

Microsoft® CRM Product Architecture
White Paper

Published: April 2003

Abstract

This white paper will discuss Microsoft CRM from both the customer’s and the implementers’—

partners, value-added resellers, and independent software vendors—points of view. The paper

comprises a general overview of Microsoft CRM that includes deployment strategies and product

design goals; a detailed discussion of the product architecture, security model, and enabling

technology; and brief descriptions of reporting capabilities, internationalization support, and

product customization.

 Microsoft CRM Product Architecture 1

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of
publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
SUMMARY.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you
any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are
fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, bCentral, BizTalk, Great Plains, Outlook, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. The names of actual companies and products mentioned
herein may be the trademarks of their respective owners.

 Microsoft CRM Product Architecture 2

Contents

Abstract .. 1

Introduction.. 5

General overview of Microsoft CRM .. 5

Deployment strategies ... 5

Microsoft CRM design goals .. 6

Product Architecture... 7

The user interface and presentation tier .. 7

Application and custom business logic .. 8

Service tier: domain logic... 8

Common service data tier .. 9

Remapping the logical ... 9

Constructing the architectural model ... 10

Dividing the hierarchy .. 11

General Architecture ... 12

Security subsystem.. 13

Business and organization structures in Microsoft CRM ... 14

Security principals within Microsoft CRM... 15

Roles .. 16

Teams .. 16

Role-Based Security.. 17

Microsoft CRM impact on Active Directory .. 17

Object-Level Security.. 19

Security descriptors ... 19

Microsoft CRM Security Service .. 20

 Microsoft CRM Product Architecture 3

Metadata as an Enabling Technology ... 21

The actual metadata model: an introduction.. 22

Considering schema approaches: history.. 23

Accessing the platform through API: an example... 25

Querying the database: through <fetch> ... 27

A <fetch> example ... 28

Common forms Processor ... 29

User Interface Architecture–Web Client.. 30

User Interface Architecture–Outlook Client.. 30

"Rich client" architecture in online state... 31

"Rich client" architecture in offline state... 32

Disconnecting from the primary server: "going offline" .. 33

Performing "write" operations while offline .. 34

Reconnecting to the primary server: "going online"... 34

Reporting.. 35

Internationalization Support... 36

Product Customization ... 36

Conclusion ... 36

 Microsoft CRM Product Architecture 4

Introduction

Microsoft® Business Solutions CRM is a.NET connected business application. It has been

specifically designed to meet the needs of companies wishing to implement a CRM solution.

This white paper will discuss Microsoft CRM from both the customer’s and the implementers’—

partners, value-added resellers, and independent software vendors—points of view. The paper

comprises a general overview of Microsoft CRM that includes deployment strategies and product

design goals; a detailed discussion of the product architecture, security model, and enabling

technology; and brief descriptions of reporting capabilities, internationalization support, and

product customization.

General overview of Microsoft CRM

Microsoft CRM is not so much a technology as it is a business strategy used for helping

companies acquire new customers and maintain current customers. Acquiring new customers

costs four-to-five times as much as keeping and reselling to existing customers. Microsoft CRM

enables companies to build and implement business processes that help retain existing

customers.

Microsoft CRM is all about collaborations and interactions between vendors, supplies, and

customers. The core goal of Microsoft CRM, as a technology, is to enable and track these

interactions in order to learn more about customers. Each time a sales person interacts with a

customer, the company learns something new about that customer. For instance, the customer

might prefer to interact by electronic mail, but will accept broadcast fax messages. Using

Microsoft CRM, learning how customers were acquired is not only possible, but quite easy.

Microsoft CRM automatically tracks all interactions, regardless of how they were initiated,

between your sales and service employees and your customers. Later each interaction can be

recalled individually, or combined with others to create a complete history, commonly known as a

360-degree customer view. Simply put, this 360-degree view captures the entire set of

interactions and collaborations between your company and your customer.

Deployment strategies

Microsoft CRM has been designed specifically to be quickly and easily deployed into companies

wishing to manage sales and support interactions with their customers. The product can be

installed on multiple physical servers so that it grows with your company. Microsoft CRM poses

no real limitations on deployments and installations; however, some of the supporting

technologies, such as Microsoft Exchange Server and Microsoft SQL ServerTM, might do so.

 Microsoft CRM Product Architecture 5

Microsoft CRM design goals

Microsoft CRM was designed with several basic design goals:

Provide low total cost of ownership (TCO). The product must be manageable, allow

customization, be easy to deploy and upgrade, and be well-supported by both Microsoft and the

independent software vendors community at large.

Provide low-cost product customization. Product customizations are very important in a CRM

environment. No single, out-of-box solution can meet every customer’s needs, so Microsoft CRM

has been designed to make customizations very simple and affordable.

Scale up and out to hosted environments. While Microsoft CRM isn’t sold as a hosted solution,

the product was designed with this deployment model in mind. The hosted application model

imposes very high demands on an application, and Microsoft CRM was built to meet this demand.

Even if your particular situation doesn’t demand this level of scalability, you can feel secure

knowing that Microsoft CRM can easily grow with your business.

Scale down to a single user desktop. A CRM solution isn’t as effective as it could be unless the

product is also available in a disconnected model. Microsoft CRM can be deployed inside of

Microsoft Outlook® in both connected and disconnected models. The product was designed so

that you can deliver your customizations automatically from your intranet-based solution to your

desktop clients, smoothly and efficiently.

Separate, but equal, application and platform tiers. Multiple tiers separate business logic from

application rendering logic from data management logic.1

Microsoft CRM lowers TCO by implementing a metadata-driven architecture. This model allows

customers to extend the underlying database schema easily, without having to change any

application or platform code. These upgrades will persist through product upgrades and future

releases because the upgrades, in effect, will be isolated from the platform code, which operates

1 For further explanation of the terms "platform" and "application," see the "General Architecture" section of this paper. From a very high

level, the platform can be considered to be any part of the overall product from and including the application program interface (Application

Program Interface [API] layer "down" to the database. Everything "above" the API layer, including any custom application extensions that

call the API layer, can be considered the application for purposes of this discussion. The layer between the application and platform is

generated by the build process and results in two managed Dynamic Link Libraries (DLLs), one that exposes the platform by way of SOAP

and one for Component Object Model (COM).

 Microsoft CRM Product Architecture 6

on the base entities.2 The platform itself can perform operations against custom attributes, such

as reading and writing, by simply looking through the entity instance and the metadata that

defines that particular class of entities.3

Product Architecture

This white paper will discuss the Microsoft CRM product architecture at a slightly higher level than

most developers might expect; but both developers and managers alike should find the topics

interesting and appropriate.

Microsoft CRM supports a physical, four-tier model, but there are times when it’s convenient to

think of the individual layers as further divisible. At this level of logic, it’s possible to identify up to

six possible, unique tiers. Don’t confuse the number of tiers (or layers) with "chattiness" or with

performance degradation; these are logical tiers—the physical model is more optimized. Each tier

in both the logical and physical models performs a specific function and acts as a supplier to

those tiers immediately surrounding it.

The user interface and presentation tier

Microsoft CRM has two distinct presentation components, Microsoft Internet Explorer as the rich,

Web-based4 user experience; and Microsoft Outlook as the rich, Microsoft Windows® operating

system-based experience. Both components make use of the rendering technology built into

Internet Explorer. The internal rendering engine is hosted inside Outlook to present the same

general look and feel as the Web application, but without the need for a Web server.

Microsoft CRM uses the Dynamic HTML (DHTML) capabilities of Internet Explorer to place as

much processing as possible on the client machine, thus freeing up expensive server resources

2 An "entity" is a class of objects, such as Account, Contact or Case, that captures both content (the set of attributes which make up the

entity) and behavior (the business logic that is expected from any object called Account or Contact or Case). As will be discussed later in

this paper, the metadata captures more information about entities besides their basic implementation details—information such as

relationships to other entities and registered event handlers.

This paper will use the terms "entity" and "class" interchangeably unless there is a specific distinction to be made. The term "object" will be

used when discussing a specific (or sometimes generic) instance of a particular class.

3 In object-oriented programming terms, things in the software that represent real-world business objects are called classes. An instance of

an entity might be the computer representation of a specific object from that class of things. For example, Contact is the name of the class

of all "contactable people," but "Elmer Smithson" is a specific instance of a Contact. For more information about object-oriented concepts

(beyond the scope of this paper), see Object-oriented Information Systems by David A. Taylor.

4 This document uses the terms "thin client," "web client," and "browser client" more or less interchangeably.

 Microsoft CRM Product Architecture 7

and helping Microsoft CRM better scale to fit business demands. The application tier generates

the majority of the client-side code and delivers it for processing to the browser. Microsoft CRM

makes extensive use of Internet Explorer behaviors and client-side script to reduce the overall

network traffic. Both clients use this functionality to reduce overall load and network traffic.

Application and custom business logic

Just as there are two distinct presentation clients in Microsoft CRM, there are also two application

layers. For the Outlook-based client, a lightweight application framework was built to support the

Web-based application logic, but in a disconnected mode. The browser client uses Microsoft

ASP.NET application components within an application framework. There is little business logic

within the application tiers; the majority of application logic revolves around rendering and data

validation. The Microsoft CRM application layer only adds a small amount of customized business

logic; the majority was "built-in" to the platform itself.

Both application tiers use XML messages to communicate with the underlying platform layer.

Communication between the application tier and the platform tier uses SOAP for both Outlook-

and browser-based clients.5

Service tier: domain logic6

The service tier is responsible for creating problem domain-specific objects. These include in the

Microsoft CRM space such things as contact, lead, opportunity, account, and business. The goal

5 In the as-shipped version 1.0 product, the Microsoft ASP.NET application uses COM APIs instead of SOAP APIs for communication with

the underlying platform layer. This implementation detail will change in subsequent releases. The Outlook client uses SOAP both online

and offline. When the Outlook client is online, all communication occurs from the local running application to a central platform server.

When offline, the Outlook client uses SOAP locally (over-named Pipes) to communicate between the application layer and the platform

layer. The COM interfaces exposed from the platform layer may be removed in future product releases. The recommendation is that all

extensions and add-ons be written to the SOAP interfaces found in Microsoft.CRM.Proxy.DLL.

An additional recommendation is that the as-supplied proxy interfaces be used for interacting with the platform layer. Because of the way

the platform APIs have been packaged, if two or more interfaces should be combined in the same managed assembly, there is a possibility

of namespace collisions for core data types, such as CUserAuth and SecurityPrincipalType. The Microsoft CRM build process normalizes

these namespace clashes by constructing a single, managed DLL with common data types collapsed into single type library entries. The

clashes are a by-product of the use of Microsoft Active Template Library (ATL) code and common header files between the platform

DLLs—many data types are shared by all platform classes, but are exposed in the type library separately. This limitation makes the use of

Web service tools, such as wsdl.exe and sproxy.exe, very difficult for generating platform SOAP interfaces.

6 Throughout this document, the terms "service tier" and "domain tier" can be assumed to mean any logic implemented within the Microsoft

CRM platform object model. These terms are also interchangeable when discussing other "business" logic implementations.

 Microsoft CRM Product Architecture 8

of the service tier is to implement the service specific rules by manipulating and combining the

underlying domain objects.

The service tier does not impose per-business logic. This layer imposes only generic domain

constraints. This layer contains the building blocks for an application; but, by itself, is nothing

more than a collection of related objects. However, the interaction between those objects within

the domain can be assumed to implement more extensible logic, such as the Quote to Order to

Invoice processing and pricing logic.

The service tier contains more than just the Microsoft CRM business objects. It’s responsible for

controlling access to objects and the database, raising events for workflow processes and custom

business logic implementations. Think of the platform layer as implementing all of the "hard

plumbing" work necessary to implement a complete Microsoft CRM application. The platform

layer serves up both inbound and outbound e-mail processing by way of the Microsoft CRM

Exchange Connector, and implements a replaceable pricing module for opportunities, quotes,

orders, and sales invoices.7

Common service data tier

The data tier is the lowest level and consists of a database (loosely speaking) and a well-defined

data access layer. The data management tier with Microsoft CRM supports Microsoft SQL Server

20008 as the primary data store. The data access layer provides a consistent programming

interface for the service developer, which abstracts platform business logic from the underlying

data source. The domain tier is the only direct consumer of the common service data layer.

Remapping the logical

As stated earlier, it’s possible to identify up to six unique layers within the general product

architecture. These layers are strictly logical and, in any reasonably performant business

application, need to be combined to achieve optimal performance characteristics. This raises an

interesting problem: how can the logical architecture be re-factored to meet these physical

demands?

7 Information on creating a replacement pricing engine can be found in the Microsoft CRM platform SDK. The as-shipped pricing engine

closely follows existing pricing engines found in other Microsoft Business Solutions products, such as Microsoft Business Solutions–Great

Plains®.

8 The data tier chosen for Microsoft CRM is Microsoft SQL Server 2000 on the platform side and SQL Server 2000 Desktop Engine on the

disconnected client side. This choice drives some of the later decisions about data access code and the structure of different queries.

 Microsoft CRM Product Architecture 9

The first part of the solution might seem somewhat counter-intuitive—as in pushing the layers

back together. Access paths from layer to layer now need to be minimized. The architecture

presented earlier covers each possible layer in the model, but does not require implementing

each logical layer as a discrete physical layer. One of the initial constraints that will be placed on

the design is that of speed–can a "guarantee" (figuratively, not literally) be made that the system

will be performant enough to deploy for the number of users expected within the target market

segment?

Constructing the architectural model

There's a natural separation between the application layers and the service layers, one that can

be the initial architectural division. It's quite natural to do so, because it's simple to host the

different components on different servers, and each of those layers really encapsulates all the

information necessary to provide a complete service. The application layer holds all of the

application logic, including rendering, custom business logic and data validation. The service

layer holds all the service-specific domain knowledge and the store.9

However, there is no need to maintain a limit of two layers—it’s safe to assume that there is more

separation between the domain logic in the service layer and the underlying storage mechanism.

This separation is also a natural boundary for most relational database applications–the store

hides the data access mechanism and exposes a common interface, in this case the SQL

programming language. Microsoft CRM internally uses an object-based data management layer

to shield the platform code from the data access code. Just as it’s not possible for an application

developer to directly access the database; it’s also not possible for a platform developer to do so.

This object-based data management construct has been exposed to the application developer in

the form of the ICRMQuery interface, along with the <fetch> query language. These components

are discussed later in this paper and in some detail in the Microsoft CRM platform software

development kit (SDK).

9 Throughout the product, it’s possible to find that each layer harbors a certain level of distrust of its surrounding layers. For example, the

application layer implements a parallel user security model, effectively locking out functionality that is not available to the user. The platform

layer doesn’t know that the application has already performed a pre-emptive security check, so it performs another security check before

actually servicing the application’s request. This level of paranoia is necessary because the platform layer can’t necessarily "know" that a

given caller has already performed a security check and, by that measure, can’t verify the identity of the caller, nor the rights of the

individual to perform a given function.

 Microsoft CRM Product Architecture 10

Dividing the hierarchy

The overall view of the architecture changes the closer you get to it. Picture those little, wooden,

dolls–the ones that are nested one inside of another. The system's architecture resembles that

structure. An example would be as follows.

In the Microsoft CRM product, the service tier contains several higher-level boxes, each of which

contains multiple lower-level boxes:

Sales Force Automation provides sales professionals with access to critical customer

information and tools that enhance the sales force’s ability to sell effectively as well as manage

time efficiently. Sales force automation tools include contact management, calendaring functions,

forecasting tools, and configuration models. Sales force automation encompasses:

• Opportunity and sales lead management—getting and controlling leads and opportunities

• Contact management—helping to make your customer YOUR CUSTOMER by tracking

personal information

• Account management—helping to make your customer YOUR CUSTOMER by tracking

the customer's business information

• Sales processes—taking a sales lead, helping to turn it into an opportunity, and helping

to move it to a closed sale

• Competitor and referral libraries—tracking where leads come from and who competes for

the customer

• Sales force management—managing sales quotas and commissions

• Quote generation—helping to make it easier for the customer to get the right price, fast.

Marketing functionality gives marketing departments the ability to send personalized letters or

emails and to import lead lists. Closed-loop lead management is one of the most important

functions of marketing automation and relies on integration with the Microsoft CRM data

repository and related applications. Marketing tools include:

• Direct marketing—e-mail, paper mail, to get the message out and help generate leads

• Campaign tracking—functions to help track which campaigns are creating leads

 Microsoft CRM Product Architecture 11

Customer Service and Support helps make it possible for businesses to address customer

questions, problems, or issues effectively and efficiently. While customer satisfaction is the

primary goal, many organizations seek to increase revenues while providing customer service

through "cross-selling," using:

• A knowledge base that helps customers find answers to their questions

• Product literature and document management that provides customers with information

• Customer care that manages both pre- and post-sales customer interactions

• RMA that helps the customer get the right product at the right time, and fixes problems

quickly.

General Architecture

Now that we’ve discussed the logical layers that can be used to implement the Microsoft CRM

product, along with how to put several of those layers together to create a performant product,

let’s discuss how to implement Microsoft CRM and how it uses those different layers.

Figure 1. General Microsoft CRM architectural model

In general, there are four physical layers within the Microsoft CRM architectural "stack”:

presentation, application, business or domain logic, and data management. For discussion

purposes in this white paper, we’ll combine the data management and data store layers into a

 Microsoft CRM Product Architecture 12

single tier, although they are physically separated by virtue of existing in separate process

spaces.10 Microsoft CRM relies on several external components to perform additional

processing. Microsoft Exchange Server is used for sending and receiving e-mail messages.

Microsoft Active Directory® service is used for identifying security principals, roles, and groups

within the product. Microsoft CRM does not use Active Directory for storage of any business

data.11 The data storage mechanism is Microsoft SQL Server.

Before discussing the layers in detail, it will be useful to discuss the overall object model and

security layer within the product architecture. These structures form the basis for all object access

by way of the platform API set.

Security subsystem

The Microsoft CRM security system was designed with several goals. The first is to support the

concept of sharing; where users can be granted access to objects for collaborative effort. The

second is the converse: to prevent users from accessing objects that have not been shared with

them. The final goal is to categorize types of users; forbidding customer service representatives

from attempting to do sales force automation-related work, for example. The first two goals relate

to object security, while the third has to do with role-based security. The object security model

focuses on primary entities such as Account, Contact, Incident, and Sales Order. This is not to

say that other entities don’t carry the same security rules; it’s better to assume that all entities are

secure and watch for the occasional non-secure entity. This functionality should be directly

exposed in future versions of the product. The current metadata design makes identifying

secured entities quite easy, but it would be far more helpful to have a flag on Entity, instead. A

simple method to identify secure entities is to look for the entities holding an attribute called

S :

1

s

t

1

d

t

ecurityDescriptor. A simple SQL query against the metadata might be

select e.Name
from Entity e join Attribute a on e.EntityId = a.EntityId
where a.Name = 'SecurityDescriptor'

0 Not only do the data management and data store tiers reside in separate processes, but also they can reside in separate physical

ervers. Occasionally, the Microsoft CRM team internally talks about the 4½ tier product stack, which combines both data tiers into 1½

iers.

1 This decision was made simply to reduce the impact on Microsoft Active Directory. To support the richness of Microsoft CRM business

ata, significant Active Directory schema modifications would have been required, and proved to be too costly an option for the product’s

arget market.

 Microsoft CRM Product Architecture 13

The role-based security applies to those objects, but also applies to more general considerations,

ranging from administration of users to distribution of bulk e-mail.

Business and organization structures in Microsoft CRM

Microsoft CRM uses an uncomplicated, but very powerful, organizational structure for

construction of arbitrarily complex business hierarchies. Each installation can hold a single

concept, called an "Organization."12 Organizations are lightweight entities that provide a common

location from which to locate other business units. Businesses are not strictly hierarchical in

nature; however, they may be parented only by a single business unit.

There are three primary entities within the organizational structure, not including the

"Organization" itself. These entities are users, teams, and business units. Users represent real

people within the Active Directory; these are the people who use the product. Teams are arbitrary

groups of users and will be discussed later in this paper. Business units are the primary container

entity within the organizational hierarchy. It’s their structure that determines and defines the

concepts of basic, local, deep, and global access. Consider the diagram in Figure 2. Teams are

constructed as Active Directory groups; business units are "child" organizational units (OU) of the

"parent" organization.

12 In the as-shipped, public version of Microsoft CRM 1.0, the installation supported only a single organizational structure. However,

subsequently, the platform and database have been designed and implemented to support multiple organizations. The setup process does

not directly support multi-organizational installation, but all platform APIs are available. The 1.0 application, on the other hand, was

designed with certain limitations built-in, such as the inability to deal with multi-organizational installations (the application does support

multiple business units, but only a single organization).

There are a number of technical limitations to multi-organizational installations. The most important limitation is that semantic entity

customizations are meaningless when crossing organizational boundaries within the product. That is, a given attribute may be interpreted

differently from one organization to the next. The solution for this interpretative variance is to use a transformation engine (such as

Microsoft BizTalk®) when moving objects between organizations. Because of this limitation, visibility of objects across organizational

boundaries is strictly prohibited by the platform security model.

 Microsoft CRM Product Architecture 14

Figure 2. Example of a Business Organizational Structure in Microsoft CRM

The organization contains six business units in a simple hierarchy. The business units directly

below the organization are unrelated in any apparent structural way with the simple exception that

they all belong to the same organizational structure. The two business units, labeled "Department

A1" and "Department A2," are sub-businesses of "Business A." These two business units have a

special relationship with users parented to "Business A"–the business units serve up business

objects to users within Business A playing a deep role.13 Note that it’s not possible to construct

matrix organizations within the Microsoft CRM organizational structure.

Within this structure, users can be created from Active Directory users. Users within Microsoft

CRM must be parented to a business unit, and cannot be parented to the organization object

itself. In the diagram (Figure 2), users can be located at any node except for the top-level node,

labeled Organization.

Security principals within Microsoft CRM

Microsoft CRM defines a "security principal" as an entity that can effectively own, or access an

object within the system. There are two primary types of security principal within Microsoft CRM:

users and teams. With few exceptions, all entities that can be owned by users can also be owned

13 The concepts of basic, local, deep, and global roles will be covered in a later section. The concepts are so intertwined, however, that it’s

impossible to actually discuss business structures without at least mentioning the terminology.

 Microsoft CRM Product Architecture 15

by teams.14 Only users can belong to teams; it’s not possible to construct teams containing other

teams. Only users hold privileges and, by extension, roles; it’s not possible to assign a role to a

team.

Roles

Roles are collections of privileges that are granted to users. For example, the Salesperson role

may contain privileges such as, User can read accounts, or User can write accounts, whereas the

Sales Manager role may contain privileges such as, User can read account (LOCAL), or User can

assign contacts (LOCAL). A user can play simultaneously any number of roles; for example, a

user can play the Sales Manager role in addition to being a Customer Service Representative,

with all the privileges of both roles.

Roles are configurable within Microsoft CRM and may be modified or even removed as

necessary to fit the business needs. Microsoft CRM uses privileges, not the role, as the core of

the underlying security check. Privileges are "built-in" with the product and are used throughout

the application and platform layers. It’s not possible to add or remove privileges, nor is it possible

to change how privileges are used to grant access to certain functionality. But it is possible to

construct new roles from the existing privilege set.

Teams

A team is simply a group of users. A team does not play any roles and does not have any

privileges. A team can be granted access to objects in the same manner as a user, and a team

can even own objects. User privileges determine each team member’s user access to objects

shared with the team.

For example: Two users, Joe and Sara, are a member of the same team. Joe is a Salesperson

and, therefore, has privileges to read opportunities. Sara is a Customer Service Representative

and does not have the same privileges as Joe does. If an opportunity becomes available to the

team, then Joe will have access to it, while Sara will not.

14 The exception is routable entities, such as Incidents and all types of Activities. Changing the ownership of a routable object involves

placing the object in a queue or removing it from a queue. In this context, the queue might be thought of as owning the object; however, this

isn’t the case, and the two behaviors should not be confused.

 Microsoft CRM Product Architecture 16

Role-Based Security

First, a brief introduction to the main concepts involved. A deployment consists of (usually) one

top-level business called an organization. Each business in the system can have "child"

businesses. Every user of the system belongs to exactly one business. Users can belong to an

arbitrary number of teams. Each team belongs to exactly one business, but can consist of users

from multiple businesses. Users and teams both can have access to objects. Each object is

considered as belonging to one business, usually (but not always) the business to which the

creating user belongs.

The fundamental concept in role-based security is that of privilege, defined at design time, on a

system-wide basis. Each user has a set of privileges (there are well over a hundred privileges)

that are enabled for that user. However, Policies and Roles grant privileges and simplify the

process.

A variety of privileges is available, some of which control access to such actions as allowing the

user to send bulk mail, or have private contacts, or create sub-businesses. In addition, there are

privileges that relate directly to the objects in the system.

These privileges apply to an entire class of objects, rather than individual instances of those

objects. If a user does not have the privilege to read accounts, then any attempt to read an

account will fail. In terms of object security, there are three basic kinds of privileges: Basic, Local,

and Deep. These are best illustrated through examples.

Basic, as the name implies, refers to the most basic privileges. If a user has the "Basic Read

Account" privilege, then that user has the privilege to read accounts owned by or shared with the

user.

Local privilege, such as "Local Read Account," means that a user can read all accounts in the

local business.

Deep privileges allow the specified access to all objects in all businesses that are in the user’s

business, or that are in the user’s sub-businesses. Therefore, given "Deep Read Account"

privileges, that user can read all accounts in his or her business, as well as read all accounts in

any sub-businesses of that business.

Microsoft CRM impact on Active Directory

Microsoft CRM uses Active Directory to store teams, roles, and business units. Browsing through

the Active Directory objects created by Microsoft CRM should be done with some care to avoid

 Microsoft CRM Product Architecture 17

confusion. For instance, each role shipped with, or created by, the product shows up as an OU.

Teams are implemented and behave as expected—when a user is added to a team, the user

becomes a member of that team and shows up in Active Directory. However, roles are quite

different.

Roles, when created by Microsoft CRM, may actually be implemented as three distinct Active

Directory objects. Each follows a particular naming convention:

Microsoft CRM Role (System Admin)–This is the Windows NT® group, which represents the

"Local" role. Users who are members of this role will actually appear within Active Directory as

members of the Windows NT group.

Microsoft CRM Glbl (System Admin)–The "Global" role grants members access to corresponding

objects throughout an organizational hierarchy. There are no users in this group; instead, the

"Role" is added as the member, and members of that group are implicitly added to the Global

role.

Microsoft CRM Deep (System Admin) – The "Deep" role grants members access to

corresponding objects from their home business unit throughout all "child" business units (of their

home business unit). As in the Global role, the Deep role contains no user members; instead,

they are implicitly members because the Local role has been added as a member of the Deep

role.

With regard to the "System Admin" role:

• On objects for which the role grants the Global read privilege, Microsoft CRM grants read

access to the Microsoft CRM Glbl (System Admin) group on every object of that type in

the organization.

• On objects for which the role grants the Deep read privilege, Microsoft CRM grants read

access to the Microsoft CRM Deep (System Admin) group on every object of that type in

the business and all of its "child" sub-businesses.

• On objects for which the role grants the Local read privilege, Microsoft CRM grants read

access to the Microsoft CRM Role (System Admin) group on every object of that type in

the business.

Here is one example of this role structure and how it works.

Assume John is a member of the System Admin role, a role defined as having Global read

privilege on accounts, Deep read privilege on contacts, and Local read privilege on sales leads.

 Microsoft CRM Product Architecture 18

• With these privileges, John can read all accounts in the organization, because John

is a member of the Microsoft CRM Role (System Admin) group that, in turn, is a

member of the Microsoft CRM Glbl (System Admin) group, and this Gibl group has

been granted read access on all accounts in John’s organization.

• Similarly, John can read all contacts in his business and all of its "child" sub-

businesses, because John is a member of the Microsoft CRM Role (System Admin)

group that, in turn, is a member of the Microsoft CRM Deep (System Admin) group,

and this Deep group has been granted read access on all contacts in John’s

business and in all of its "child" sub-businesses.

• In addition, John can read all leads in his business, because John is a member of the

Microsoft CRM Role (System Admin) group, and this Role group has been granted

read access on all leads in John’s "home" business.

When a role has no Global privileges, Microsoft CRM does not create the Glbl group. The same

thing holds for a role that possesses no Deep privileges; Microsoft CRM will not create the Deep

group. However, the Local or Microsoft CRM Role (System Admin) group will be created,

regardless of any local privileges added to the role. Whenever Global or Deep privileges have

been added to the role, Microsoft CRM creates the respective Glbl or Deep groups if they haven’t

already been created.

Object-Level Security

The other form of security applies to individual instances of objects. There is a fundamental

difference between an access right and a privilege: an access right is a right granted to a user on

an object), but a privilege is a right granted to a user on a class of objects. Access rights apply

only after privileges have taken effect. In other words, if a user does not have the privilege to read

accounts, the user will not be able to read any account, whether or not it has been shared.

There are a number of access rights that a user can have on an object: Read, Write, Assign,

Append, Share, and Delete. Note that Create does not appear in this list because the ability to

create an object does not apply to an individual object, but rather applies to a class of objects.

Privilege, not access, governs the right to Create. The user who creates an object will have, by

default, all rights on that object (unless the user’s privileges forbid a specific right).

Security descriptors

All "interesting" entities in the object model carry an additional, platform-only attribute called a

security descriptor. A security descriptor is a structure and associated data that contains the

security information for a securable object. A security descriptor identifies the object's owner and

 Microsoft CRM Product Architecture 19

primary group. The descriptor can also contain a Discretionary Access Control List (DACL),15

controlling access to the object; and a System Access Control List (SACL),16 controlling the

logging of attempts to access the object. Because of the special nature of security descriptors—

specifically how they’re constructed by the platform security service—it’s not possible to directly

import data into the data store. Security descriptors have been constructed for each object within

the database by the security service. The security service uses a combination of the calling user’s

roles and groups, plus the Local, Deep, and Global groups within the calling user’s business

hierarchy, plus the as-shared access rights to the object to construct the security descriptor.

There is no way to "fake" the security descriptor for a given entity or object, and doing so would

cause the security service to reject any attempt to access the object.

Microsoft CRM Security Service

The Microsoft CRM security service is responsible for a number of security operations at an

object level. The functionality has been packaged in a Windows NT service executable and

exposes its interface by way of named Pipes. The security service is responsible for the following:

• Construction of default security descriptors

• Security descriptor adjustment on role change

• Security descriptor adjustment on ownership change

• Security descriptor adjustment on access change (share change).

To reduce the packet size between the security Dynamic Link Library (DLL) and the platform’s

interface into the security service, object-level access checks are performed in the platform’s

process space by the security DLL itself. If the DLL didn’t perform access checks, the entire

object’s security descriptor would need to be delivered to the security service; and security

descriptors can be relatively large and, therefore, expensive. The platform object model uses a

C++ template-based paradigm to introduce security into the classes. For secure objects, there

are several possible base templates that can be used based on the object’s target use. The

workflow process needs access to objects but is limited in that the workflow doesn’t have the

15 A Discretionary Access Control List (DACL) is an access-control list that is controlled by the owner of an object and that specifies the

access particular users or groups can have to the object.

16 A System Access Control List (SACL) is an ACL that controls the generation of audit messages for attempts to access a securable

object. The ability to get or set an object's SACL is controlled by a privilege typically held only by system administrators.

 Microsoft CRM Product Architecture 20

caller’s security token.17 Because of this limitation, workflow creates business objects based on a

special security template that bypasses user token validation.18

Metadata as an Enabling Technology

Microsoft CRM is a metadata-driven product, meaning that the vast majority of its work is focused

on abstracting itself away from the implementation details that so often cause problems with

upgrades and extensibility. The metadata layer, in essence, abstracts the underlying data storage

details, such as schema and data access, from the higher-level constructs of domain logic

implementation and user interface. The word "metadata" literally means descriptive information

about the elements of a set of data. Think of metadata as a description of the underlying data

structures, one that controls how the application—platform and user interface—operates and

displays itself.

The platform code uses the metadata to protect itself from changes to the underlying database

structures. Should a table definition change, for example, when adding or removing columns, the

platform code will continue to operate without any performance or degradation. There are

limitations to the level of protection that a metadata layer can afford any platform that implements

business logic. Should key relationships, those that the platform expects to be present, be

modified in a significant way, the platform cannot be expected to perform in the expected way.

However, other relationships, which are synthesized by the platform in order to construct full

entity definitions, may change over time without adversely affecting the platform code.

Using metadata driven technology allows Microsoft CRM to be significantly altered to meet a

particular business or vertical definition and still operate without interruption. This capability

creates a world in which companies that specialize in creating vertical solutions on top of

Microsoft CRM can expect that their investments in additional domain logic will be carried forward

through upgrades and into additional modules.

17 The security "token" is a small piece of operation system-supplied information that identifies the API caller. The platform uses NTLM (NT

LanMan) security for both authorization and authentication and, as a result, has access to the security token of the caller. This paper will

not cover how the token is passed from the end user to the platform.

18 Most platform APIs validate the CUserAuth structure’s contents with the security token on the calling thread to verify that the actual caller

is the intended target caller. This parameter must be supplied by any application using the platform APIs. The Microsoft CRM application

itself always defaults the CUserAuth contents to the "current" user’s platform user ID and merchant ID. There are rare cases where the

platform will allow a mismatch between CUserAuth and the caller’s token. Windows NT® allows mismatches to users who belong to a

privileged user group; there are two expected members in this group, one for the user context under which the workflow service runs, and

one for the Crystal Reports services user.

 Microsoft CRM Product Architecture 21

The Microsoft CRM platform isn’t the only consumer of the metadata. The application layer uses

the rules inherent in the metadata to present the exact user experience offered by vertical

solutions and customizations. These rules include attribute type definitions, entity definitions, and

attribute context rules.

Attribute type definitions describe the underlying type structure of a given attribute, including the

fundamental data type (for example, string, integer, date) and information, attributes that

effectively limit the attribute’s type definition (such as its size and range values).

Attribute context rules describe when and how a given attribute can be used. For example, some

attributes are write-once, such as order numbers. Once created, these attributes shouldn’t be

changed because doing so would cause ripple effects throughout the business data. Other

attributes are always read-only and supplied by the platform itself. The metadata captures all

these rules about context, but also captures business-defined rules, such as "business

recommended" and "business required" attributes. The forms engine can use this information to

render the proper user interface and do so in such a way that application code itself doesn’t need

to change.

The actual metadata model: an introduction

This section first presents a quick introduction to the actual metadata model for those wishing

additional technical information. The discussion in the remainder of this section is more technical

than the rest of this paper and is intended for those individuals who wish to see more detail. This

model is used throughout the Microsoft CRM product and captures descriptive information about

all of the entities, attributes, and relationships that exist in the product.

The core of the metadata model is the Entity. Entity, and its related table Attribute, capture the

base class definition of all objects found in the product. When the platform is performing an

operation against a particular entity class, it uses the metadata to discover the preferred behavior

of that entity. For example, upon creating a new object, the platform will query the metadata to

determine if any interested parties have registered event handlers for the "create" event. There

are two types of handlers, workflow processes and custom business logic implementations.

Although Microsoft SQL Server supplies a large amount of metadata, that information is limited to

a representation of the physical database model. Microsoft CRM needs a large amount of logical

information to control how the database is used, not simply what is present in the database. If

SQL Server had a mechanism to allow for user-defined annotations on tables, columns, and

relationships, it might be possible to use more of the built-in metadata; however, there are other

 Microsoft CRM Product Architecture 22

structures in the metabase that have no corresponding constructs within SQL Server. These

concepts still need to be managed separately from the SQL Server store.

Figure 3. High-level view of the Microsoft CRM metadata model

The Microsoft CRM platform, along with the associated metadata, provides a simple mechanism

to build other CRM applications using the platform. For instance, a complete, hypertext-based

object navigation system could be constructed using only the metadata and the entity rendering

definitions. This hypothetical application could, for instance, provide a feature whereby it would be

possible to locate an arbitrary starting point, say a particular contact, and browse everything

related to that contact, such as orders placed, opportunities closed, and activities in which the

contact has participated. Along the way, it would be possible to "branch off" the main navigation

path—from activities, for example—to view other parties of that activity. Those parties could be

other contacts, from which the navigation might start again.

Considering schema approaches: history

The Microsoft CRM team investigated four different proposals as possible schema extensibility

mechanisms. For background perspective, a brief history and description of each proposal

 Microsoft CRM Product Architecture 23

follows. Note, however, that only the fourth proposal was implemented (as has been discussed in

the previous sections).

Inverted property bag–The approach taken for Microsoft bCentralTM Customer Manager was to

use a technique called an inverted property bag. This approach stores additional attribute in a

related table to the main entity, but in a name-value pairing. Each entity (business, contact, lead,

or activity) has a set of developer-defined named properties. This approach was an attempt at

solving the problems inherent in the third approach. However the inverted property bag approach

quickly caused two severe problems. First, performance was unacceptable; each query required

multiple outer joins to gather all the detail-level information. Secondly, the rapidly stored data

exploded. For each object in the main table, a corresponding set of rows would be present in the

extended table. Even if the main table were quite short (that is, few records), the extended table

could be quite tall, with one or more extended name-value pairs for each attribute.

Opaque, application-defined blob–The second approach was to expose a single, opaque,

application-specific blob field on every interesting object. This approach had some appeal

because it left all the interpretation to the application, leaving the developer to manage and

render this information as necessary. The drawback is that the blob isn't quickly searchable and

can't be indexed; full-text indexing is an option, but the query clauses necessary to reach into the

blob become very difficult to construct.

Another drawback with this approach is that simple queries against the data are difficult to

construct and very expensive to run. For example, how would one construct a query that found all

persons who brought cats into a veterinary clinic in May and whose cats were serviced by Dr.

Smothers? If this data were to be "stuffed" into a single XML blob, the platform could not control

the format; therefore, a generic query like this wouldn't be possible to construct.

A secondary difficulty with this blob field approach is the opaqueness of the data: neither the

application nor the platform has any knowledge of the document structure. To make any

reasonable use of the data, the platform would need to be written with the document structure in

mind, in which case, the advantage of the extensibility mechanism has been defeated. On the

other hand, the application might have knowledge of the structure, but might not have any

guarantee on its structure. That is, the structure might need to be interpreted differently for each

individual object. If the application were to force a fixed document structure on each class of

objects, that action would reduce some of the problems.

Fixed customization model–This third approach supplies a fixed number of customizable fields

for each object–say, five or ten untyped fields. The problem with this approach is that it breaks

the "zero, one, infinity rule." If a product were to offer developers a fixed number of fields, all too

 Microsoft CRM Product Architecture 24

soon it would be obvious that developers actually would need yet one more. If developers were to

be told they had 255 UNICODE characters per field, they'd ask for 256. By implementing the

extra fields as a sql_variant, the second part of this problem can be avoided; however, doing so

limits the field's usefulness because the meaning of the field would be changed in large searches.

Metadata model: Microsoft CRM–The fourth and adopted approach uses a metadata-driven

model and "hides" the physical model from the application and platform developers. The appeal

here is that each developer has an opportunity to think about the problem and customize the

object definition to meet the need. This Microsoft CRM uses this approach for exposing product

extensibility. This model also brings other benefits to the overall application environment, benefits

that will be discussed in further detail later in this document.

Accessing the platform through API: an example

This section presents a simple example of reading a list of contacts for a particular user and

includes the complete example code, followed by a detailed explanation. This particular pattern is

very common throughout the product and represents a very typical usage scenario.

1.
2.

3.
4.
5.

6.
7.

8.
9.

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

using Microsoft.CRM;
using System.Net;

Microsoft.CRM.CUserAuth ua = new Microsoft.CRM.CUserAuth();
Microsoft.CRM.CSecurityPrincipal sp = new Microsoft.CRM.CSecurityPrincipal();
Microsoft.CRM.CRMContact c = new Microsoft.CRM.CRMContact();

ua.MerchantId = "{A8A05D04-2068-45EE-9766-5E89950B8176}";
ua.UserId = "{98197F09-3E7A-414E-9105-5AC2F438477F}";

sp.Type = (SecurityPrincipalType)Microsoft.CRM.SecurityPrincipalType.sptUser;
sp.Id = ua.UserId;

 c.Url = "http://localhost/MSCRMServices/CRMContact.srf";
 c.Credentials = System.Net.CredentialCache.DefaultCredentials;

 string columns =
 "<columnset>" +
 " <column>contactid</column>" +
 " <column>accountidname</column>" +
 " <column>firstname</column>" +
 " <column>lastname</column>" +
 "</columnset>";

 string xml = c.RetrieveByPrincipal(ua, sp, columns);
Figure 4. An example of reading a list of a list of contacts for a particular user

 Microsoft CRM Product Architecture 25

Lines 1 and 2 add references to the Microsoft CRM platform proxy layer.19 System.Net is

included because all SOAP-based clients are based on the types and interfaces found in that

assembly.

Line 3 creates a user authorization structure which is needed by all platform APIs. The

CUserAuth structure identifies, in a textual manner, the intended identity of the calling user. The

platform is capable of inferring the caller’s identity and actually does so, but uses the CUserAuth

to implement an act-on-behalf-of functionality.

Line 4 constructs a CSecurityPrincipal structure as required by the call in Line 19.

Line 5 creates a CRMContact interface proxy.

Lines 6 and 7 fill in data for the user authorization, and

Lines 8 and 9 fill in the security principal structure by using the caller’s identity.

Line 10 sets up the proxy interface’s target Web service.

Line 11 is very important, as it tells the underlying SOAP transport layer to "flow" the caller’s

NTLM (NT LanMan authentication) credentials from the running application through to the Web

service. Without this code, the SOAP proxy will not assume any credentials, and the Web service

will fail the call because it won’t be able to gather security credentials for the calling user.

Line 12 sets up a <columnset> list for the API call. Nearly all APIs that return single objects, and

all APIs that return multiple objects, allow the application to limit the set of attributes returned for

that result set.

Line 19, the final code, makes the call to the Web service, passing in the user authorization, the

security principal who is the target of the call, and the attribute list that should be returned.

Attribute lists, while called column sets, are actually based on the logical attribute names within

the entity or entities queried.

The platform code, which implements the call, verifies the caller’s identity, checks the caller’s

privileges, and constructs a query against the data store using the data management layer. As

the data is streamed back from the database, the security layer built into the platform object

19 It’s possible to access the platform by using tools such as Web Services Description Language (WSDL) to construct client-side SOAP

proxies. However, it’s recommended that code uses the Microsoft-supplied proxy layer (which contains common definitions for data types

that are normally present in individual web services). Simply add a reference to Microsoft.CRM.Proxy.DLL to your project.

 Microsoft CRM Product Architecture 26

model removes any rows from the result set, to which the calling user does not have access.

Keep in mind that the platform code itself actually doesn’t implement any of the above logic;

rather, it focuses only on implementing the API logic–the platform infrastructure upon which the

platform code has been built is solely responsible for all data management.

Querying the database: through <fetch>

There are times when it’s only possible to construct a generic query against the database.

Microsoft CRM exposes an interface designed specifically for this purpose. The ICRMQuery

interface can be used to send queries to the platform layer for further processing. The interface

uses a special query language, referred to as the <fetch> language, an XML-based query

language that operates against the logical XML schemas. The language is roughly object-based

in that it doesn’t expose rows, columns, and tables; instead, exposes the Microsoft CRM entities

and attributes.

With <fetch> it’s possible to join two or more entities in an arbitrary manner. The language can

use direct attribute-based join syntax, or can use a named relationship join. Attribute-based joins

are much like SQL join syntax in that the caller identifies the two entities and the attributes on

which they’re related. Named relationship joins are more powerful join constructs in that they

allow the caller to let the platform query processor identify the best join based on a logical entity

relationship.

Before discussing named relationship joins further, it’s necessary to introduce the naming

conventions used within the database.

Named relationships–one-to-one, or one-to-many

The named relationship is a one-to-many (1:m) relationship

between two entities that have a logical, named relationship.

For example, Accounts have a 1:m relationship with

Contacts. That is, a Contact may belong to one and only one

Account. This requirement naturally leads to a logical relationship name: account_contacts. On

the other hand, a Contact has another one-to-one (1:1) relationship with an Account that is the

primary contact. This relationship is named account_primary_contact.

Logical many-to-many

A logical many-to-many (m:m) relationship materializes in

the physical model as two 1:m relationships using an

 Microsoft CRM Product Architecture 27

intersect table to hold the m:m relationships. For example, many Contacts have many

Opportunities. The logical relationship name in this case is contact_opportunities. Because this

logical relationship must be implemented as two physical relationships, we must first create an

intersect table, to which we give the logical relationship name: ContactOpportunities. We then

name the two relationship based on originating endpoint. In this case, the names are

opportunity_contacts and contact_opportunities.

Self-relative many-to-many

A self-relative m:m relationship is a special case of the logical m:m

relationship. However, because the originating entities are the

same, the names must be changed (all relationship names must be

unique within a database). The chosen convention is to use the

entity name followed by one of _association_primary or _association_secondary. The intersect

table is named ARelationship.

Self-parental one-to-many

A parental one-to-many is a special case of the named relationship. However, in this case, the

naming convention highlights that the relationship is somehow different from the usual

named relationship. At first, the chosen naming convention might seem contrived and a

bit unnatural, but with consistent use, the convention becomes more natural. A Contact,

for instance, has a special relationship with (zero or) one other Contact; that is, it is the child of

another Contact. This relationship name becomes contact_parent_contact.

A <fetch> example

Figure 5 displays a <fetch> example that selects the set of account objects where the owner is

the same security principal as the caller, and where the postal code attribute is not ‘"98052." The

<fetch> language provides support for sorting and filtering. Line 7 demonstrates a simple

ascending sort on the account name. Note that the attribute on which the query should be

ordered need not be in the attribute list. The filter clause, in Lines 8 through 11, sets up the

equivalent of a SQL "where" clause. In this example, the clause contains an "and-" type filter with

two conditions. The condition in line L0 is self-explanatory. The condition in Line 9, however,

presents a special feature of the <fetch> language–named attribute selection. The "eq-userid" is

a parameter representing the calling user principal, allowing reusable queries for the query

processor automatically to create parameters.

 Microsoft CRM Product Architecture 28

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Comm

Both use

module i

transfer.

common

software

interface

available

The form

definition

object de

during pr

phase. T

tool usin

<fetch version="1.0" output-format="xml-platform" mapping="logical">
 <entity name="account">
 <attribute name="name" />
 <attribute name="address1_city" />
 <attribute name="address1_stateorprovince" />
 <attribute name="address1_postalcode" />
 <order attribute="name" descending="false" />
 <filter type="and">
 <condition attribute="ownerid" operator="eq-userid" />

 <condition attribute="address1_postalcode" operator="ne" value="98052" />
 </filter>
 <attribute name="primarycontactid" />
 <attribute name="accountid" />
 </entity>
 </fetch>
Figure 5. A <fetch> example.

on forms Processor

r interface components of Microsoft CRM use a common forms processing module. This

s responsible for form layout and presentation, validation and formatting, and data

By using this common forms processing component, Microsoft CRM can provide a

 user experience in both the Outlook client and the thin client. To the independent

 vendor and developer, this component provides the means to customize the user

 areas of the product once and have those same customizations automatically be

 on both clients.

Figure 6. Microsoft CRM forms process components and process flow

s processor operates on two XML documents that can be customized: the entity

 and the form layout. These documents are custom views, by-Organization, on the

finition, and on the object presentation. These files are static definitions that can be built

oduct customization and then installed during the "deployment" product development

he customized documents transform during deployment by the Deployment Manager

g seven Microsoft CRM-provided XSL transforms to build out entity- and (or)

 Microsoft CRM Product Architecture 29

Organization-specific rendering logic. Then, the as-deployed files install to the application’s virtual

directory. The thin client application layer uses an extensive caching mechanism to keep these

entity-specific transforms in memory, providing far better response times than loading the

documents on demand could otherwise produce.

User Interface Architecture–Web Client

The Microsoft CRM Web client uses ASP.Net to serve the user interface to Internet Explorer. The

application framework has been specifically tuned to support high numbers of users, but without

the expense of requiring a large server.

Figure 7. Microsoft CRM ASP.Net application architecture

User Interface Architecture–Outlook Client

Microsoft CRM includes an Outlook-integrated client containing all the functionality found in the

Sales Standard Web application. The Outlook client operates as follows:

• Provides a disconnected user experience for salespeople who are not always connected

to a corporate LAN. Salespeople tend to take their data with them where they need it.

Microsoft CRM provides a completed disconnected client to meet this need.

• Keeps Outlook objects synchronized where overlap between Outlook and Microsoft CRM

object naturally occurs. Where there is a natural overlap between Outlook and Microsoft

 Microsoft CRM Product Architecture 30

CRM objects, such as calendar items, e-mail, and contacts, keep these objects

consistent between the two applications.

• Maintains product customization across both the Web-based and Outlook-based clients.

Customization is a time-consuming and expensive task. Microsoft CRM reduces this cost

by automatically moving user interface and schema customizations to the Outlook client.

• Provides a consistent user experience for all users, whether they are using the Web-

based or the Outlook-based client. To reduce training costs, Microsoft CRM uses a

consistent user interface for both its application clients.

• Maintains security when transferring data between the Outlook local store and the central

business data store. Disconnected users should only be able to take "their" data with

them when they disconnect from the central server. When reconnecting to the central

server, data integrity rules must be honored for all "uploaded" data. Microsoft CRM meets

both of these requirements by providing an integrated security model and a powerful

transaction playback model.

Figure 8. Sales for Outlook online architecture

"Rich client" architecture in online state

The Microsoft CRM Outlook client can be used in both online and offline modes. In the online

mode, the client continues to run on the local machine and processes all application logic locally.

 Microsoft CRM Product Architecture 31

However, the primary business logic processing happens on the central Microsoft CRM server.

Communication between the Outlook client, and implementation of the Microsoft CRM server,

occurs through the use of SOAP over Transmission Control Protocol/Internet Protocol (TCP/IP).

This transition between modes is transparent to the client and all client code. A "shim" layer

between the application logic and the platform logic controls the message routing.

Figure 9. Sales for Outlook common online architecture

"Rich client" architecture in offline state

In its offline mode, the Outlook client continues to implement all application logic locally to the

client machine. However, once offline, the shim layer changes the communication transport from

TCP/IP to named Pipes. In this mode, the application logic is using a local instance of the

Microsoft CRM platform code and business logic. The primary difference is that the shim layer

sends the requests to the local platform for processing and stores all "write" requests to a local

store called the "playback queue."

 Microsoft CRM Product Architecture 32

Figure 10. Sales for Outlook common offline architecture

Disconnecting from the primary server: "going offline"

The transition from online to offline (and vice versa) is controlled exclusively by the user. There is

no automatic transition between modes as this might result in some confusion for the end user,

essentially leading to the user asking the question, "Am I online or offline?"

Moving from online to offline can happen in two ways: the first is when the user chooses to

disconnect from the central server; the second is when the user chooses to update the local store

before actually disconnecting. In the second case, the local application makes a request to the

central platform asking it to construct an "offline data set." This package is, simply put, a series of

constructed views that SQL Server will use to perform standard merge replication to the client.

Data that is being copied to the local client database does not need to be processed through

platform business logic and security checks because that data already had been processed when

it was entered into the central server.

 Microsoft CRM Product Architecture 33

Figure 11. Transitioning Outlook client to offline state

Performing "write" operations while offline

When the Outlook client is running in offline mode, the platform shim makes one additional

database write for all successful data modification actions against the local store. This additional

write occurs against a second store called the playback graph. This graph records all SOAP-

based API calls.

Figure 12. Offline data access and playback processing

Reconnecting to the primary server: "going online"

When the user chooses to reconnect to the central server, the platform shim bypasses the

platform, and a synchronization process starts. Unlike the synchronization process for

disconnecting from the server, reconnecting is somewhat more involved. Because Microsoft CRM

needs to guarantee that all business logic will be performed on any and all actions submitted to

 Microsoft CRM Product Architecture 34

the central server, it doesn’t use SQL replication. For example, while a user was disconnected,

the user’s security privileges might have been altered, or objects to which the user originally had

access to might have been modified in such a way as to render that access obsolete. A separate,

though related, reason why actions must be played back through central business logic is to

guarantee that all objects work within current workflow and callout process rules.20

Figure 13. Transitioning Outlook client to online state

Reporting

Microsoft CRM uses Crystal Decisions reporting solution, Crystal Enterprise (version 8.5), for all

reports. Access from the report design and report run-time to the database is prohibited. Instead,

a platform access shim has been supplied by Crystal Enterprise, which converts design-time and

run-time database metadata queries and data access queries into platform metadata queries and

<fetch> requests. That is, the Crystal Enterprise tools use the platform API set to access the

platform data. This shim allows the platform to manage all data access as if the report engines

are simply additional applications. The overall Crystal Enterprise reports integration into Microsoft

CRM will not be covered in this paper.

20 Integration with third-party applications like Microsoft Business Solutions-Great Plains uses the callout mechanism for implementation.

Because integration isn’t possible for an offline user, the business logic must be triggered for those actions the user performed while offline.

Using a playback process guarantees that the necessary processing occurs.

 Microsoft CRM Product Architecture 35

 Microsoft CRM Product Architecture 36

Internationalization Support

The forms processor reads data from the form elements, constructing an XML representation of

the delta. While doing this, the forms processor converts the UNICODE data from the form fields

into UTF-8 for transport to the platform web services. The platform converts UTF-8 to UNICODE

before storage to the database. The forms processor uses a script code to perform the

conversion. Without this conversion, the platform API would attempt to convert the data, as

posted from Internet Explorer, to UNICODE using UTF-8 conversion; but the POST verb doesn’t

do the proper conversion automatically.

Product Customization

Microsoft CRM is a product that can be customized to a high degree. Depending on viewpoint or

customization goals, there are several touch points that might be of interest. For purchasers of

Microsoft CRM, the typical product customizations will revolve around creating a customized

database schema with the schema manager, surfacing those changes in the application with the

forms editor, creating custom business processes with the workflow editor, and integrating with

third-party financial and manufacturing systems. For system integrators (value-added resellers,

value-added partners, solution developers, and independent software vendors) who are looking

to create vertical solutions on top of, or along with, Microsoft CRM, the focus also will be on

creating pre-packaged custom versions of the application.

Conclusion

Microsoft CRM is a.NET connected business application. As such, Microsoft CRM makes use of

all the concepts normally associated with Microsoft .NET applications: Web service interfaces,

Microsoft .NET Framework, multiple abstracted tiers, and the Microsoft server products. Microsoft

CRM lends itself well to customizations and extensions by exposing the core business logic as

XML Web services. Microsoft CRM is highly customizable in terms of database and user interface

extensions. During the development process, security was a primary concern—apparent in the

way that the independent layers interact with each other. The product can be easily upgraded and

customizations can be moved from site to site.

	Abstract
	Introduction
	General overview of Microsoft CRM
	Deployment strategies
	Microsoft CRM design goals

	Product Architecture
	The user interface and presentation tier
	Application and custom business logic
	Service tier: domain logic
	Common service data tier
	Remapping the logical
	Constructing the architectural model
	Dividing the hierarchy

	General Architecture
	Security subsystem
	Business and organization structures in Microsoft CRM
	Security principals within Microsoft CRM
	Roles
	Teams

	Role-Based Security
	Microsoft CRM impact on Active Directory

	Object-Level Security
	Security descriptors

	Microsoft CRM Security Service
	Metadata as an Enabling Technology
	The actual metadata model: an introduction
	Considering schema approaches: history
	Accessing the platform through API: an example
	Querying the database: through <fetch>
	A <fetch> example

	Common forms Processor
	User Interface Architecture–Web Client
	User Interface Architecture–Outlook Client
	"Rich client" architecture in online state
	"Rich client" architecture in offline state
	Disconnecting from the primary server: "going offline"
	Performing "write" operations while offline
	Reconnecting to the primary server: "going online"

	Reporting
	Internationalization Support
	Product Customization
	Conclusion

