

Interfaces — an Intro

Componentization

Componentization

Define a component

; BC /v |
Componentization mibuso.com

Describe the purpose

Componentization

Facilitates Clear Architecture and
Interactions

Componentization

Replace a component
(decoupling)

Componentization

Switch implementation

Componentization

Allow Override of Default
Code

=
=

1zat

Component

Extend a Component

Componentization

Test a Component

For example...

£
o
Q
o
(2]
2
D
E

DAYS
2023
mibusc.com

R e Se———————eeee] s G G

= T K ——

What is an Interface? Lo

"In programming languages, an interface is a construct that defines a contract or a
set of methods that a class must implement. It specifies the signature (name,
parameters, return types) of the methods without providing their actual
implementation.”

interface "IScale”

eTergnce
procedure GetWelght():

[_-_.r'.:::-::Ej_. re Tare(,

procedure Getinfo():

Interface Implementations

nit 5e4e4 “"Scale Foo" implements IScale codeunit 50485 “"Scale Tefal" implements IScale

ire GetWeight(): Decimal; e GetWeight(): Decimal;

Randomize(); Randomize(};
Exit(Random(38)); Exit(Random(38) + 28);

end;

Factory

"an object that the client code can use to obtain instances of these objects, without
explicitly knowing the concrete class being instantiated.”

408 "Scales”™ implements IScale

Extensible = true;

[references
3lue(l; Tefal)

Caption = 'Tefal’;
Implementation = Iscale

Caption = ' ;
Implementation = Iscale

"Scale Tefal”;

"Scale Foo";

mibusc.com

F a Ct O r y mibuso.com

"an object that the client code can use to obtain instances of these objects, without
explicitly knowing the concrete class being instantiated.”

enum 58488 “"Scales” implements IScale local procedure DoGetWeight(var Item: Item; var Handled: ;

ﬂ '.Elﬂl

Extensible = true; ScaleSetup: ScaleSetup;

Scale: Interface IScale;
0 references

value(1l; Tefal) PEELN
I ScaleSetup.Get;
Caption = 'Tefal’';
Implementation = Iscale = “"Scale Tefal"; Scale ScaleSetup.Scale;
H
0 references Item.validate({Weight, scale.GetWeight());
value(2; Foo) Item (true);
1

Caption = "Foo';
Implementation = Iscale

if (scale.Getinfo() <> '") then
message(scale.Getinfo());

"Scale Foo™;

DAYS
2023
mibusc.com

R e Se———————eeee] s G G

= T K ——

mibusc.com

ChatGPT

Midjourney

DAYS
° ° i 2023 l
M 1 dJ O u r n e y mibusc.com

ER Explain Midjourney in one sentence

DAYS
o Jo i 2025 |
Mld] Ourney mibusc.com
Explain Midjourney in one sentence

Midjourney is a comprehensive travel platform that offers

personalized itineraries, local recommendations, and seamless

booking services to enhance the travel experience.

Midjourney is a generative artificial
Intelligence program and service that
generates images from natural language
descriptions, called "prompts".

Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” —ar 1:1

mibusc.com

Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” —ar 1:1

Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” —ar 1:1

Prompt:

Imagine: <url to picture> hilarious

caricature of both persons

--ar 1:1

Q0
c
=
O
—
©

’

Prompt:
Imagine: <url to picture> hilarious

caricature of both persons, drawing
--ar 1:1

So... whatif ...

Item Card @ g —+ Til]
1936-S - BERLIN Guest Chair, yellow

Imagine Home Request Approval Item Prices & Discounts | More options

E® Copy Item 2. Create Stockkeeping Unit L7 Apply Template
Item Show more
No. 1936-S e Base Unit of Measure PCS v
Description BERLIN Guest Chair, yellow Item Category Code CHAIR v
Blocked @ Variant Mandatory if E... Default (No) v
Type Inventory v Picture URL https://cdn.discordapp.com/attac...
Inventory Show more
Shelf No. D7 Qty. on Sales Order 0
Inventory 0 Stockout Warning Default (Yes) g
Qty. on Purch. Order 0 Unit Volume 0.25
Qty. on Prod. Order 0 Over-Receipt Code N
Qty. on Component Li... 0

@ Details

Picture

v Saved

0 Attachments (0)

Marketing Text

&

mibusc.com

Prompt:
Imagine: <url to picture> on a beach,
sunset, realistic --ar 1:1 --iw 1.25

Prompt:
Imagine: <url to picture> on a beach,
sunset, realistic --ar 1:1 --iw 1.25

Let’s see this in practice...

Imagine With

ACtIOﬂ:. MidJourney Meth Import Picture to
ltem.Imagine (GetlmageUrl) ltem table

Imagine With MidJourney Meth (GetimageUrl)

Bcl NAV
TECH
DAYS
2023

Imagine With MidJourney Meth (GetIlmageUrl) 2,4

Result

Imagine

Bcl NAV
TECH
DAYS
2023

Imagine With MidJourney Meth (GetIlmageUrl) Lb’J

o

Result

Bcl NAV
TECH
DAYS
2023

Imagine With MidJourney Meth (GetIlmageUrl) Lb’J

o

Result

Bcl NAV
TECH
DAYS
2023

Imagine With MidJourney Meth (GetIlmageUrl) Lb’J

Imagine » Isolated Storage
|IIIIIH%HHIIIIIII|II"’>|IIIIIIHHHIIIIIII

Result

mibusc.com

Like it?

Dependencies

Dependencies

Any component or resource
that any other component
needs to fulfill its functionality

DAYS
° i 2023 |
DependenC].eS mibusc.com

)

Dependency

DAYS
° i 2023 l
DependenC].eS mibusc.com

Imagine

S

o

)

Dependency

DAYS
° i 2023 |
DependenC].eS mibusc.com

‘ Imagine “

ImagineWith
Midjourney

S o

AN

Dependencies

DAYS
° i 2023 l
DependenC].eS mibusc.com

* Coupling vs. Cohesion

° 2023
Dependencies L

mibusc.com

Coupling Cohesion

* Degree of interdependence of different * Degree to which components belong
components together

* How strongly are these components * How well do these components belong

interdependent? together?

Imagine With MidJourney Meth (GetIlmageUrl) 57,/4

Imagine ‘ » Isolated Storage
||II|I|%HH|IIIIIIlll"’>|I|IIIIHHH|IIIIII|

Result

mibusc.com

: Isolated
Imagine Storage

Result

Inversion of control

. ; 2005 |
Inversion of control

Consumer

Inversion of control

Consumer

v

Dependency

g BCI NAV
TECH
DAYS
2023

mibusc.com

Inversion of control

Sales Process

procedure GetWeight(var SaleslLine: "Sales Line"

VElg
Scale: "Scale - Mettler Toledo";

Weight: =

Weight Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);

Inversion of control

Sales Process

* Sales process declares concrete scale at compile time
* Sales process controls this dependency

. g 2005 |
Inversion of control

Sales Process

* Sales process declares abstract scale at compile time
* Sales process no longer controls this dependency

Inversion of control

Sales Process

* Sales process receives/obtains concrete scale at run time
* Another process controls this dependency

° ° 2023
Dependency Injection b

procedure GetWeight(var SalesLine: Record "Sales Line")
var

Scale: Codeunit "Scale - Mettler Toledo";

Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);
end;

Concrete
tightly coupled
dependency

° ° 2023
Dependency Injection b

procedure GetWeight(var SaleslLine: Record "Sales Line']; Scale: Interface IScale)
var
Weight: Decimal;

begin
Weight := Scale.GetWeight();
SalesLine.Validate("Gross Weight", Weight);
end;

Abstract
loosely coupled
dependency

§ 2023
F a Ct O ry mibuso.com

AbStFaCt procedure GetWeight(var SalesLine: Record "Sales Line")
loosely coupled
dependency begin

Scale := GetScale();
Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);

end;

§ 2023
F a Ct O ry mibuso.com

procedure GetWeight(var SalesLine: Record "Sales Line")

var
Scale: Interface IScale;
Consumer asks for LseelrEs Lestiels
concrete implementation
at run t|me SalsLirile.Vaidz-ate("Gr'oss\lr)d;ight", Weight);

Factory

There are
various techniques
for providing
concrete dependencies

local procedure GetScale(): Interface IScale
begin

end;

procedure GetWeight(var SaleslLine: Record "Sales Line")

var

Scale: Interface IScale;
Weight: Decimal;

begin

end;

Scale := GetScale();
Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);

mibusc.com

What about Isolated Storage?

. | s |
Decouple dependencies

Setup

¥

Isolated Storage

. | s |
Decouple dependencies

Setup

¥

|ConfigurationProvider

Isolated Storage

BcINAV
TECH

. | 20 |
Decouple dependencies

Setup

¥

|ConfigurationProvider

Isolated Storage

ConfigrationProvider

. | 20 |
Decouple dependencies

Setup

|ConfigurationProvider

Azure KeyVault Isolated Storage

ConfigrationProvider

Test doubles

DAYS
i 2023 l
TeSt doubles mibusc.com

BcINAV
TECH
DAYS
% 2023 l
mibusc.com

i
)

o = N\
M\..\“a ,,/...., 2 &.' » .W.\ .L:&lﬂ'%ﬂ. :
Y g :w..a,. .

T : /
! [
i \

Test doubles

DAYS
§ 2023 l
TeSt doubles mibusc.com

A test double (s an object that
stands in for a real object in a test,
Just like a stunt double
stands (n for an actor in a movie.

How do test doubles work? L

procedure GetWeight(var SaleslLine: Record "Sales Line")
var

Scale: Interface IScale;

Weight: Decimal;

Do we really
communicate
with a scale here?

How do test doubles work? L

procedure GetWeight(var SaleslLine: Record "Sales Line")
var

Scale: Interface IScale;

Weight: Decimal;
begin

Scale := GetScale();

Weight := Scale.GetWeight();

SaleslLine.Validate("Gross Weight", Weight);
end;

Does this function
really care about how exactly
the weight was taken?

How do test doubles work?

procedure GetWeight(var SaleslLine: Record "Sales Line")
var
Scale: Interface IScale; IScale

Weight: Decimal;
begin 1 reference

Scale := GetScale(); procedure TakeWeight():

Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);
end;

The process is
abstracted
behind an interface

mibusc.com

How do test doubles work?

procedure GetWeight(var SaleslLine: Record "Sales
var

Scale: Interface IScale;

Weight: Decimal;
begin

Scale := GetScale();

Weight := Scale.GetWeight();

SaleslLine.Validate("Gross Weight", Weight);
end;

Your process does not care
which one of these
interface implementations
was invoked

mibusc.com

interface IScale

{

1 reference
procedure TakeWeight(): Decimal;

codeunit 60219 "Scale - B-TEK" implements IScale
{

procedure TakeWeight(): Decimal
begin

codeunit 60217 "Scale - Tefal" implements IScale
{

procedure TakeWeight(): Decimal
begin

codeunit 60218 "Scale - Mettler Toledo™ implements IScale
{

procedure TakeWeight(): Decimal
begin

end;

How do test doubles work?

procedure GetWeight(var SaleslLine: Record "Sales Line")

var
Scale: Interface IScale;
Weight: Decimal;
begin
Scale := GetScale();
Weight := Scale.GetWeight();
SaleslLine.Validate("Gross Weight", Weight);
end;

... or if a mock
implementation was
invoked

interface IScale mibusc.com

{

1 reference
procedure TakeWeight(): Decimal;

codeunit 60219 "Scale - B-TEK" implements IScale
{

procedure TakeWeight(): Decimal
begin

codeunit 60217 "Scale - Tefal™ implements IScale

{

procedure TakeWeight(): Decimal
begin

codeunit 60218 "Scale - Mettler Toledo" implements IScale

{

procedure TakeWeight(): Decimal
begin

unit 60220 "Scale - Mock" implements IScale
e TakeWeight(): Decimal

xit(Random() * 1@0)

What have we done so far?

* Decoupled setup

* Decoupled Isolated Storage

* We can test isolated from setup or database

* We can exchange our components (eg, Azure Key Vault)

mibusc.com

: Isolated
Imagine Storage

Result

Imagine

mibusc.com

Isolated
Storage

Testing in Isolation

[J [J [J [J ZDOszss
Testing in isolation Lo

Imagine

ImagineWith

Midjourney

[J [J [J [J 200A2Y3$
Testing in isolation 574

‘ Imagine

ImagineWith
Midjourney

“ Result

Testing in isolation

‘ Imagine

ImagineWith
Midjourney

=)

5

Testing directly is problematic:

* Requires a lot of "givens”

* Takes a lot of time to properly set up
* Executes slowly

* Does not enable testing all flows

S5
o>

mibusc.com

[J [J [J [J 200A2Y3$
Testing in isolation il

‘ Imagine “

ImagineWith
Midjourney

- >

We must test each component in isolation from its dependencies

Testing in isolation

Mock
Imagine

ImagineWith
Midjourney

“ Mock
Result

At each level:
* We test the component directly
* We mock its direct dependencies

; BCI NAV
TECH
DAYS
2023

mibusc.com

Testing in isolation

Imagine

At each level:
* We test the component directly
* We mock its direct dependencies

S

mibusc.com

Testing in isolation

At each level:
* We test the component directly
* We mock its direct dependencies

mibusc.com

[J [J [J [J ZDOszss
Testing in isolation Lo

At each level:
* We test the component directly
* We mock its direct dependencies

[J [J [J [J ZDOszss
Testing in isolation Lo

Imagine

ImagineWith

Midjourney

* We tested all components
* We tested all code paths
* We simulated all conditions

* Tests were simple to write
* Tests performed fast

° ° ° ° 2023
Tests pinpoint design issues L

When you can’t test a component in isolation,
you know there is a problem with your design.

Imagine

mibusc.com

Isolated
Storage

’

mibusc.com

Isolated Storage

§ 2023
Where are We ee0o0 mibuso.com

* Decoupling helps us to test

* Butit also gives opportunities
* Dall-E
* Azure Key Vault

* Dependency Injection makes us able to control the implementations wherever we
want..

But ...

¥

internal procedure GetImageUrl(Prompt: Text; Imagine: Interface IMidjourneyImagine; Result
var

IsHandled: Boolean;
begin

n

. Interface IMidjourneyResult; MidjourneySend: Interface IMidjourneySend) MidjourneyUrl: Text

Factory

mibusc.com

Factory

"An object that the client code can use to obtain instances of its
dependencies, without explicitly knowing the concrete class being
instantiated.”

mibusc.com

codeunit 50074 "Midjourney Factory" mibusc.com

{

An object

SingleInstance = true;

\\

that the client code can use to obtain instances of its
dependencies, without explicitly knowing the concrete class being
instantiated.”

codeunit 50074 "Midjourney Factory" mibusc.com

{

SingleInstance = true;

An ObJeCt codeunit 50061 "ImagineWithMidjourney Meth"

that the client code can use { var

Factory: Codeunit "Midjourney Factory";

\

to obtain instances of its
dependencies, without explicitly knowing the concrete class being
instantiated.”

codeunit 50074 "Midjourney Factory" mibusc.com

{

SingleInstance = true;

codeunit 50061 "ImagineWithMidjourney Meth"
1

Factory: Codeunit "Midjourney Factory";

An Object local procedure DoGetImage(Prompt: Text; var MidjourneyUrl:
var
that the Client COde can use Imagine: Interface IMidjourneyImagine;
TaskId: Text;
to obtain instances of its dependencies begin

if IsHandled then
exit;

it not _retryDelaySet then
_retryDelay := 5000;

Imagine :=]Factory.GetMidjourneyImagine();
TaskId := Imagine.lmagine(Prompt);
MidjourneyUrl := WaitForUrl(TaskId);

end;

¥

internal procedure GetImageUrl(Prompt: Text; Imagine: Interface IMidjourneyImagine; Result
var

IsHandled: Boolean;
begin

internal procedure GetImageUrl(Prompt: Text
var

IsHandled: Boolean;
begin

internal procedure GetImageUrl(Prompt: Text) MidjourneyUrl: Text
var

IsHandled: Boolean;
begin

Demo:
Single Instance Factories

° ° 2023
Single Instance Factories e

Pros:
- Much easier to add/remove dependencies
- Easy to create/read tests

Cons:

- Dependency chains are now obscured

- Compiler doesn’t help you

- Can be a liability, because developer might forget

Factory Injection

Demo:
Factory Injection

Hidden Dependencies

§ 2023
Key TakeaW ays mibuso.com

* Interfaces promote loose coupling and easier maintenance of the system.
* Decoupling enhances flexibility, testability, and maintainability.

* Inversion of Control inverts the control flow, improving modularity and
extensibility.

Repo: https://github.com/vjekob/bctechdays2023

https://github.com/vjekob/bctechdays2023

mibusc.com

TDD

TDD is not about tests

TDD is not about tests
it's about design

mibusc.com

Any Questions?

OOOOOOOO

	Interfaces Intro
	Slide 1
	Slide 2: Interfaces – an Intro
	Slide 3: Componentization
	Slide 4: Componentization
	Slide 5: Componentization
	Slide 6: Componentization
	Slide 7: Componentization
	Slide 8: Componentization
	Slide 9: Componentization
	Slide 10: Componentization
	Slide 11: Componentization
	Slide 12: For example…
	Slide 13
	Slide 14
	Slide 15: What is an Interface?
	Slide 16: Interface Implementations
	Slide 17: Factory
	Slide 18: Factory
	Slide 19

	MidJourney
	Slide 20: ChatGPT
	Slide 21: Midjourney
	Slide 22: Midjourney
	Slide 23: Midjourney
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 33: So... what if ...
	Slide 34: So... what if ...
	Slide 35
	Slide 36
	Slide 37: Let’s see this in practice...
	Slide 38
	Slide 39
	Slide 40: Imagine With MidJourney Meth (GetImageUrl)
	Slide 41: Imagine With MidJourney Meth (GetImageUrl)
	Slide 42: Imagine With MidJourney Meth (GetImageUrl)
	Slide 43: Imagine With MidJourney Meth (GetImageUrl)
	Slide 44: Like it?

	Dependencies
	Slide 45
	Slide 46
	Slide 47: Dependencies
	Slide 48: Dependencies
	Slide 49: Dependencies
	Slide 50: Dependencies
	Slide 51: Dependencies
	Slide 52: Dependencies
	Slide 53: Dependencies
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Imagine With MidJourney Meth (GetImageUrl)
	Slide 59

	Inversion of control
	Slide 60: Inversion of control
	Slide 61: Inversion of control
	Slide 62: Inversion of control
	Slide 63: Inversion of control
	Slide 64: Inversion of control
	Slide 65: Inversion of control
	Slide 66: Inversion of control
	Slide 67: Dependency Injection
	Slide 68: Dependency Injection
	Slide 69: Factory
	Slide 70: Factory
	Slide 71: Factory
	Slide 72: What about Isolated Storage?
	Slide 73: Decouple dependencies
	Slide 74: Decouple dependencies
	Slide 75: Decouple dependencies
	Slide 76: Decouple dependencies

	Test Doubles
	Slide 78: Test doubles
	Slide 79: Test doubles
	Slide 80: Test doubles
	Slide 81: Test doubles
	Slide 82: How do test doubles work?
	Slide 83: How do test doubles work?
	Slide 84: How do test doubles work?
	Slide 85: How do test doubles work?
	Slide 86: How do test doubles work?
	Slide 87: What have we done so far?
	Slide 88
	Slide 89

	Testing in Isolation
	Slide 90: Testing in Isolation
	Slide 91: Testing in isolation
	Slide 92: Testing in isolation
	Slide 93: Testing in isolation
	Slide 94: Testing in isolation
	Slide 95: Testing in isolation
	Slide 96: Testing in isolation
	Slide 97: Testing in isolation
	Slide 98: Testing in isolation
	Slide 99: Testing in isolation
	Slide 100: Tests pinpoint design issues

	Decoupling MORE
	Slide 101
	Slide 102
	Slide 103: Where are we …

	Factories
	Slide 104
	Slide 105
	Slide 106: Factory
	Slide 107: Factory
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Demo: Single Instance Factories

	Static vs Dynamics factories
	Slide 116: Single Instance Factories
	Slide 117: Factory Injection
	Slide 118: Demo: Factory Injection

	Hidden dependencis
	Slide 119: Hidden Dependencies

	Takeaways
	Slide 120: Key Takeaways
	Slide 121: TDD
	Slide 122: TDD is not about tests
	Slide 123: TDD is not about tests it’s about design
	Slide 124
	Slide 125

