screen. When you run Navision Application Server, GUIALLOWED always returns
FALSE and any call to CONFIRM or dialog.OPEN, or any attempt to use a form or dataport will
generate an error.

HYPERLINK HYPERLINK(URL)
This function starts up Microsoft Internet Explorer, passing a URL as an argument to that program.

OSVERSION String := OSVERSION
Use this function to return a string which contains the name and version of the operating system or
operating environment. This string tells you the type and version of the operating system or operating
environment. Here are some typical examples of what the system returns: Windows 98 ->
Windows_95_4.10; Windows NT -> Windows_NT_4.0; Windows 2000 -> Windows_NT_5.0;
Windows XP -> Windows_NT_5.1; Windows 2003 -> Windows_NT_5.2.

SHELL [ReturnCode]:= SHELL(Name [, Param, ...])
Use this function to execute external programs and operating system commands from C/AL
programs. You can run this function modally or non-modally, depending on whether or not you
include the return value from the external program in your code. To pass multiple parameters to the
command, enter the parameters, either as individual arguments or as a string with the arguments
separated by spaces. The total length of the strings cannot exceed 128 characters.

SLEEP SLEEP(Duration)
Use this function to return control to the operating system for a specifiable amount of time
(milliseconds).

VARIABLE
CLEAR CLEAR(Variable)

Use this function to clear the value of a single variable. CLEAR also clears all filters that were set if
the variable is a record and resets the key to the primary key. Use the CLEARALL function to clear
all internal variables, keys, and filters in the object and in any associated objects such as reports,
forms, codeunits, and so on that contain C/AL code. Note, however, that CLEARALL does not affect
or change values for variables in single instance codeunits.

CLEARALL CLEARALL
Use this function to clear all internal variables (except REC variables), keys, and filters in the object
and in any associated objects, such as reports, forms, codeunits, and so on that contain C/AL code.
CLEARALL works by calling CLEAR repeatedly on each variable. However, this is not the case with
codeunits, where the CLEARALL function works by calling CLEARALL inside the codeunit. It deletes
the contents of the codeunit, whereas CLEAR only deletes the reference to the codeunit.

COPYSTREAM [Ok :=] COPYSTREAM(OutStream, InStream)
Use this variable function to copy the information contained in an InStream to an OutStream.

EVALUATE [Ok :=] EVALUATE(Variable, String [, Number])
Use this function to evaluate a string representation of a value into its normal representation. The
system assigns the result to a variable.

VARIANT
The C/AL variant data type can contain any variants from OCX and Automation objects (VT_VARIANT). The variant data type
can contain the following C/AL data types: record, file, action, codeunit, Automation, boolean, option, integer, decimal, char,
text, code, date, time, binary, DateFormula, TransactionType, InStream and OutStream. To return C/AL variants in function
calls, you must pass them in a parameter ByVar (called ByRef in COM).

DATI2VARIANT Variant := DATI2VARIANT(Date, Time)
Use this system date function to create a variant that contains a VT_DATE.

ISACTION Ok := Variant.ISACTION
Use this function to find out whether a C/AL variant contains an action variable or not.

ISAUTOMATION Ok := Variant.ISAUTOMATION
Use this function to find out whether a C/AL variant contains an automation variable or not.

ISBINARY Ok := Variant. ISBINARY
Use this function to find out whether a C/AL variant contains a binary variable or not.

ISBOOLEAN Ok := Variant. ISBOOLEAN
Use this function to find out whether a C/AL variant contains a boolean variable or not.

ISCHAR Ok := Variant. ISCHAR
Use this function to find out whether a C/AL variant contains a char variable or not.

ISCODE Ok := Variant. ISCODE
Use this function to find out whether a C/AL variant contains a code variable or not.

ISCODEUNIT Ok := Variant.ISCODEUNIT
Use this function to find out whether a C/AL variant contains a codeunit variable or not.

ISDATE Ok := Variant. ISDATE
Use this function to find out whether a C/AL variant contains a date variable or not.

ISDATEFORMULA Ok := Variant.ISDATEFORMULA
Use this function to find out whether a C/AL variant contains a dateformula variable or not.

ISDECIMAL Ok := Variant. ISDECIMAL
Use this function to find out whether a C/AL variant contains a decimal variable or not.

ISFILE Ok := Variant.ISFILE

MBS-Navision 4.00 SP1 Quick Reference Page 16

Use this function to find out whether a C/AL variant contains a file variable or not.
ISINSTREAM Ok := Variant.ISINSTREAM

Use this function to find out whether a C/AL variant contains an InStream variable or not.
ISINTEGER Ok := Variant. ISINTEGER

Use this function to find out whether a C/AL variant contains an integer or not.
ISOPTION Ok := Variant. ISOPTION

Use this function to find out whether a C/AL variant contains an option variable or not.
ISOUTSTREAM Ok := Variant.ISOUTSTREAM

Use this function to find out whether a C/AL variant contains an OutStream variable or not.
ISRECORD Ok := Variant.ISRECORD

Use this function to find out whether a C/AL variant contains a record variable or not.
ISTEXT Ok := Variant. ISTEXT

Use this function to find out whether a C/AL variant contains a text variable or not.
ISTIME Ok := Variant. ISTIME

Use this function to find out whether a C/AL variant contains a time variable or not.
ISTRANSACTIONTYPE Ok := Variant.ISTRANSACTIONTYPE

Use this function to find out whether a C/AL variant contains a transactiontype variable or not.
VARIANT2DATE Date := VARIANT2DATE(Variant)

Use this system date function to return a date from a VT_DATE variant.
VARIANT2TIME Time := VARIANT2TIME(Variant)

Use this system date function to return a time from a VT_DATE variant.

XMLPORT
The XMLport object is conceptually related to a dataport; you also use XMLports to import and export data, but in XML format.
XMLports make the process of exchanging data in XML between systems more simple and streamlined. You only need a basic
knowledge of XML and you do not have to create XML documents using external products.

BREAK BREAK
Use this function to exit from a loop or a trigger in a data item trigger of a dataport, report or XMLport.

QUIT QUIT
Use this function to abort the processing of a dataport, report or XMLport.

SKIP SKIP
Use this function to skip the current iteration of the current dataport, report or XMLport.

XMLport.EXPORT [{Ok} :=] EXPORT(Number, OutStream[, Record])
Use this function to create an XML data stream (XML document) and send it to a chosen destination.

XMLport.IMPORT [{Ok} :=] IMPORT(Number, InStream [, ResponseOutStream])
Use this function to read and parse an incoming XML data stream (XML document).

GENERAL INFO
Virtual Tables

2000000001 Object 2000000028 Table Information 2000000050 Windows Object
2000000002 User 2000000029 System Object 2000000051 Service Connection Point
2000000003 Member Of 2000000037 Performance 2000000052 Windows Group Member
2000000004 User Role 2000000038 AllObj 2000000053 Windows Access Control
2000000005 Permission 2000000039 Printer 2000000054 Windows Login
2000000006 Company 2000000040 License Information 2000000055 SID - Account ID
2000000007 Date 2000000041 Field 2000000056 User SID
2000000009 Session 2000000042 OLE Control 2000000058 AllObjWithCaption
2000000010 Database File 2000000043 License Permission 2000000059 Breakpoint
2000000020 Drive 2000000044 Permission Range 2000000061 User Menu Level
2000000022 File 2000000045 Windows Language 2000000063 Key
2000000024 Monitor 2000000046 Automation Server 2000000203 Database Key Groups
2000000026 Integer 2000000049 Code Coverage

Caption Classes

When you have set the CaptionClass property on a field or control, users can configure the caption of the field or control without
having to modify code. C/SIDE passes the value of the CaptionClass property to the trigger with ID 15 on Codeunit 1, which
translates the caption class to a caption that users can see.
C/SIDE calls this trigger with a language and a caption class. The trigger must convert the caption class into the specific caption
for that language and return it as a string. Language is specified as an integer. Caption class is a text.

Data Types

ACTION CHAR DECIMAL INSTREAM RECORDID XMLPORT
AUTOMATION CODE DIALOG INTEGER RECORDREF
BIGINTEGER CODEUNIT DURATION KEYREF REPORT
BIGTEXT DATAPORT FIELDREF OCX TEXT
BINARY DATE FILE OPTION TIME
BLOB DATEFORMULA FORM OUTSTREAM TRANSACTIONTYPE
BOOLEAN DATETIME GUID RECORD VARIANT

Microsoft Business Solutions online community

Quick Reference

Microsoft Business Solutions
Navision 4.00 SP1

Table of contents:

AUTOMATION 2 INSTREAM & OUTSTREAM 7
BLOB 2 KEYREF 8
CODEUNIT 2 NUMERIC 8
CONTROLS 2 RECORD 8
DATABASE 3 RECORDID 10
DATAPORT 3 RECORDREF 10
DATES & TIMES 3 REPORT 12
DIALOG 4 STRINGS 13
FIELDREF 4 SYSTEM 14
FILE 5 VARIANT 15
FORM 6 XMLPORT 16
GUID 7 GENERAL INFO 16

Author: Luc Van Dyck
Website: http://www.mibuso.com

http://www.mibuso.com

