
Nikola Kukrika – Microsoft
Luc van Vugt – fluxxus.nl

• Advanced topics in test automation

Mocking and Testability, Testing integrations (APIs, job queue, sessions), Demodata, Code coverage,

Reusing Microsoft Tests, TransactionModel (AutoRollback)

• Being more efficient

• Good tests

• Internals of the test tooling

Agenda

Us

Why?

test automation

Best practice
Code Quality

Quality Assurance

CI/CD

Modern Software

Regression prevention

Less bugs

Agile

Better code design

Efficient

Regression prevention

Documentation

Quality Metrics

Quality Metrics
Risk Management

ATDD TDD

Manual Testing

Simply a must

Code coverage

Tools

Why NOT?

test automation

Costs are too high and will make us uncompetitive.

We are not used to doing it this way and our sales and management team don’t see the benefits and

cannot be "convinced."

Who's going to write the test code? We already have a hard time finding people.

Our everyday business does not leave room to add a new discipline.

There are too many different projects to allow for test automation.

Microsoft has tests automated, and still, Dynamics 365 Business Central is not bug-free.

Customers do the testing, so why should we bother?

No 1. Reason: No time (money) to write tests

Test automation needs to save time (money)

If it is not, you are doing it wrong

No testing TestTest

New feature

No testing TestTest

New feature

No testing Automated TestingManual Testing

TDD
Test Driven Development

Ensures that the code runs
correctly

ATDD
Acceptance Test Driven

Development

(Given, When, Then)
Ensures that you write the

correct code

Scenario testing
Ad hoc testing (exploratory…)

Specialized testing

No replacement for
human eyes

New feature

End User Testing Automated TestingManual Testing

TDD
Test Driven Development

Ensures that the code runs
correctly

Scenario testing
Ad hoc testing (exploratory…)

Specialized testing

No replacement for
human eyes

New feature

SDD
Scream Driven Development

It is not fixed until customer
stops screaming

ATDD
Acceptance Test Driven

Development

(Given, When, Then)
Ensures that you write the

correct code

No time (money) to write tests
Test automation is not needed

We believe we can live with no test automation

• More than 30.000 AL Tests

• More than 80.000 Platform tests

• Dedicated tests (UI Rendering, API Test Scripts, Load/Performance…)

• We do not have enough

• It would not be possible to ship BC without tests

• If you decide not to automate, you are building debt

BC Test suite

History

90s - The age of Software Testing

Difficult to roll out HF-es

$100.000 - $200.000 cost
per bug

Today

Complex Systems

Easy HF Rollout is a must

Early detection (telemetry)
Disaster Recovery

Only Dogma to follow is:
Do not follow any Dogmas

Good Tests

1. Cover the risk

Good Tests

Good Tests

1. Cover the risk

Good Tests

1. Cover the risk

Good Tests

1. Cover the risk

Cover the risk

Cover all high impact

Test as close to the risk
as possible

Test needs to add value

1.2.

3.Never?

Impact

Probability

Tests need to add value
procedure GenerateGiroKID(DocumentNo: Code[20]; var GiroKID: Text[25])
var

SalesSetup: Record "Sales & Receivables Setup";
begin

SalesSetup.Get();
case true of

(SalesSetup."KID Setup" = SalesSetup."KID Setup"::"Do not use"):
GiroKID := '';

(DocumentType = 2) and (not SalesSetup."Use KID on Fin. Charge Memo"):
GiroKID := '';

(DocumentType = 3) and (not SalesSetup."Use KID on Reminder"):
GiroKID := '';

not KIDTextOK(DocumentNo, SalesSetup."Document No. length", KIDError):
GiroKID := '';

else
// Format KID
SalesSetup.TestField("Document No. length");
GiroKID := CopyStr(DocumentNo, 1, MaxStrLen(SalesSetup."Document No. length") - 1);

end;
end;

Tests need to add value
procedure GenerateGiroKID(DocumentNo: Code[20]; var GiroKID: Text[25])
var

SalesSetup: Record "Sales & Receivables Setup";
begin

SalesSetup.Get();
case true of

(SalesSetup."KID Setup" = SalesSetup."KID Setup"::"Do not use"):
GiroKID := '';

(DocumentType = 2) and (not SalesSetup."Use KID on Fin. Charge Memo"):
GiroKID := '';

(DocumentType = 3) and (not SalesSetup."Use KID on Reminder"):
GiroKID := '';

not KIDTextOK(DocumentNo, SalesSetup."Document No. length", KIDError):
GiroKID := '';

else
// Format KID
SalesSetup.TestField("Document No. length");
GiroKID := CopyStr(DocumentNo, 1, MaxStrLen(SalesSetup."Document No. length") - 1);

end;
end;

[Test]
procedure TestGiroKidBlankWhenSalesSetupSetToDontUse()
var

SalesSetup: Record "Sales & Receivables Setup";
DocumentTools: Codeunit DocumentTools;
Any: Codeunit Any;
Assert: Codeunit "Library Assert";
GiroKID: Text[25];
DocumentNo: Code[20];

begin
// [GIVEN] Sales Setup marked as not use
if not SalesSetup.Get() then

SalesSetup.Insert();

SalesSetup."KID Setup" := "KID Setup"::"Do not use";
SalesSetup.Modify();

// [GIVEN] A document number
DocumentNo := UpperCase(Any.AlphabeticText(MaxStrLen(DocumentNo)));

// [WHEN] We call generate KID
DocumentTools.GenerateGiroKID(DocumentNo, GiroKID);

// [THEN] Blank GiroKID is returned
Assert.AreEqual('', GiroKID, 'Unexpected value for GiroKID');

end;

Tests need to add value
procedure GenerateGiroKID(DocumentNo: Code[20]; var GiroKID: Text[25])
var

SalesSetup: Record "Sales & Receivables Setup";
begin

SalesSetup.Get();
case true of

(SalesSetup."KID Setup" = SalesSetup."KID Setup"::"Do not use"):
GiroKID := '';

(DocumentType = 2) and (not SalesSetup."Use KID on Fin. Charge Memo"):
GiroKID := '';

(DocumentType = 3) and (not SalesSetup."Use KID on Reminder"):
GiroKID := '';

not KIDTextOK(DocumentNo, SalesSetup."Document No. length", KIDError):
GiroKID := '';

else
// Format KID
SalesSetup.TestField("Document No. length");
GiroKID := CopyStr(DocumentNo, 1, MaxStrLen(SalesSetup."Document No. length") - 1);

end;
end;

1 Test

1 Test

1 Test

1 Test

2 Tests

Tests need to add value
procedure GenerateGiroKID(DocumentNo: Code[20]; var GiroKID: Text[25])
var

SalesSetup: Record "Sales & Receivables Setup";
begin

SalesSetup.Get();
case true of

(SalesSetup."KID Setup" = SalesSetup."KID Setup"::"Do not use"):
GiroKID := '';

(DocumentType = 2) and (not SalesSetup."Use KID on Fin. Charge Memo"):
GiroKID := '';

(DocumentType = 3) and (not SalesSetup."Use KID on Reminder"):
GiroKID := '';

not KIDTextOK(DocumentNo, SalesSetup."Document No. length", KIDError):
GiroKID := '';

else
// Format KID
SalesSetup.TestField("Document No. length");
GiroKID := CopyStr(DocumentNo, 1, MaxStrLen(SalesSetup."Document No. length") - 1);

end;
end;

1 Test

1 Test

1 Test

1 Test

2 Tests

// [GIVEN] A document number
DocumentNo := UpperCase(Any.AlphabeticText(MaxStrLen(DocumentNo)));

// [WHEN] We call generate KID
DocumentTools.GenerateGiroKID(DocumentNo, GiroKID);

// [THEN] Blank GiroKID is returned
Assert.AreEqual('', GiroKID, 'Unexpected value for GiroKID');

end;

Tests need to add value
procedure GenerateGiroKID(DocumentNo: Code[20]; var GiroKID: Text[25])
var

SalesSetup: Record "Sales & Receivables Setup";
begin

SalesSetup.Get();
case true of

(SalesSetup."KID Setup" = SalesSetup."KID Setup"::"Do not use"):
GiroKID := '';

(DocumentType = 2) and (not SalesSetup."Use KID on Fin. Charge Memo"):
GiroKID := '';

(DocumentType = 3) and (not SalesSetup."Use KID on Reminder"):
GiroKID := '';

not KIDTextOK(DocumentNo, SalesSetup."Document No. length", KIDError):
GiroKID := '';

else
// Format KID
SalesSetup.TestField("Document No. length");
GiroKID := CopyStr(DocumentNo, 1, MaxStrLen(SalesSetup."Document No. length") - 1);

end;
end;

1 Test

1 Test

1 Test

1 Test

2 Tests

Cemented in place

Tests need to add value

Proper way:
TestGiroKIDSalesInvoicePrivateCustomer

TestGiroKIDSalesInvoiceBusinessCustomer

TestGiroKIDReminder

…

Or even better:
TestElectronicInvoicingPrivateCustomerSalesInvoice

TestElectronicInvoicingBusinessCustomerSalesInvoice

…

Avoiding Unit Test Cement

Unit tests should test complex logic

Need to know proper inputs/outputs

Messages in Assert are the key
Person looking at the test failure will most likely not know what the test is about

codeunit 80 "Sales-Post"

codeunit 12 "Gen. Jnl.-Post Line“
codeunit 1255 "Match Bank Payments“
…

Avoiding Unit Test Cement 2

Unit tests must match
method description 1-1

Everything written in method documentation should
have a unit test

Every unit test should be reflected in the public method
definition

TDD will ensure you test how good the interface is
before coding it

codeunit 1284 "Password Handler"
{

/// <summary>
/// Generates a password that consists of a user-defined number of characters, and meets the <see

cref="IsPasswordStrong"/> conditions.
/// </summary>
/// <param name="Length">The number of characters in the password. Passwords must contain at least eight

characters.</param>
/// <error>The length is less than the minimum defined in <see cref="OnSetMinPasswordLength"/>

event.</error>
/// <returns>The generated password.</returns>
procedure GeneratePassword(Length: Integer): Text;
begin

exit(PasswordHandlerImpl.GeneratePassword(Length));
end;

/// <summary>
/// Check whether the password meets the following conditions:
/// - Contains at least the number characters defined by <see cref="OnSetMinPasswordLength"/> event, but it

cannot be less than eight.
/// - Contains uppercase and lowercase characters, digits, and special characters.
/// - Does not contain sequences of characters. For example, aaa or 123.
/// </summary>
/// <param name="Password">The password to check.</param>
/// <returns>True if the password meets the conditions for strong passwords.</returns>
procedure IsPasswordStrong(Password: Text): Boolean;
begin

exit(PasswordHandlerImpl.IsPasswordStrong(Password));
end;

No tests? Start with Scenario testing

Cover the most important scenarios first
You will automate the documentation

You will document the code

Even few scenario tests will give you a good code coverage

Slowly introduce unit tests with refactoring

TDD Demo

You can pick up
these bugs or a

new feature. What
do you preferer?

Feature of course

Cover the risk

Document the code

Fast to execute
Easy to read
Test one thing

Good Tests

Fast to execute – numbers please?

Test – few seconds, max. 2 minutes

Codeunit – max. 5 minutes. No more than 50 tests.

Test extension – max. 3o minutes
Long runs consume resources. Issues with cross test dependencies (Singleton codeunits…)

Group all long running methods into dedicated test extensions

Single Instance codeunits

Very difficult to test
Due to Cross-Test dependency

Clear from initialize method

Try to avoid when possible

Cover the risk

Document the code

Fast to execute

Easy to read

Test one thing

Should not modify the environment

Good Tests

Rolling back data – Test isolation

PerCodeunit Recommended, most of the tests
Needed because of - number series issues, different warnings…

Keep the tests simple

Disabled Needed for specific scenarios
Around 200-300 tests (out of 30000+)

PerMethod Never – Rollback is expensive, should not be needed

Roll back data – TransactionModel:: AutoRollback

When it should be used:

Never

Test Event Subscribers

All Test Event Subscribers should be manual

Could affect other tests

You will need to uninstall tests to verify the scenario manually

Mocking
aka Test Doubling

With mocking we change the code execution flow …

• … by introducing a stand-in for – a part – of the real code

Such a stand-in, aka test double, mimics the behavior of the real code …

• … as such introducing a shortcut in the full code execution

Mocking aka Test Doubling

A test double is applied to replace calls to external components like web

services

• as we want our tests to be independent of the real component

• as we are only interested in validating our business logic

• as we have no control over their availability

• to save cost on paid services

• and also, to save test execution time

Mocking aka Test Doubling

A test double is applied to replace calls to external components like web

services

• as we want our tests to be independent of the real component

• as we are only interested in validating our business logic

• as we have no control over their availability

• to save cost on paid services

• and also, to save test execution time – remember that TA should be fast!

• alternatively, it could also be applied to datasets

Mocking aka Test Doubling

Validation VAT registration number

Test Doubling – example

Validation VAT registration number

Test Doubling – example

Enter Country/

Region Code

 VAT Reg. No.

Start Yes

Init VAT

Registration

Log

Call Service &

Get Response
Yes End

Update VAT

Registration

Log

service

enabled?

No

 Country/

Region

Code in EU?

No

 VAT Reg.

No. well

formatted?

Yes

No

Validation VAT registration number

Test Doubling – example

Enter Country/

Region Code

 VAT Reg. No.

Start Yes

Init VAT

Registration

Log

Call Service &

Get Response
Yes End

Update VAT

Registration

Log

service

enabled?

No

 Country/

Region

Code in EU?

No

 VAT Reg.

No. well

formatted?

Yes

No

Validation VAT registration number

• Bad, as there is no direct way to replace dependency on service call

• Yes, we can replace service endpoint, but no way to mimic service call

Test Doubling – bad example

Enter Country/

Region Code

 VAT Reg. No.

Start Yes

Init VAT

Registration

Log

Call Service &

Get Response
Yes End

Update VAT

Registration

Log

service

enabled?

No

 Country/

Region

Code in EU?

No

 VAT Reg.

No. well

formatted?

Yes

No

The Validation VAT registration number feature code was not written with

testability in mind …

Test Doubling – testable code

The Validation VAT registration number feature code was not written with

testability in mind … that is …

… code that can be tested efficiently and effectively using coded tests

Testable code …

• allows you to have full control over checking its behavior from your test code

• has no direct dependency on other code in your application and outside

• is broken up into loosely coupled units

Test Doubling – testable code

Validation VAT registration number

Test Doubling – testable example

Validation VAT registration number

Test Doubling – testable example

Enter Country/

Region Code

 VAT Reg. No.

Start Yes

Init VAT

Registration

Log

Call Service &

Get Response
Yes End

Update VAT

Registration

Log

service

enabled?

No

 Country/

Region

Code in EU?

No

 VAT Reg.

No. well

formatted?

Yes

No

codeunit 248

Validation VAT registration number

Test Doubling – testable example

Enter Country/

Region Code

 VAT Reg. No.

Start Yes

Init VAT

Registration

Log

Call Service &

Get Response
Yes End

Update VAT

Registration

Log

service

enabled?

No

 Country/

Region

Code in EU?

No

 VAT Reg.

No. well

formatted?

Yes

No

codeunit 248codeunit 60198

codeunit 248 "VAT Lookup Ext. Data Hndl"

trigger OnRun()

begin

VATRegistrationLog := Rec;

LookupVatRegistrationFromWebService(true);

OnRunOnAfterLookupVatRegistrationFromWebService(VATRegistrationLog, Rec);

Rec := VATRegistrationLog;

end;

local procedure LookupVatRegistrationFromWebService(ShowErrors: Boolean)

begin

SendRequestToVatRegistrationService(TempBlobRequestBody, ShowErrors);

InsertLogEntry(TempBlobRequestBody);

Commit();

end;

local procedure SendRequestToVatRegistrationService(var TempBlobBody: Codeunit "Temp Blob"; ShowErrors: Boolean)

begin

end;

local procedure InsertLogEntry(TempBlobRequestBody: Codeunit "Temp Blob")

begin

end;

[IntegrationEvent(false, false)]

local procedure OnRunOnAfterLookupVatRegistrationFromWebService(

VATRegistrationLog: Record "VAT Registration Log"; var RecVATRegistrationLog: Record "VAT Registration Log")

begin

end;

codeunit 60198 "ValidVATLookupDataHndlMock"

// Mock of "VAT Lookup Ext. Data Hndl" returning a valid log entry

trigger OnRun()

begin

SetValidVATRegistrationLog(Rec);

Commit(); // To allow for details page to be triggered to open after this

end;

local procedure SetValidVATRegistrationLog(VATRegistrationLog: Record "VAT Registration Log")

begin

ValidatedName := Any.AlphanumericText(15);

ValidatedAddress := Any.AlphanumericText(15);

CreateValidVATCheckResponse(ValidVATResponseDoc, ValidatedName, ValidatedAddress);

VATRegistrationLogMgt.LogVerification(VATRegistrationLog, ValidVATResponseDoc, NamespaceTxt);

end;

local procedure CreateValidVATCheckResponse(

var XMLDoc: DotNet XmlDocument; ValidatedName: Text; ValidatedAddress: Text)

begin

end;

Test Doubling – testable example

https://github.com/StefanMaron/MSDyn365BC.Code.History/blob/master/BaseApp/Source/Base%20Application/VAT%20Registration%20No/VATLookupExtDataHndl.Codeunit.al
https://github.com/PacktPublishing/Automated-Testing-in-Microsoft-Dynamics-365-Business-Central-Second-Edition/blob/main/Chapter%2013%20(VAT%20Registration%20No.%20Validation)/test/ValidVATLookupDataHndlMock.Codeunit.al

Technique of replacing a dependency is called dependency injection (DI)

The way applied in the example is called interface-based injection

• replacing one codeunit (id) by another

• let code run based on id using Codeunit.Run(id)

• each codeunit is an implementation of an interface definition with only

one method: OnRun

• having real interface objects in AL we can do more advanced interface-

based injection

Test Doubling – dependency injection

Using Enum extension

Advanced alternative of Codeunit.Run(id)

enum xxxx "Interface Provider" implements IInterface

{

value(0; "First Implementation")

{

Implementation = IInterface = "First Implementation";

}

value(1; "Second Implementation")

{

Implementation = IInterface = "Second Implementation";

}

}

enumextension yyyy “Stub Iface Prov." extends "Interface Provider"

{

value(yyyy; "Stub Implementation")

{

Implementation = IInterface = "Stub Implementation";

}

}

Using Setter construct

procedure SetInterfaceProvider(NewIface: Interface IInterface)

begin

ActiveInterface := NewIface;

end;

Test Doubling – interface-based injection

codeunit xxxx "Send Request"
{

procedure HandleRequest(...)
begin

OnBeforeSendRequest(..., IsHandled);
if IsHandled then

exit;
SendRequest(..., IsHandled);

end;
}

codeunit yyyy “Request Events"
{

EventSubscriberInstance = Manual;

[EventSubscriber(ObjectType::Codeunit,
Codeunit::"Send Request",
'OnBeforeSendRequest', '', false, false)]

local procedure OnBeforeSendRequest (
...; var IsHandled: Boolean)

begin
if IsHandled then

exit;
...

end;
}

Test Doubling – handled pattern

codeunit xxxx "Send Request"
{

procedure HandleRequest(...)
begin

OnBeforeSendRequest(..., IsHandled);
if IsHandled then

exit;
SendRequest(..., IsHandled);

end;
}

codeunit yyyy “Request Events"
{

EventSubscriberInstance = Manual;

[EventSubscriber(ObjectType::Codeunit,
Codeunit::"Send Request",
'OnBeforeSendRequest', '', false, false)]

local procedure OnBeforeSendRequest (
...; var IsHandled: Boolean)

begin
if IsHandled then

exit;
...

end;
}

codeunit zzzz “Test Send Request"
{

Subtype = Test;

[Test]
procedure SendRequest()
var

RequestEvents : Codeunit "Request Events";
begin

BindSubscription(RequestEvents);
...

HandleRequest(...)
...
UnbindSubscription(RequestEvents);

end;
}

Test Doubling – handled pattern

codeunit xxxx "Send Request"
{

procedure HandleRequest(...)
begin

OnBeforeSendRequest(..., IsHandled);
if IsHandled then

exit;
SendRequest(..., IsHandled);

end;
}

codeunit yyyy "Request Events"
{

EventSubscriberInstance = Manual;

[EventSubscriber(ObjectType::Codeunit,
Codeunit::"Send Request",
'OnBeforeSendRequest', '', false, false)]

local procedure OnBeforeSendRequest (
...; var IsHandled: Boolean)

begin
if IsHandled then

exit;
...

end;
}

codeunit zzzz "Test Send Request"
{

Subtype = Test;

[Test]
procedure SendRequest()
var

RequestEvents : Codeunit "Request Events";
begin

BindSubscription(RequestEvents);
...

HandleRequest(...)
...
UnbindSubscription(RequestEvents);

end;
}

Test Doubling – handled pattern

Testability

Code smell – Code should be testable

But may be needed...

Recommended – Compile out of the production app

Cover the risk

Document the code

Fast to execute

Easy to read

Test one thing

Should not modify the environment

Data agnostic

Good Tests

Data Agnostic

Create all data that is possible (fast)
• Reuse libraries

• Use Pseudo-Random (Library Any)

Need to take dependency to the existing demodata (performance)

Demo data

Extended – Cronus OnPrem (Most of the tests depend on this demo data)

Evaluation – Cronus SaaS

Standard – My Company

Pending: Release the list of the dependencies for the tests

Testing integrations

Testing integrations

Start Authenticate to
the outside service

Compose request Send request

Receive response
Parse response

and update
BC tables

End

Invoke

Parse

Testing integrations

Start Authenticate to
the outside service

Compose request Send request

Receive response
Parse response

and update
BC tables

End

Invoke

Parse

Testing integrations the simple way
Code example

Testing integrations

Start Authenticate to
the outside service

Compose request Send request

Receive response
Parse response

and update
BC tables

End

Invoke

Parse

Testing integrations

Start Authenticate to
the outside service

Compose request Send request

Receive response
Parse response

and update
BC tables

End

Invoke

Parse

Testing integrations

Start Authenticate to
the outside service

Compose request Send request

Receive response
Parse response

and update
BC tables

End

Invoke

Parse

Manual or

Semi-Automated

E2E tests

Don’t call actual service
from automated tests

MOQ or similar
framework if you need to
automate E2E

Testing APIs

Risk is that API page behaves
differently than UI Page

Different flow of the triggers

Different validation

Any UI will fail the Web Service call

Testing APIs

Start Setup

Test Session

Second Session

Call API

API Page

SQL Database

SQL

LOCK
Rollback after test

Update Records
Is blocked by setup lock

Testing APIs

Start Setup

Test Session

Second Session

Call API

API Page

SQL Database

SQL

Test isolation disabled
Session lock

Update Records
Is blocked by setup lock

Testing APIs

Start Setup

Test Session

Second Session

Call API

API Page

SQL Database

SQL

Test isolation disabled
No locking of the records

Update Records

Commit

Testing APIs

Start Setup

Test Session

Second Session

Call API

API Page

SQL Database

SQL

Test isolation disabled
No locking of the records

Update Records

Commit
Verify

Response

MS Test use Windows authentication

Secret trick

With no Users in the Database there is no authentication

But due to community work we can also use basic authentication
Simplifying API testing using basic authentication

Testing APIs - Authentication

https://www.fluxxus.nl/index.php/bc/addendum-03-simplifying-api-testing-using-basic-authentication/

Testing TASKSCHEDULER/Job Queue

Disable Tasks when running tests

Tasks can lead to test instabilities

How do we test?

Unit test the codeunit

Testing Tasks/Job Queue E2E

Start Setup

Test Session

Job queue session

Start Job
queue

Codeunit

SQL Database

SQL

Test isolation lock

Update Records
Is blocked by test isolation lock

Verify
Response

Testing Tasks/Job Queue E2E

Start Setup

Test Session

Start Job
queue

Codeunit

SQL Database

SQL

Update Records
Within same lock

Verify
Response

Testing Task Scheduler

local procedure TestTaskSchedulerExample()

var

RunInSameSession: Boolean;

begin

OnRunInSameSession(RunInSameSession);

if RunInSameSession then

Codeunit.Run(Codeunit::MyCodeunit)

else

TaskScheduler.CreateTask(

Codeunit::MyCodeunit, 0, true, CompanyName(), CurrentDateTime() + 1000)

end;

Testing Job Queues

// Setup.

BindSubscription(LibraryJobQueue);

LibraryJobQueue.SetDoNotHandleCodeunitJobQueueEnqueueEvent(true);

// [WHEN] Run Batch Post Purchase Order with Receive.

RunBatchPostPurchaseOrders(PurchaseHeader."No.", true, false, 0D, false, false, false);

LibraryJobQueue.FindAndRunJobQueueEntryByRecordId(PurchaseHeader.RecordId);

Cover the risk
Document the code
Fast to execute
Easy to read
Test one thing
Should not modify the environment
Data Agnostic

Test as close to the risk as possible

Good Tests

And some more …

Testing Permissions

Code Coverage

Test tooling internals

Testing Permissions

Why?

Basics of permission testing

Example scenarios

Testing Permissions

With testing …
… we verify if (new) functionality is working as intended

This does, however, not necessarily mean that all BC
users will be able to operate this new functionality …
… as this also depends on the permission sets that have
been assigned to them

Testing Permissions – Why?

TestPermissions property

Lowering permissions

Permission set

Testing Permissions – basics

The Testability Framework: Pillar 6 – Test Permissions

https://www.fluxxus.nl/index.php/bc/the-testability-framework-pillar-6-test-permissions

• Test Runner

• Test Codeunit

• Test Method

Testing Permissions – TestPermissions property

The Testability Framework: Pillar 6 – Test Permissions

https://www.fluxxus.nl/index.php/bc/the-testability-framework-pillar-6-test-permissions

Based on the value of the TestPermissions property of a Test Codeunit the

Test Runner manages which permission set is used on tests that are run

• For default value Restrictive Test Runner uses D365 BUS FULL ACCESS

• The TestPermissions attribute on a test method has the same effect

• as default, it will inherit value from test codeunit TestPermissions

Note that TestPermissions as such does not do anything, it’s the Test
Runner

Testing Permissions – TestPermissions property

The Testability Framework: Pillar 6 – Test Permissions

https://www.fluxxus.nl/index.php/bc/the-testability-framework-pillar-6-test-permissions

From BC21 on, if you haven’t set the TestPermissions property various tests

will fail with an error like the following:

Sorry, the current permissions prevented the action.

(TableData <table name> Insert: <app name>)

Solution

Set TestPermissions property on relevant test codeunits to Disabled

Testing Permissions – TestPermissions property

Making use of .NET component PermissionTestHelper.dll …

• we can change permissions of current session on the fly

• but only lower permissions compared to the current users' permissions

settings in database

• therefore, current user should be SUPER

• can be done gradually

• can always revert to original permissions of current user

• does not change permission setup of user in database

Testing Permissions – Lowering permissions

PermissionTestHelper.dll is wrapped into Permissions Mock.app …

• both will be installed in docker container using New-BCContainer

• with -includeTestToolkit (and -includeTestLibrariesOnly)

Note that …

• tests can only run in on-prem environment

• need to set the target in app.json to OnPrem

Testing Permissions – Lowering permissions

Library - Lower Permissions calls upon Permissions Mock.app and wraps

its basic methods in various easy to use test helper methods for us, like …

• StartLoggingNAVPermissions

• to (re)start permission logging (and set current user permission role)

• PushPermissionSet

• to set current user permission role

• AddPermissionSet

• to extend current user permissions with an additional set

Testing Permissions – Library - Lower Permissions

You can only Lower Permissions …

Testing Permissions – permission sets

You can only lower permissions …

… with permission sets that have been defined by permission set
objects

permissionset 50000 "Lookup Value"

{

Assignable = true;

Caption = 'Lookup Value';

Permissions = tabledata LookupValue = RIMD;

}

Testing Permissions – permission sets

[FEATURE] LookupValue Permissions

[SCENARIO #0041] Create lookup value without permissions

[GIVEN] Full base starting permissions

[WHEN] Create lookup value

[THEN] Insert permissions error thrown

Testing Permissions – example scenario #0041

[Test]

procedure CreateLookupValueWithoutPermissions()

begin

//[SCENARIO #0041] Create lookup value without permissions

//[GIVEN] Full base starting permissions

// Full base starting permissions automatically set based on

// TestPermissions property

//[WHEN] Create lookup value

asserterror CreateLookupValueCode();

//[THEN] Insert permissions error thrown

VerifyPermissionsErrorThrown('Insert');

end;

Testing Permissions – example scenario #0041

[FEATURE] LookupValue Permissions

[SCENARIO #0042] Create lookup value with permissions

[GIVEN] Full base starting permissions extended with

Lookup Value permissions

[WHEN] Create lookup value

[THEN] Lookup value exists

Testing Permissions – example scenario #0042

[Test]

procedure CreateLookupValueWithPermissions()

var

LookupValueCode: Code[10];

begin

//[SCENARIO #0042] Create lookup value with permissions

//[GIVEN] Full base starting permissions extended with Lookup Value permissions

// Full base starting permissions automatically set based on

// TestPermissions property

AddLookupValuePermissions();

//[WHEN] Create lookup value

LookupValueCode := CreateLookupValueCode();

//[THEN] Lookup value exists

VerifyLookupValueExists(LookupValueCode);

end;

Testing Permissions – example scenario #0042

[FEATURE] LookupValue Permissions

[SCENARIO #0043] Read lookup value without permissions

[GIVEN] Unrestricted starting permissions

[GIVEN] Lookup value

[GIVEN] Full base starting permissions

[WHEN] Read lookup value

[THEN] Read permissions error thrown

Testing Permissions – example scenario #0043

[Test]

procedure ReadLookupValueWithoutPermissions ()

var

LookupValueCode: Code[10];

begin

//[SCENARIO #0043] Read lookup value without permissions

//[GIVEN] Unrestricted starting permissions

SetUnrestrictedStartingPermissions(); // SUPER

//[GIVEN] Lookup value

LookupValueCode := CreateLookupValueCode();

//[GIVEN] Full base permissions

SetFullBasePermissions(); // D365 BUS FULL ACCES

//[WHEN] Read lookup value

asserterror ReadLookupValueCode();

//[THEN] Read permissions error thrown

VerifyPermissionsErrorThrown(‘Read');

end;

Testing Permissions – example scenario #0043

• BC18.3 or later makes it much easier to do

• BC21: full implementation TestPermissions property

Testing Permissions – last notes

Code Coverage

Effort

50%

80%

90%

100%

Really?

70%
Good effort, not proud yet

Good code coverage

Excellent code coverage

Running few pages or

reports will get you to

around 50%

Getting to 70%+ requires

a good test suite

80%+ most of the scenarios

covered

90%+ - most important

error cases are covered

100% - extremely hard to reach

in AL, questionable ROI

Really?
CC%

Code coverage made simple

Code coverage tells us only that the seatbelt is fastened.

With good set of tests, we are buckled in and driving
well.

The most important metric is what is not covered.
Which scenarios are missing?

Good tests have Asserts in right places.

Don’t chase Code Coverage. Think about scenarios.

Test tooling internals

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()Test Runner

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()Test Runner

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false – No UI tests

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()Test Runner

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

Responsibility:
Create UI session
Build tests, track CC and
Many others…

Challenges:
Nobody knows all the
things it does

Client Side Mini Client
(AKKA ALTest)
MS Internal

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()Test Runner

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

Responsibility:
Create UI session
Build tests, track CC and
Many others…

Challenges:
Nobody knows all the
things it does

Client Side Mini Client
(AKKA ALTest)
MS Internal

ALTestInternal.ps1
PowerShell

Responsibility:
Create UI session
Wrap UI Web Services

Challenges:
UI web services to be
deprecated

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()

Challenges:
No test isolation
No reporting
Cannot Select tests

Responsibility:
Create UI session
Many others…

Challenges:
Nobody knows all the
things it does

Server (AL Code)Client Side

ALTestInternal.ps1
PowerShell

Responsibility:
Create UI session
Wrap UI Web Services

Challenges:
UI web services to be
deprecated

ALTest.ps1
PowerShell

Responsibility:
Wrap common logic
Stabile interface

Mini Client
(AKKA ALTest)
MS Internal

Challenges:
Generic Interface,
specific scripts needed

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()

Challenges:
No test isolation
No reporting
Cannot Select tests

Responsibility:
Create UI session
Many others…

Challenges:
Nobody knows all the
things it does

Server (AL Code)Client Side

ALTestInternal.ps1
PowerShell

Responsibility:
Create UI session
Wrap UI Web Services

Challenges:
UI web services to be
deprecated

ALTest.ps1
PowerShell

Responsibility:
Wrap common logic
Stabile interface

BC Container Helper

Responsibility:
Enable partners to run
tests

Mini Client
(AKKA ALTest)
MS Internal

Challenges:
Generic Interface,
specific test scripts
needed

Microsoft Test
Scripts

Responsibility:
Enable MS Developers
to run tests

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)Client Side

ALTestInternal.ps1
PowerShell

Responsibility:
Create UI session
Wrap UI Web Services

Challenges:
UI web services to be
deprecated

ALTest.ps1
PowerShell

Responsibility:
Wrap common logic
Stabile interface

BC Container Helper

Responsibility:
Enable partners to run
tests

Challenges:
Generic Interface,
specific test scripts
needed

Microsoft Test
Scripts

Responsibility:
Enable MS Developers
to run tests

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)Client Side

Management Test
Endpoint (API)

Responsibility:
Create UI session
Wrap UI Web Services

ALTest.ps1
PowerShell

Responsibility:
Wrap common logic
Stabile interface

BC Container Helper

Responsibility:
Enable partners to run
tests

Challenges:
Generic Interface,
specific test scripts
needed

Microsoft Test
Scripts

Responsibility:
Enable MS Developers
to run tests

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

Tooling internals

Responsibility:
Invoke all tests

Codeunit.Run(ID)

Codeunit.RUN()

Challenges:
No test isolation
No reporting
Cannot Select tests

Server (AL Code)Client Side

Management Test
Endpoint (API)

Responsibility:
Create UI session
Wrap UI Web Services

ALTest.ps1
PowerShell

Responsibility:
Wrap common logic
Stabile interface

BC Container Helper

Responsibility:
Enable partners to run
tests

Challenges:
Generic Interface,
specific test scripts
needed

Microsoft Test
Scripts

Responsibility:
Enable MS Developers
to run tests

Test Runner

Responsibility:
Sets test isolation
Reports results
Tracks code coverage
Select tests

Challenges:
GuiAllowed will return
false

VS Code Test Runner

Responsibility:
Run tests from
VS Code

Test Discovery

• Churn based execution

• Coming “soon”

Test Discovery

Conclusion

• Write good tests

• Cover the risk

• Use examples

• Try to hit 80% Code Coverage at least

sometimes

And … join us on Yammer

https://www.yammer.com/dynamicsnavdev/#

/threads/inGroup?type=in_group&feedId=138

79726

Conclusion

https://www.yammer.com/dynamicsnavdev/#/threads/inGroup?type=in_group&feedId=13879726

