

Session goals

Understand the importance of Azure Functions in a Business Central project

Understand the future of Azure Functions platform

Understand what you can do more than publishing code in the cloud

Understand best practices and tricks for efficiently use them in production

Not a lot of AL code here but…
• a lot of C#
• a lot of Azure stuffs

Why Azure Functions in Business Central projects?

Executing .NET code in a SaaS environment (DotNet variables substitution)

Re-using existing libraries (DLLs) in a SaaS environment

Interacting with Azure Services

Integrations

Creating serverless processes (workflows, timer based, …)

Layer above Business Central APIs

Executing code in the cloud

HTTP Request

HTTP Response

Azure Functions is a serverless compute service that lets you run event-triggered code without having to
explicitly provision or manage infrastructure.

Azure Function: what is it?

A fully serverless way to run your (non-BC) code: you write the code and
easily deploy it, the service does the rest.

• Provide the runtime infrastructure

• Scale automatically (consumption, premium and dedicated plan)
• HTTP triggers, Azure services triggers, 3° party triggers, timer events

• Integrated monitoring with Azure Application Insights

• Automated CI/CD including staging

Azure Functions: anatomy

• Azure Function App : collection of one or more Azure Functions. A Function App is the
deployment unit for Azure Functions. All functions inside a Function App share the same
configuration, such as the runtime version, the application settings, and the storage
account.

• Runtime: responsible for running your code. The runtime includes logic on how to trigger,
log, and manage function executions.

• Scale Controller: responsible for managing the number of instances of a function that are
running.

• Application Settings: configuration values that a function can use at runtime. Application
settings can be stored securely in the Azure portal or in a local.settings.json file during
development

• Triggers: events that trigger the execution of an Azure Function. Each function should have
only one trigger. Triggers have associated data, which is often provided as the payload of
the function. There are several types of triggers available in Azure Functions.

Azure Functions: anatomy

• Function Code: code that is executed when the function is triggered. The function
code is written in any of the supported programming languages, such as C#,
JavaScript, Python, and F#. Azure Functions are designed to be lightweight and
short-lived, so the function code should be optimized for performance and
efficiency.

• Bindings: provide a way to declaratively connect other resources to the function.
They are provided to the function as parameters. By using bindings, developers can
write less code to interact with external systems, as the binding takes care of the
details of connecting to and interacting with the external system.
• Input bindings are used to read data from other resources
• output bindings are used to write data to other resources.

Azure Functions: plans

When you create a function app in Azure,
you must choose a hosting plan for your
app.

There are 3 basic hosting plans available
for Azure Functions:

• Consumption plan

• Premium plan

• Dedicated (App Service) plan

https://learn.microsoft.com/en-us/azure/azure-functions/consumption-plan
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://learn.microsoft.com/en-us/azure/azure-functions/dedicated-plan

Azure Functions: execution modes

• In-process mode: your function code runs in the same .NET process as the host (Azure
Functions runtime). In this mode, your code should run on the same framework version
used by the runtime.

• Isolated-process (or Out-of-process) mode: it decouples your function code from the
Azure Functions runtime, thus letting the users utilize any supported version of .NET,
even if it’s different from the runtime version.

Isolated mode removed the limitations of in-process execution mode, as it provided
the user with the following:
• Full control over how you configure & run your code inside Azure Functions
• Ability to utilize features such as implementing custom Middleware, Logging, etc.
• Encountering fewer conflicts between the code assemblies & the assemblies used by

the host process.

Azure Functions: execution modes

Azure Functions: execution modes

DEMO

Using Azure Functions from AL

New Azure Functions System Module

Supports Function or OAuth2 authorization levels.

Azure Functions: calling from AL

DEMO

An Azure Function should be stateless as there’s no control over where and when function
instances are provisioned and de-provisioned.

Managing and storing data/state between requests can lead to inconsistencies.

If, for any reason, you need to have a stateful function, consider using the Durable Functions
extension of Azure Functions (not covered in this session).

Azure Functions should be stateless

Simple usage of HttpClient to make HTTP requests presents several issues, including vulnerability to socket
exhaustion.
In a Function app, calling the HttpClient constructor in the body of a function method will create a new instance
with every function invocation, amplifying these issues.
For apps running on a Consumption hosting plan, inefficient HttpClient usage can exhaust the plan's outbound
connection limits.

The recommended best practice is to use an [IHttpClientFactory] with dependency injection or a single static
HttpClient instance, depending on the nature of your application.

Using HttpClient in Azure Functions

Using HttpClient in Azure Functions

DEMO

Azure Functions: timeouts

The timeout duration for functions in a function app is defined by the functionTimeout property in
the host.json project file.

Plan Default Maximum
1

Consumption plan 5 10

Premium plan 30 Unlimited

Dedicated plan 30 Unlimited

Regardless of the function app timeout setting, 230 seconds is the maximum amount of time that an HTTP

triggered function can take to respond to a request. This is because of the default idle timeout of Azure Load

Balancer.

https://learn.microsoft.com/en-us/azure/azure-functions/consumption-plan
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://learn.microsoft.com/en-us/azure/azure-functions/dedicated-plan
https://learn.microsoft.com/en-us/azure/app-service/faq-availability-performance-application-issues#why-does-my-request-time-out-after-230-seconds-

Azure Functions: cold start

Consumption plan Apps may scale to zero when idle, meaning some requests may have additional
latency at startup. The consumption plan does have some optimizations to help
decrease cold start time, including pulling from pre-warmed placeholder functions
that already have the function host and language processes running.

Premium plan Perpetually warm instances to avoid any cold start.

Dedicated plan When running in a Dedicated plan, the Functions host can run continuously, which
means that cold start isn't really an issue.

https://learn.microsoft.com/en-us/azure/azure-functions/consumption-plan
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://learn.microsoft.com/en-us/azure/azure-functions/dedicated-plan

Timer Triggered functions have CRON expression embedded in code:

Timer Triggered AF and CRON

Make them dynamic:

Azure Functions Bindings
Bindings: provide a way to declaratively connect other resources to the function (you

declare the data sources to read and write, and let Azure Functions take care of
the rest.)

Azure Functions Bindings: an example
• The customer makes a POST call to endpoint to place an order
• The solution checks if the order is valid and then responds immediately to the customers.
• The solution saves the order in a database (in the demo we use a storage table).
• The solution creates the invoice in a blob object.
• The solution sends a mail to the customer with the invoice attached
• The solution implements a timer-triggered process that retrieves the orders received during tha day and creates a daily report.

Azure Functions: bindings

DEMO

Azure Functions: middlewares
Azure Functions in the isolated model supports middlewares.
A middleware acts as a pipeline through which each incoming HTTP request passes, and it can perform various tasks such
as processing requests, handling responses, and modifying the behavior of the request/response pipeline.

Azure Functions: middlewares

DEMO

Azure Functions: deployment slots
Azure Functions deployment slots allow your function app to run different instances called slots.

Slots are different environments exposed via a publicly available endpoint.

One app instance is always mapped to the production slot, and you can swap instances assigned to a slot on

demand.

Function apps running under the App Service plan may have multiple slots, while under the Consumption plan
only one slot is allowed.

Azure Functions: deployment slots

Azure Functions: deployment slots

You can use Azure Functions to deploy your code continuously by using source
control integration. Source control integration activates a workflow in which a code
update triggers deployment to Azure.

Continuous Deployment

NOTE:
• The unit of deployment for functions in Azure is the function app. All functions in a function app are deployed at the same time.
• After you enable continuous deployment, access to function code in the Azure portal is configured as read-only because the source of truth is set to be

elsewhere.

Continuous deployment should never be enabled for your production slot:
• your production branch (main) should be deployed onto a non-production slot.
• when you are ready to release the base branch, swap it into the production slot.

Swapping into production (instead of deploying to production) prevents downtime and allows you to roll
back the changes by swapping again.

https://learn.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies#source-control
https://learn.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies#source-control

Continuous Deployment

Azure Functions: high availability and traffic control

USEurope

Extension

EuropeFunctionApp.azurewebsites.net USFunctionApp.azurewebsites.net

West Europe East US

Azure Traffic Manager is a DNS-based traffic load balancer. This service allows you to distribute
traffic to your public facing applications across the global Azure regions. Traffic Manager also
provides your public endpoints with high availability and quick responsiveness.

Azure Functions: high availability and traffic control

The following traffic routing methods are available in Traffic Manager:

• Priority: Select Priority routing when you want to have a primary service endpoint for all traffic. You can provide multiple backup endpoints in

case the primary or one of the backup endpoints is unavailable.

• Weighted: Select Weighted routing when you want to distribute traffic across a set of endpoints based on their weight. Set the weight the

same to distribute evenly across all endpoints.

• Performance: Select Performance routing when you have endpoints in different geographic locations and you want end users to use the

"closest" endpoint for the lowest network latency.

• Geographic: Select Geographic routing to direct users to specific endpoints (Azure, External, or Nested) based on where their DNS queries

originate from geographically. With this routing method, it enables you to be in compliance with scenarios such as data sovereignty mandates,

localization of content & user experience and measuring traffic from different regions.

• Multivalue: Select MultiValue for Traffic Manager profiles that can only have IPv4/IPv6 addresses as endpoints. When a query is received for

this profile, all healthy endpoints are returned.

• Subnet: Select Subnet traffic-routing method to map sets of end-user IP address ranges to a specific endpoint. When a request is received, the

endpoint returned will be the one mapped for that request’s source IP address.

https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods#priority-traffic-routing-method
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods#weighted
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods#performance
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods#geographic
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods#multivalue
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods#subnet

EXAMPLE: Performance traffic routing method

Azure Functions: high availability and traffic control

USEurope

Extension

EuropeFunctionApp.azurewebsites.net USFunctionApp.azurewebsites.net

West Europe East US

d365bctraffic.trafficmanager.net

Azure Functions: high availability and traffic control

Azure Functions: high availability

DEMO

Azure Functions offers built-in integration with Azure Application Insights to
monitor functions executions.

Azure Functions monitoring

If you have AF tightly-coupled with BC processes:

Azure Functions: monitoring

DEMO

Function app running in Consumption plan:

1. Create a Premium plan with the type and resources you want
2. Move the Function app to the newly created Premium plan
3. Scale back down the Function app to the Consumption plan at the end

of the period of work you need
4. Delete the Premium plan (don’t forget to do this!)

Azure Functions: plan upgrade

$resourceGroup = 'functionappdllmsrg’

$functionAppName = 'FunctionAppDLLMS’

$consumptionPlanName = 'FunctionAppDLLMSPlan’

$premiumPlanName = 'sd_premium_plan’

az functionapp plan create --name $premiumPlanName --sku EP1 --resource-group $resourceGroup --location 'West

Europe’

az functionapp update --name $functionAppName --resource-group $resourceGroup --plan $premiumPlanName

Azure Functions: plan upgrade

az functionapp update --name $functionAppName --resource-group $resourceGroup --plan $consumptionPlanName

az functionapp plan delete --resource-group $resourceGroup --name $premiumPlanName

You can move a function app to another App Service plan as long as the source plan and the target
plan are in the same resource group, region and OS type.

Azure Functions: plan upgrade

Running Azure Functions on Docker

• func init ContainerizedAF --worker-runtime dotnet-isolated --docker --target-
framework net6.0

• func new --name HttpTest --template "HTTP trigger" --authlevel "anonymous"

Running Azure Functions on Docker
docker build --platform linux --tag <DOCKERID>/ContainerizedAF:v1.0.0 .

Running Azure Functions on Docker
docker run -p 8080:80 -it <DOCKERID>/ContainerizedAF:v1.0.0

docker push <DOCKERID>/ ContainerizedAF :v1.0.0

Azure Functions and OpenAPI support

• You can now use the Microsoft.Azure.Webjobs.Extensions.OpenApi Nuget package
to add OpenApi support to Azure Functions.

Useful for creating Dataverse custom connectors and extensions!

• Azure Functions are an important building block for a D365BC SaaS project.
• Azure Functions are a great low-cost (or often free) way to be SaaS-ready and Universal-

code compliant.
• With Azure Functions code you can do all what you want (DLLs, NuGet packages, control

performances, interact with any service etc.).
• Azure Functions it’s not just deploying some code in the cloud.
• Start using the isolated model.
• In a multi-customer project, use tricks for high availability and performances.

Conclusions

Any Questions?

	Untitled Section
	Diapositiva 1
	Diapositiva 2: Session goals
	Diapositiva 3: Why Azure Functions in Business Central projects?
	Diapositiva 4: Executing code in the cloud
	Diapositiva 5: Azure Function: what is it?
	Diapositiva 6: Azure Functions: anatomy
	Diapositiva 7: Azure Functions: anatomy
	Diapositiva 8: Azure Functions: plans
	Diapositiva 9: Azure Functions: execution modes
	Diapositiva 10: Azure Functions: execution modes
	Diapositiva 11: Azure Functions: execution modes
	Diapositiva 13: Using Azure Functions from AL
	Diapositiva 14: Azure Functions: calling from AL
	Diapositiva 15: Azure Functions should be stateless
	Diapositiva 16: Using HttpClient in Azure Functions
	Diapositiva 17: Using HttpClient in Azure Functions
	Diapositiva 18: Azure Functions: timeouts
	Diapositiva 19: Azure Functions: cold start
	Diapositiva 20: Timer Triggered AF and CRON
	Diapositiva 21: Azure Functions Bindings
	Diapositiva 22: Azure Functions Bindings: an example
	Diapositiva 23: Azure Functions: bindings
	Diapositiva 24: Azure Functions: middlewares
	Diapositiva 25: Azure Functions: middlewares
	Diapositiva 26: Azure Functions: deployment slots
	Diapositiva 27: Azure Functions: deployment slots
	Diapositiva 28: Azure Functions: deployment slots
	Diapositiva 29: Continuous Deployment
	Diapositiva 30: Continuous Deployment
	Diapositiva 31: Azure Functions: high availability and traffic control
	Diapositiva 32: Azure Functions: high availability and traffic control
	Diapositiva 33: Azure Functions: high availability and traffic control
	Diapositiva 34
	Diapositiva 35: Azure Functions: high availability
	Diapositiva 36: Azure Functions monitoring
	Diapositiva 37: Azure Functions: monitoring
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41: Running Azure Functions on Docker
	Diapositiva 42: Running Azure Functions on Docker
	Diapositiva 43: Running Azure Functions on Docker
	Diapositiva 44: Azure Functions and OpenAPI support
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47

