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• New AL File wizard to add a new Page
• Set page type to API
• API properties automatically filled in (setting)
• Add multiple fields
• No ApplicationArea
• No Captions (setting)
• Automatically convert names

• Tip:
• Think about the order of fields
• ODataKeyFields must be added afterwards

Creating custom APIs with AZ AL Dev Tools



API page triggers

Different flow per 
data operation



API page triggers – GET operation



API page triggers – POST operation



API page triggers – PATCH operation

OnInit



API page triggers – DELETE operation

OnInit



• When the record is read from the 
OnValidate trigger:
• OnNewRecord still executes
• OnInsertRecord is skipped
• OnModifyRecord is executed instead

Turn POST into PATCH



• Potential performance hit
• Large tables
• Paging
• No caching

• Tips:
• Fill data with a query
• Reduce data by filtering
• Force filterin in code

Using temporary tables
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Bound Action return value

Option 1: Location Header



Option 1 – Copy all APIs



• Two types:
• 1:1
• 1:n

• Defined in page part

• Automatic relationship is created under 
certain conditions:
• TableRelation specified
• API exists for both tables

Relationships between APIs



• Partial records is automatically enabled 
for API pages

• Fields defined in the repeater are 
automatically loaded

• Any other field that is accessed from 
code causes a JIT (Just In Time) load

• Avoid JIT loads by using 
Rec.AddLoadFields

Partial records



• $select= to reduce the JSON payload

• Do not use $top and $skip. Instead use 
server-drive paging with header 
odata.maxpagesiz

• Accept header to manage OData tags

• Navigate to a single property

Reducing JSON payload



Four things to consider:

1. Use APIs over OData/SOAP on UI pages

2. Reduce aggressive calls

3. Check time spend in queues

4. Fix non-200 HTTP errors (these just waste resources)

5. For more tips check:
http://aka.ms/bcperformance
https://learn.microsoft.com/en-us/dynamics365/business-central/dev-itpro/api-reference/v2.0/dynamics-error-codes

Monitoring incoming web service calls

http://aka.ms/bcperformance
https://learn.microsoft.com/en-us/dynamics365/business-central/dev-itpro/api-reference/v2.0/dynamics-error-codes


Is your API code fast?

Filter on category API



Do your API calls get queued up?



Are your APIs called aggressively?



Incoming web service performance – non-200 calls

Fix errors on these endpoints

Filter to only show errors



• Postman runtime is based on Node.js

• Add dynamic behavior to requests
• Pre-request scripts
• Test scripts
• Dynamics parameters
• Pass data between requests

• Javascript code

Postman test script



• Add NuGet package 
Microsoft.Identity.Client

• Use the package for retrieving OAuth 
access tokens

Consuming APIs with C# - Authentication
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• Create a class with properties for each 
field in the Json payload

• Map each property to the corresponding 
Json key by using JsonPropertyName

• Do the same for the value property in the 
response

Consuming APIs with C# - Data



• Use the HttpClient extension method GetFromJsonAsync to automatically 
convert the Json response into an object

Consuming APIs with C# - Data



• Use the HttpClient extension 
method PostAsJsonAsync to 
automatically convert an 
object into a Json request

• Use the HttpContent
extension method 
ReadFromJsonAsync to 
automatically convert the Json 
response into an object

Consuming APIs with C# - Data



Any Questions?
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