
Introduction

Freelance Technical
Consultant & Trainer

Microsoft MVP Business
Applications

Experience with
Dynamics NAV /
Business Central

since 2002

Co-founder
Dutch Dynamics

Community

http://kauffmann.nl Email: aj@kauffmann.nl
Twitter: @ajkauffmann

• New AL File wizard to add a new Page
• Set page type to API
• API properties automatically filled in (setting)
• Add multiple fields
• No ApplicationArea
• No Captions (setting)
• Automatically convert names

• Tip:
• Think about the order of fields
• ODataKeyFields must be added afterwards

Creating custom APIs with AZ AL Dev Tools

API page triggers

Different flow per
data operation

API page triggers – GET operation

API page triggers – POST operation

API page triggers – PATCH operation

OnInit

API page triggers – DELETE operation

OnInit

• When the record is read from the
OnValidate trigger:
• OnNewRecord still executes
• OnInsertRecord is skipped
• OnModifyRecord is executed instead

Turn POST into PATCH

• Potential performance hit
• Large tables
• Paging
• No caching

• Tips:
• Fill data with a query
• Reduce data by filtering
• Force filterin in code

Using temporary tables

• Potential performance hit
• Large tables
• Paging
• No caching

• Tips:
• Fill data with a query
• Reduce data by filtering
• Force filtering in code

Using temporary tables

Bound Action return value

Option 1: Location Header

Option 1 – Copy all APIs

• Two types:
• 1:1
• 1:n

• Defined in page part

• Automatic relationship is created under
certain conditions:
• TableRelation specified
• API exists for both tables

Relationships between APIs

• Partial records is automatically enabled
for API pages

• Fields defined in the repeater are
automatically loaded

• Any other field that is accessed from
code causes a JIT (Just In Time) load

• Avoid JIT loads by using
Rec.AddLoadFields

Partial records

• $select= to reduce the JSON payload

• Do not use $top and $skip. Instead use
server-drive paging with header
odata.maxpagesiz

• Accept header to manage OData tags

• Navigate to a single property

Reducing JSON payload

Four things to consider:

1. Use APIs over OData/SOAP on UI pages

2. Reduce aggressive calls

3. Check time spend in queues

4. Fix non-200 HTTP errors (these just waste resources)

5. For more tips check:
http://aka.ms/bcperformance
https://learn.microsoft.com/en-us/dynamics365/business-central/dev-itpro/api-reference/v2.0/dynamics-error-codes

Monitoring incoming web service calls

http://aka.ms/bcperformance
https://learn.microsoft.com/en-us/dynamics365/business-central/dev-itpro/api-reference/v2.0/dynamics-error-codes

Is your API code fast?

Filter on category API

Do your API calls get queued up?

Are your APIs called aggressively?

Incoming web service performance – non-200 calls

Fix errors on these endpoints

Filter to only show errors

• Postman runtime is based on Node.js

• Add dynamic behavior to requests
• Pre-request scripts
• Test scripts
• Dynamics parameters
• Pass data between requests

• Javascript code

Postman test script

• Add NuGet package
Microsoft.Identity.Client

• Use the package for retrieving OAuth
access tokens

Consuming APIs with C# - Authentication

• Add NuGet package
Microsoft.Identity.Client

• Use the package for retrieving OAuth
access tokens

Consuming APIs with C# - Authentication

• Create a class with properties for each
field in the Json payload

• Map each property to the corresponding
Json key by using JsonPropertyName

• Do the same for the value property in the
response

Consuming APIs with C# - Data

• Use the HttpClient extension method GetFromJsonAsync to automatically
convert the Json response into an object

Consuming APIs with C# - Data

• Use the HttpClient extension
method PostAsJsonAsync to
automatically convert an
object into a Json request

• Use the HttpContent
extension method
ReadFromJsonAsync to
automatically convert the Json
response into an object

Consuming APIs with C# - Data

Any Questions?

	Untitled Section
	Slide 1: Introduction
	Slide 2: Creating custom APIs with AZ AL Dev Tools
	Slide 3
	Slide 4: API page triggers – GET operation
	Slide 5: API page triggers – POST operation
	Slide 6: API page triggers – PATCH operation
	Slide 7: API page triggers – DELETE operation
	Slide 8: Turn POST into PATCH
	Slide 9: Using temporary tables
	Slide 10: Using temporary tables
	Slide 11: Bound Action return value
	Slide 12: Versioning
	Slide 13: Relationships between APIs
	Slide 14: Partial records
	Slide 15: Reducing JSON payload
	Slide 16: Monitoring incoming web service calls
	Slide 17: Is your API code fast?
	Slide 18: Do your API calls get queued up?
	Slide 19: Are your APIs called aggressively?
	Slide 20: Incoming web service performance – non-200 calls
	Slide 21: Postman test script
	Slide 22: Consuming APIs with C# - Authentication
	Slide 23: Consuming APIs with C# - Authentication
	Slide 24: Consuming APIs with C# - Data
	Slide 25: Consuming APIs with C# - Data
	Slide 26: Consuming APIs with C# - Data
	Slide 27
	Slide 28

