


Interfaces — an Intro



Componentization



Componentization

Define a component
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Describe the purpose




Componentization

Facilitates Clear Architecture and
Interactions




Componentization

Replace a component
(decoupling)




Componentization

Switch implementation




Componentization

Allow Override of Default
Code
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Component

Extend a Component



Componentization

Test a Component




For example...



£
o
Q
o
(2]
2
D
E




DAYS
2023
mibusc.com

R e Se———————eeee] s G G

= T K ——




What is an Interface? Lo

"In programming languages, an interface is a construct that defines a contract or a
set of methods that a class must implement. It specifies the signature (name,
parameters, return types) of the methods without providing their actual
implementation.”

interface "IScale”

eTergnce
procedure GetWelght():

[_-_.r'.:::-::Ej_. re Tare( ,

procedure Getinfo():




Interface Implementations

nit 5e4e4 “"Scale Foo" implements IScale codeunit 50485 “"Scale Tefal" implements IScale

ire GetWeight(): Decimal; e GetWeight(): Decimal;

Randomize(); Randomize(};
Exit(Random(38)); Exit(Random(38) + 28);

end;




Factory

"an object that the client code can use to obtain instances of these objects, without
explicitly knowing the concrete class being instantiated.”

408 "Scales”™ implements IScale

Extensible = true;

[ references
3lue(l; Tefal)

Caption = 'Tefal’;
Implementation = Iscale

Caption = ' ;
Implementation = Iscale

"Scale Tefal”;

"Scale Foo";
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"an object that the client code can use to obtain instances of these objects, without
explicitly knowing the concrete class being instantiated.”

enum 58488 “"Scales” implements IScale local procedure DoGetWeight(var Item: Item; var Handled: ;

ﬂ '.Elﬂl

Extensible = true; ScaleSetup: ScaleSetup;

Scale: Interface IScale;
0 references

value(1l; Tefal) PEELN
I ScaleSetup.Get;
Caption = 'Tefal’';
Implementation = Iscale = “"Scale Tefal"; Scale ScaleSetup.Scale;
H
0 references Item.validate({Weight, scale.GetWeight());
value(2; Foo) Item (true);
1

Caption = "Foo';
Implementation = Iscale

if (scale.Getinfo() <> '") then
message(scale.Getinfo());

"Scale Foo™;
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ChatGPT



Midjourney
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ER Explain Midjourney in one sentence
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Explain Midjourney in one sentence

Midjourney is a comprehensive travel platform that offers

personalized itineraries, local recommendations, and seamless

booking services to enhance the travel experience.




Midjourney is a generative artificial
Intelligence program and service that
generates images from natural language
descriptions, called "prompts".






Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” —ar 1:1
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Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” —ar 1:1




Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” —ar 1:1




Prompt:

Imagine: <url to picture> hilarious

caricature of both persons

--ar 1:1
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Prompt:
Imagine: <url to picture> hilarious

caricature of both persons, drawing
--ar 1:1




So... whatif ...




Item Card @ g —+ Til]
1936-S - BERLIN Guest Chair, yellow

Imagine Home Request Approval Item Prices & Discounts | More options

E® Copy Item 2. Create Stockkeeping Unit L7 Apply Template
Item Show more
No. 1936-S e Base Unit of Measure PCS v
Description BERLIN Guest Chair, yellow Item Category Code CHAIR v
Blocked @ Variant Mandatory if E... Default (No) v
Type Inventory v Picture URL https://cdn.discordapp.com/attac...
Inventory Show more
Shelf No. D7 Qty. on Sales Order 0
Inventory 0 Stockout Warning Default (Yes) g
Qty. on Purch. Order 0 Unit Volume 0.25
Qty. on Prod. Order 0 Over-Receipt Code N
Qty. on Component Li... 0

@ Details

Picture

v Saved

0 Attachments (0)

Marketing Text

&
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Prompt:
Imagine: <url to picture> on a beach,
sunset, realistic --ar 1:1 --iw 1.25




Prompt:
Imagine: <url to picture> on a beach,
sunset, realistic --ar 1:1 --iw 1.25




Let’s see this in practice...



Imagine With

ACtIOﬂ:. MidJourney Meth Import Picture to
ltem.Imagine (GetlmageUrl) ltem table




Imagine With MidJourney Meth (GetimageUrl)
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Imagine With MidJourney Meth (GetIlmageUrl) 2,4

Result

Imagine
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Imagine With MidJourney Meth (GetIlmageUrl) Lb’J
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Result
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Imagine With MidJourney Meth (GetIlmageUrl) Lb’J
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Result
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Imagine With MidJourney Meth (GetIlmageUrl) Lb’J

Imagine » Isolated Storage
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Result
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Like it?









Dependencies



Dependencies

Any component or resource
that any other component
needs to fulfill its functionality
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Dependency
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‘ Imagine “

ImagineWith
Midjourney

S o
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Dependencies
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* Coupling vs. Cohesion
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Coupling Cohesion

* Degree of interdependence of different * Degree to which components belong
components together

* How strongly are these components * How well do these components belong

interdependent? together?















Imagine With MidJourney Meth (GetIlmageUrl) 57,/4

Imagine ‘ » Isolated Storage
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Result
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Inversion of control
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Inversion of control

Consumer
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Inversion of control

Sales Process

procedure GetWeight(var SaleslLine: "Sales Line"

VElg
Scale: "Scale - Mettler Toledo";

Weight: =

Weight Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);




Inversion of control

Sales Process

* Sales process declares concrete scale at compile time
* Sales process controls this dependency
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Sales Process

* Sales process declares abstract scale at compile time
* Sales process no longer controls this dependency



Inversion of control

Sales Process

* Sales process receives/obtains concrete scale at run time
* Another process controls this dependency
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procedure GetWeight(var SalesLine: Record "Sales Line")
var

Scale: Codeunit "Scale - Mettler Toledo";

Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);
end;

Concrete
tightly coupled
dependency
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procedure GetWeight(var SaleslLine: Record "Sales Line']; Scale: Interface IScale)
var
Weight: Decimal;

begin
Weight := Scale.GetWeight();
SalesLine.Validate("Gross Weight", Weight);
end;

Abstract
loosely coupled
dependency
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AbStFaCt procedure GetWeight(var SalesLine: Record "Sales Line")
loosely coupled
dependency begin

Scale := GetScale();
Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);

end;
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procedure GetWeight(var SalesLine: Record "Sales Line")

var
Scale: Interface IScale;
Consumer asks for LseelrEs Lestiels
concrete implementation
at run t|me SalsLirile.Vaidz-ate("Gr'oss\lr)d;ight", Weight);




Factory

There are
various techniques
for providing
concrete dependencies

local procedure GetScale(): Interface IScale
begin

end;

procedure GetWeight(var SaleslLine: Record "Sales Line")

var

Scale: Interface IScale;
Weight: Decimal;

begin

end;

Scale := GetScale();
Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);

mibusc.com



What about Isolated Storage?
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Decouple dependencies

Setup

¥

Isolated Storage
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Decouple dependencies

Setup

¥

|ConfigurationProvider

Isolated Storage
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Decouple dependencies

Setup

¥

|ConfigurationProvider

Isolated Storage

ConfigrationProvider
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Decouple dependencies

Setup

|ConfigurationProvider

Azure KeyVault Isolated Storage

ConfigrationProvider
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Test doubles
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A test double (s an object that
stands in for a real object in a test,
Just like a stunt double
stands (n for an actor in a movie.




How do test doubles work? L

procedure GetWeight(var SaleslLine: Record "Sales Line")
var

Scale: Interface IScale;

Weight: Decimal;

Do we really
communicate
with a scale here?



How do test doubles work? L

procedure GetWeight(var SaleslLine: Record "Sales Line")
var

Scale: Interface IScale;

Weight: Decimal;
begin

Scale := GetScale();

Weight := Scale.GetWeight();

SaleslLine.Validate("Gross Weight", Weight);
end;

Does this function
really care about how exactly
the weight was taken?



How do test doubles work?

procedure GetWeight(var SaleslLine: Record "Sales Line")
var
Scale: Interface IScale; IScale

Weight: Decimal;
begin 1 reference

Scale := GetScale(); procedure TakeWeight():

Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);
end;

The process is
abstracted
behind an interface

mibusc.com



How do test doubles work?

procedure GetWeight(var SaleslLine: Record "Sales
var

Scale: Interface IScale;

Weight: Decimal;
begin

Scale := GetScale();

Weight := Scale.GetWeight();

SaleslLine.Validate("Gross Weight", Weight);
end;

Your process does not care
which one of these
interface implementations
was invoked

mibusc.com

interface IScale

{

1 reference
procedure TakeWeight(): Decimal;

codeunit 60219 "Scale - B-TEK" implements IScale
{

procedure TakeWeight(): Decimal
begin

codeunit 60217 "Scale - Tefal" implements IScale
{

procedure TakeWeight(): Decimal
begin

codeunit 60218 "Scale - Mettler Toledo™ implements IScale
{

procedure TakeWeight(): Decimal
begin

end;



How do test doubles work?

procedure GetWeight(var SaleslLine: Record "Sales Line")

var
Scale: Interface IScale;
Weight: Decimal;
begin
Scale := GetScale();
Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);
end;

... or if a mock
implementation was
invoked

interface IScale mibusc.com

{

1 reference
procedure TakeWeight(): Decimal;

codeunit 60219 "Scale - B-TEK" implements IScale
{

procedure TakeWeight(): Decimal
begin

codeunit 60217 "Scale - Tefal™ implements IScale

{

procedure TakeWeight(): Decimal
begin

codeunit 60218 "Scale - Mettler Toledo" implements IScale

{

procedure TakeWeight(): Decimal
begin

unit 60220 "Scale - Mock" implements IScale
e TakeWeight(): Decimal

xit(Random() * 1@0)



What have we done so far?

* Decoupled setup

* Decoupled Isolated Storage

* We can test isolated from setup or database

* We can exchange our components (eg, Azure Key Vault)
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: Isolated
Imagine Storage

Result
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Testing in Isolation
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Imagine

ImagineWith

Midjourney
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‘ Imagine

ImagineWith
Midjourney

“ Result




Testing in isolation

‘ Imagine

ImagineWith
Midjourney

=)

5

Testing directly is problematic:

* Requires a lot of "givens”

* Takes a lot of time to properly set up
* Executes slowly

* Does not enable testing all flows

S5
o>

mibusc.com
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‘ Imagine “

ImagineWith
Midjourney
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We must test each component in isolation from its dependencies



Testing in isolation

Mock
Imagine

ImagineWith
Midjourney

“ Mock
Result

At each level:
* We test the component directly
* We mock its direct dependencies
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Testing in isolation

Imagine

At each level:
* We test the component directly
* We mock its direct dependencies

S
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Testing in isolation

At each level:
* We test the component directly
* We mock its direct dependencies

mibusc.com



[ J [ J [ J [ J ZDOszss
Testing in isolation Lo

At each level:
* We test the component directly
* We mock its direct dependencies
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Imagine

ImagineWith

Midjourney

* We tested all components
* We tested all code paths
* We simulated all conditions

* Tests were simple to write
* Tests performed fast
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Tests pinpoint design issues L

When you can’t test a component in isolation,
you know there is a problem with your design.
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Isolated Storage
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* Decoupling helps us to test

* Butit also gives opportunities
* Dall-E
* Azure Key Vault

* Dependency Injection makes us able to control the implementations wherever we
want..

But ...



¥

internal procedure GetImageUrl(Prompt: Text; Imagine: Interface IMidjourneyImagine; Result
var

IsHandled: Boolean;
begin




n

. Interface IMidjourneyResult; MidjourneySend: Interface IMidjourneySend) MidjourneyUrl: Text




Factory
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Factory

"An object that the client code can use to obtain instances of its
dependencies, without explicitly knowing the concrete class being
instantiated.”

mibusc.com



codeunit 50074 "Midjourney Factory" mibusc.com

{

An object

SingleInstance = true;

\\

that the client code can use to obtain instances of its
dependencies, without explicitly knowing the concrete class being
instantiated.”



codeunit 50074 "Midjourney Factory" mibusc.com

{

SingleInstance = true;

An ObJeCt codeunit 50061 "ImagineWithMidjourney Meth"

that the client code can use { var

Factory: Codeunit "Midjourney Factory";

\

to obtain instances of its
dependencies, without explicitly knowing the concrete class being
instantiated.”



codeunit 50074 "Midjourney Factory" mibusc.com

{

SingleInstance = true;

codeunit 50061 "ImagineWithMidjourney Meth"
1

Factory: Codeunit "Midjourney Factory";

An Object local procedure DoGetImage(Prompt: Text; var MidjourneyUrl:
var
that the Client COde can use Imagine: Interface IMidjourneyImagine;
TaskId: Text;
to obtain instances of its dependencies begin

if IsHandled then
exit;

it not _retryDelaySet then
_retryDelay := 5000;

Imagine :=]Factory.GetMidjourneyImagine();
TaskId := Imagine.lmagine(Prompt);
MidjourneyUrl := WaitForUrl(TaskId);

end;




¥

internal procedure GetImageUrl(Prompt: Text; Imagine: Interface IMidjourneyImagine; Result
var

IsHandled: Boolean;
begin




internal procedure GetImageUrl(Prompt: Text
var

IsHandled: Boolean;
begin




internal procedure GetImageUrl(Prompt: Text) MidjourneyUrl: Text
var

IsHandled: Boolean;
begin




Demo:
Single Instance Factories
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Pros:
- Much easier to add/remove dependencies
- Easy to create/read tests

Cons:

- Dependency chains are now obscured

- Compiler doesn’t help you

- Can be a liability, because developer might forget



Factory Injection




Demo:
Factory Injection



Hidden Dependencies
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* Interfaces promote loose coupling and easier maintenance of the system.
* Decoupling enhances flexibility, testability, and maintainability.

* Inversion of Control inverts the control flow, improving modularity and
extensibility.

Repo: https://github.com/vjekob/bctechdays2023



https://github.com/vjekob/bctechdays2023
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TDD



TDD is not about tests



TDD is not about tests
it's about design
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Any Questions?
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