

Interfaces – an Intro

Componentization

Define a component

Componentization

Describe the purpose

Componentization

Facilitates Clear Architecture and
Interactions

Componentization

Replace a component
(decoupling)

Componentization

Switch implementation

Componentization

Allow Override of Default
Code

Componentization

Extend a Component

Componentization

Test a Component

Componentization

For example…

“In programming languages, an interface is a construct that defines a contract or a
set of methods that a class must implement. It specifies the signature (name,

parameters, return types) of the methods without providing their actual
implementation.”

What is an Interface?

Interface Implementations

“an object that the client code can use to obtain instances of these objects, without
explicitly knowing the concrete class being instantiated.”

Factory

“an object that the client code can use to obtain instances of these objects, without
explicitly knowing the concrete class being instantiated.”

Factory

ChatGPT

Midjourney

Midjourney

Midjourney

Midjourney is a generative artificial
intelligence program and service that

generates images from natural language
descriptions, called "prompts“.

Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” –ar 1:1

Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” –ar 1:1

Prompt:
“Imagine: Shocked Potato when
seeing Belgian Fries” –ar 1:1

Prompt:
Imagine: <url to picture> hilarious
caricature of both persons, drawing
--ar 1:1

Prompt:
Imagine: <url to picture> hilarious
caricature of both persons, drawing
--ar 1:1

So... what if ...

So... what if ...

Prompt:
Imagine: <url to picture> on a beach,
sunset, realistic --ar 1:1 --iw 1.25

Prompt:
Imagine: <url to picture> on a beach,
sunset, realistic --ar 1:1 --iw 1.25

Let’s see this in practice...

Action:
Item.lmagine

Import Picture to
Item table

Imagine With
MidJourney Meth

(GetImageUrl)

Imagine With MidJourney Meth (GetImageUrl)

Imagine & Result

- Setup

- Isolated Storage

- Send

- Http

- ResponseHandling

Imagine

Result

Imagine With MidJourney Meth (GetImageUrl)

Imagine & Result

- Setup

- Isolated Storage

- Send

- Http

- ResponseHandling

Imagine

Result

Send

Imagine With MidJourney Meth (GetImageUrl)

Imagine & Result

- Setup

- Isolated Storage

- Send

- Http

- ResponseHandling

Imagine

Result

Send

Setup

Imagine With MidJourney Meth (GetImageUrl)

Isolated Storage

Imagine & Result

- Setup

- Isolated Storage

- Send

- Http

- ResponseHandling

Imagine

Result

Send

Setup

Http

Imagine With MidJourney Meth (GetImageUrl)

Isolated Storage

Like it?

Dependencies

Any component or resource
that any other component

needs to fulfill its functionality

Dependencies

Dependencies

WebSend Midjourney

Dependency

Dependencies

Web

Result

Send

Imagine

Midjourney

Dependency

Dependencies

ImagineWith
Midjourney

Result

Send

Imagine

Midjourney

Dependencies

• Coupling vs. Cohesion

Dependencies

Coupling

• Degree of interdependence of different
components

• How strongly are these components
interdependent?

Dependencies

Cohesion

• Degree to which components belong
together

• How well do these components belong
together?

Imagine With MidJourney Meth (GetImageUrl)

Imagine & Result

- Setup

- Isolated Storage

- Send

- Http

- ResponseHandling

Imagine

Result

Send

Setup

Http

Isolated Storage

Imagine

Result

Send

Setup

Http

Isolated
Storage

Inversion of control

Inversion of control

Consumer

consumes

Inversion of control

Consumer Dependency

uses

Inversion of control

Sales Process Scale

Inversion of control

Sales Process

Scale
(concrete)

• Sales process declares concrete scale at compile time

• Sales process controls this dependency

Inversion of control

Sales Process

• Sales process declares abstract scale at compile time

• Sales process no longer controls this dependency

Inversion of control

Sales Process

• Sales process receives/obtains concrete scale at run time

• Another process controls this dependency

Scale
(concrete)

Dependency Injection

Concrete

tightly coupled

dependency

Dependency Injection

Abstract

loosely coupled

dependency

Factory

Abstract

loosely coupled

dependency

Factory

Consumer asks for

concrete implementation

at run time

Factory

There are

various techniques

for providing

concrete dependencies

What about Isolated Storage?

IConfigurationProvider

Decouple dependencies

Setup

Isolated Storage

Decouple dependencies

Setup

Isolated Storage

IConfigurationProvider

Decouple dependencies

Fake
ConfigrationProvider

Setup

Isolated Storage

IConfigurationProvider

Decouple dependencies

Azure KeyVault
Fake

ConfigrationProvider

Setup

Isolated Storage

IConfigurationProvider

Test doubles

Test doubles

Test doubles

Test doubles

A test double is an object that
stands in for a real object in a test,

just like a stunt double
stands in for an actor in a movie.

How do test doubles work?

Do we really

communicate

with a scale here?

How do test doubles work?

Does this function

really care about how exactly

the weight was taken?

How do test doubles work?

The process is

abstracted

behind an interface

How do test doubles work?

Your process does not care

which one of these

interface implementations

was invoked

How do test doubles work?

… or if a mock

implementation was

invoked

• Decoupled setup

• Decoupled Isolated Storage

• We can test isolated from setup or database

• We can exchange our components (eg, Azure Key Vault)

What have we done so far?

Imagine

Result

Send

Setup

Http

Isolated
Storage

Imagine

Result

Send

Setup

Http

Isolated
Storage

Testing in Isolation

Testing in isolation

ImagineWith
Midjourney

Result

Send Web

Imagine

Testing in isolation

Webcall
ImagineWith
Midjourney

Result

Send Web

Imagine

Testing in isolation

Webcall
ImagineWith
Midjourney

Result

Send Web

Imagine

Testing directly is problematic:

• Requires a lot of “givens”

• Takes a lot of time to properly set up

• Executes slowly

• Does not enable testing all flows

Testing in isolation

Web
ImagineWith
Midjourney

Result

Send Web

Imagine

We must test each component in isolation from its dependencies

Testing in isolation

ImagineWith
Midjourney

Mock
Result

Mock
Imagine

At each level:

• We test the component directly

• We mock its direct dependencies

Testing in isolation

Mock
Send

Imagine

At each level:

• We test the component directly

• We mock its direct dependencies

Testing in isolation

Mock
Send

Result

At each level:

• We test the component directly

• We mock its direct dependencies

Testing in isolation

WebSend Mock
Web

At each level:

• We test the component directly

• We mock its direct dependencies

Testing in isolation

Web

ImagineWith
Midjourney

Result

Send

Imagine

• We tested all components

• We tested all code paths

• We simulated all conditions

• Tests were simple to write

• Tests performed fast

When you can’t test a component in isolation,
you know there is a problem with your design.

-- a wise man once said --

Tests pinpoint design issues

Imagine

Result

Send

Setup

Http

Isolated
Storage

Imagine

Result

Setup Isolated Storage

Send Http

• Decoupling helps us to test

• But it also gives opportunities
• Dall-E
• Azure Key Vault

• Dependency Injection makes us able to control the implementations wherever we
want..

But …

Where are we …

internal procedure GetImageUrl(Prompt: Text; Imagine: Interface IMidjourneyImagine; Result:
var

IsHandled: Boolean;
begin

; Result: Interface IMidjourneyResult; MidjourneySend: Interface IMidjourneySend) MidjourneyUrl: Text

Factory

Factory

“An object that the client code can use to obtain instances of its
dependencies, without explicitly knowing the concrete class being

instantiated.”

An object

“ that the client code can use to obtain instances of its
dependencies, without explicitly knowing the concrete class being

instantiated.”

An object

that the client code can use

“ to obtain instances of its
dependencies, without explicitly knowing the concrete class being

instantiated.”

An object

that the client code can use

to obtain instances of its dependencies

internal procedure GetImageUrl(Prompt: Text; Imagine: Interface IMidjourneyImagine; Result:
var

IsHandled: Boolean;
begin

internal procedure GetImageUrl(Prompt: Text
var

IsHandled: Boolean;
begin

internal procedure GetImageUrl(Prompt: Text) MidjourneyUrl: Text
var

IsHandled: Boolean;
begin

Demo:
Single Instance Factories

Pros:

- Much easier to add/remove dependencies

- Easy to create/read tests

Cons:

- Dependency chains are now obscured

- Compiler doesn’t help you

- Can be a liability, because developer might forget

Single Instance Factories

Factory Injection

Demo:
Factory Injection

Hidden Dependencies

• Interfaces promote loose coupling and easier maintenance of the system.

• Decoupling enhances flexibility, testability, and maintainability.

• Inversion of Control inverts the control flow, improving modularity and
extensibility.

Repo: https://github.com/vjekob/bctechdays2023

Key Takeaways

https://github.com/vjekob/bctechdays2023

TDD

TDD is not about tests

TDD is not about tests
it’s about design

Any Questions?

	Interfaces Intro
	Slide 1
	Slide 2: Interfaces – an Intro
	Slide 3: Componentization
	Slide 4: Componentization
	Slide 5: Componentization
	Slide 6: Componentization
	Slide 7: Componentization
	Slide 8: Componentization
	Slide 9: Componentization
	Slide 10: Componentization
	Slide 11: Componentization
	Slide 12: For example…
	Slide 13
	Slide 14
	Slide 15: What is an Interface?
	Slide 16: Interface Implementations
	Slide 17: Factory
	Slide 18: Factory
	Slide 19

	MidJourney
	Slide 20: ChatGPT
	Slide 21: Midjourney
	Slide 22: Midjourney
	Slide 23: Midjourney
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 33: So... what if ...
	Slide 34: So... what if ...
	Slide 35
	Slide 36
	Slide 37: Let’s see this in practice...
	Slide 38
	Slide 39
	Slide 40: Imagine With MidJourney Meth (GetImageUrl)
	Slide 41: Imagine With MidJourney Meth (GetImageUrl)
	Slide 42: Imagine With MidJourney Meth (GetImageUrl)
	Slide 43: Imagine With MidJourney Meth (GetImageUrl)
	Slide 44: Like it?

	Dependencies
	Slide 45
	Slide 46
	Slide 47: Dependencies
	Slide 48: Dependencies
	Slide 49: Dependencies
	Slide 50: Dependencies
	Slide 51: Dependencies
	Slide 52: Dependencies
	Slide 53: Dependencies
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Imagine With MidJourney Meth (GetImageUrl)
	Slide 59

	Inversion of control
	Slide 60: Inversion of control
	Slide 61: Inversion of control
	Slide 62: Inversion of control
	Slide 63: Inversion of control
	Slide 64: Inversion of control
	Slide 65: Inversion of control
	Slide 66: Inversion of control
	Slide 67: Dependency Injection
	Slide 68: Dependency Injection
	Slide 69: Factory
	Slide 70: Factory
	Slide 71: Factory
	Slide 72: What about Isolated Storage?
	Slide 73: Decouple dependencies
	Slide 74: Decouple dependencies
	Slide 75: Decouple dependencies
	Slide 76: Decouple dependencies

	Test Doubles
	Slide 78: Test doubles
	Slide 79: Test doubles
	Slide 80: Test doubles
	Slide 81: Test doubles
	Slide 82: How do test doubles work?
	Slide 83: How do test doubles work?
	Slide 84: How do test doubles work?
	Slide 85: How do test doubles work?
	Slide 86: How do test doubles work?
	Slide 87: What have we done so far?
	Slide 88
	Slide 89

	Testing in Isolation
	Slide 90: Testing in Isolation
	Slide 91: Testing in isolation
	Slide 92: Testing in isolation
	Slide 93: Testing in isolation
	Slide 94: Testing in isolation
	Slide 95: Testing in isolation
	Slide 96: Testing in isolation
	Slide 97: Testing in isolation
	Slide 98: Testing in isolation
	Slide 99: Testing in isolation
	Slide 100: Tests pinpoint design issues

	Decoupling MORE
	Slide 101
	Slide 102
	Slide 103: Where are we …

	Factories
	Slide 104
	Slide 105
	Slide 106: Factory
	Slide 107: Factory
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Demo: Single Instance Factories

	Static vs Dynamics factories
	Slide 116: Single Instance Factories
	Slide 117: Factory Injection
	Slide 118: Demo: Factory Injection

	Hidden dependencis
	Slide 119: Hidden Dependencies

	Takeaways
	Slide 120: Key Takeaways
	Slide 121: TDD
	Slide 122: TDD is not about tests
	Slide 123: TDD is not about tests it’s about design
	Slide 124
	Slide 125

