

Agenda

BC Fundamentals

Focus for spring release

•Build on the momentum

•Drive satisfaction for
•New customers
•New partners

•Incremental value

Focus for Spring 19: Performance

•Focus on the end user

•UX Goals
•Opening pages: 2 - 5 seconds
•Entering values: 0,5 – 1 second
•Key press: < 100 ms

•Data sizes
•Think millions

What’s inside ?

• 1+ clusters per country version
• 5 VMs
• 1 application database
• 1-2000 tenants

• Service fabric orchestration

• Azure SQL databases
• Mix of Standard and Premium
• Elastic pool for resource sharing

Current BC service topology

Elastic Pool

Elastic Pool

App DB

VM1 – SF nodes

NST

Web Client

Other services

VM2 – SF nodes

NST

Web Client

Other services

VM5 – SF nodes

NST

Web Client

Other services

Tenant 2

Tenant 1

Tenant 3

Gateway

Azure SQL replication

• High Availability features always
enabled

• Replication to 2 secondary
databases
• Stateless compute layer
• Stateful data layer with database

files

• Performance implications
• Every commit of data validated in

3 storage accounts
• Latency goes from ~150µs to ~1

ms

Considerations for Azure SQL
• Writing (committing) data is an order of magnitude slower
• Avoid frequent commits

• Reading from data pages can be more expensive
• Hitting a warm cache becomes more important
• Limit what you need to put into the cache

• Business Central service
• Always using the latest compatibility level
• Directing one tenant’s traffic to specific node
• Running with index tuning advisor

Business Central Implementation details
• All indices are made unique by adding the primary key
• Wider index rows

• Indexes cannot span to companion tables
• Consider related tables instead

• BC records always retrieves all columns
• Except BLOB, Media and Flowfields
• Lots of data pages being fetched

• BC runs with ‘Optimize for Unknown’
• Favoring stable performance over peak performance

• BC is case-sensitive currently
• Search box is slow – but now has a timeout

Basic index structure

Index rows

Index rows Index rows Index rowsIntermediate

Leaf

Root

Level 0

Level 1

Level 2

Leaf nodes contains a row locator – for BC tables this is the clustered index key
Extra data fields can be added to leaf nodes – but not in Business Central

Clustered index structure

Index rows

Index rows Index rows Index rows

Data rows Data rows Data rows Data rows Data rows Data rows

Intermediate

Leaf

Root

Level 0

Level 1

Level 2

Data is ordered by clustering key into data pages
Inserting in the middle causes page splits (fragmentation)

Selecting good keys

• Picking a good clustered index improves
performance
• Compact
• Naturally grouping items together
• Usable for requests

• Every extra index causes a performance hit on
modify and insert
• Only add indexes for important read scenarios

Data row
contents

Key
takeaways

• Select highest possible database compatibility level

• Limit the width of indexes

• Select a good clustering index

• Consider using Query object for heavy calculations

• Limit amount of COMMIT statements

Task Scheduling

•Offload the UI thread
•Don’t let the user wait for batches
•Use the CPU cores on your box
•Splitting tasks into smaller tasks

Many
good

reasons
for Parallel

Tasks

•Users opening sessions
•Incoming Integration Request:

OData, Soap etc.
•Job Queue
•TaskScheduler.CreateTask
•StartSession

Spinning
up new
Tasks is

easy

Parallel Tasks

What’s the urgency of background task

Start now high priority
•StartSession (Added to

the thread scheduler
immediately)

1

Start now “not urgent”
or at a specific time
•Job Queue (Executed

when space in the Task
Scheduler Queue)

•Task Scheduler (Use only
if you don’t need Job
queue log)

2

Task requiring
synchronized start
•Job Queue – The only

option that has
categories

3

BUT it has a cost

Task Resource
Governance

Thread Scheduler Sample

Without thread scheduling
Session 50ms 100ms 150ms 200ms 250ms …………….. 1050ms 1100ms 1150ms 1200ms 1250ms1300ms1350ms
Client session 1 - request 1Done (15)
Heavy long running Run (5) Run (50) Run (50) Run (50) Run (50) …………….. Done (45)
Client session 1 - request 2 Waiting Waiting Waiting Waiting …………….. Run (5) Done (10)
Odata call Waiting Waiting Waiting Waiting …………….. Waiting Run (40) Run (50) Run
Client session 2 Waiting Waiting Waiting …………….. Waiting Waiting Waiting Waiting Run Run / Done

With thread scheduling - 1 task
Session 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms 550ms 600ms
Client session 1 - request 1Done (15)
Heavy long running Run (5) Run/StopRequestStopped Waiting Waiting Run/StopRequestStopped Run (25) Run/StopRequestStopped / Run (45)Run Run Run
Client session 1 - request 2 Waiting Run/Done
Odata call Waiting Run (35) Run / StopRequestStopped Waiting Run/StopRequestStopped Waiting Run/Done (5)
Client session 2 Waiting Waiting Run/StopRequestStopped Waiting Run/Done (25)

Thread Scheduler Sample
8 cores
Growing amount of busy users

Summary
Tasks

All background
tasks involve
session start

and
CompanyOpen

Recurrence –
Better batch
rather than
kicking off

every second

Only start with
the urgency

you need Sorry, we just
updated this page.
Reopen it, and try

again.

Summary
Tasks

All background
tasks involve
session start

and
CompanyOpen

Recurrence –
Better batch
rather than
kicking off

every second

Only start with
the urgency

you need

Careful with
record

modifications
with another

session

Telemetry

Page Load Times for one week (25/9-1/10)

~30 hours

• We have work to do on Sales Order and Purchase Invoice
• Blanket Purchase Order and Acc. Schedule Overview are slow
• Hard to push median below 200 ms

Applying values to controls

• Quantity, Direct Unit Cost, No., Description
•Recalculate totals

• What’s up with Line Discount?

Drill-down into Purchase Invoice

Telemetry insights – top time
consumers

• Business Manager Role Center
• Customer cardPage loadingPage loading

• Sales Order subform
• Purchase Invoice
• Purchase order

Data entryData entry

• Match bank entries
• Suggest Worksheet LinesReports/Batch jobsReports/Batch jobs

• CRM contact sync
• Item list - OnFindRecordSQL queriesSQL queries

Getting telemetry locally

• All telemetry is logged to ETW

• Event Viewer
• OK for viewing Warnings & Errors
• Impractical for general telemetry

• Build a custom event listener
• Use Nuget package from Microsoft
• Send data to Log Analytics

• We reserve the right to change the
telemetry format

Long running queries in event viewer

C/AL Examples

• Nothing!
• They are waiting for ‘CompanyOpen’ to finish
• ...including all the subscribers to OnCompanyOpen
• Then they wait for the role center parts to update

What is the first thing our users see?

Opening of pages
• FlowFields
• We see some flowfields based on un-indexed filters -> table scan

• FactBoxes
• We want to impress our customers with a lot if insight...
• A lot.

• OnAfterGetRecord
• Often we have heavy code here.
• We sometimes call functions for every single record in a repeater, instead of

just the one that has focus (OnAfterGetCurrentRecord)
• OnOpenPage/OnInitPage
• Sometimes we some initialization before we display the page

We have a Spring19 feature for
static code analysis for detecting
FlowFields on tables that
reference un-indexed data.

You are the captain of the ship!
If your customer requests
expensive factboxes, it’s your
responsibility to resist.

Once the page is open: Field validation...
• CurrPage.UPDATE
• Commits
• Expensive calculations
• Totals

Why do we only focus on SQL statements?
A. GLEntry.Amount := ROUND(34 * i / 7,0.01);
B. IF GLEntry.GET(i) THEN;

A takes 200 times longer than B

on a developer machine... - on 3-tier it’s x800!! (Azure, P1 DB)

A few oops's from ourselves...

This Photo by Unknown author is licensed under CC BY.

Ex. 1: Job Queue failing (Bug #261328)
Symptom: Randomly, jobs would fail with one of these errors:
1. The operation could not complete because a record in the Job Queue Entry

table was locked by another user. Please retry the activity.
2. The activity was deadlocked with another user who was modifying the Job

Queue Entry table. Please retry the activity.
3. The operation could not complete because a record in the Scheduled Task

table was locked by another user. Please retry the activity.
4. The activity was deadlocked with another user who was modifying the

Scheduled Task table. Please retry the activity.

Ex. 1 Problem #1

We want to make sure that only one job with the same Category runs at
the same time.

We had a JobQueueEntry.LOCKTABLE before this function, to ensure we have the latest, freshest version.

Solution: Substitute LOCKTABLE with SELECTLATESTVERSION

Ex. 1 Problem #2
When re-scheduling a recurring job, we wanted to make sure that ‘this’ Job
Queue Entry wasn’t already scheduled in another Scheduled Task

1. Scheduled Task was in transaction, i.e. locked
2. Field ‘Record’ was not indexed => sql table scan
3. Table scan + lock => entire table gets locked

Solution:
1. There is no (longer) need to check for already scheduled, so function was removed.
2. Index on ‘Record’ was added to ”Scheduled Task” – just to be sure

Ex. 2: Slow reports
Customer incident:

Ex. 2 One of the issues in REP10103

Scenario:
We want to figure our which
currencies have been posted on a
specific vendor. Saved in
TempCurrency

2. Check the defined currencies

1. The blank currency (=local currency)

Standard setup has 49 currencies!

So, for each vendor we made 50
lookups for currencies!

Ex. 2 Faster way of finding currencies

Ex. 3 Factboxes

https://icm.ad.msft.net/imp/v3/incidents/details/72020788/home

Customer: ”Jobs module very slow”
Microsoft: ”Weird. Let’s investigate”
Database inspection showed 159 jobs, 134398 job ledger entries
and 104288 job planning lines, i.e. on average ~1000 of each per
job.
No problem – we have SIFT indexes, right?

This factbox was both on the
card and the list, so navigating

the list was virtually impossible.

Ex. 3 Careful with your assumptions....
WITH JobLedgEntry DO BEGIN

IF FIND('-') THEN
REPEAT
IF "Entry Type" = "Entry Type"::Usage THEN BEGIN
IF Type = Type::Resource THEN BEGIN
ResUsageCostAmountLCY := ResUsageCostAmountLCY + "Total Cost (LCY)";
ResUsagePriceAmountLCY := ResUsagePriceAmountLCY + "Line Amount (LCY)";
ResUsageCostAmount := ResUsageCostAmount + "Total Cost";
ResUsagePriceAmount := ResUsagePriceAmount + "Line Amount";

END;
IF Type = Type::Item THEN BEGIN
ItemUsageCostAmountLCY := ItemUsageCostAmountLCY + "Total Cost (LCY)";
ItemUsagePriceAmountLCY := ItemUsagePriceAmountLCY + "Line Amount (LCY)";
ItemUsageCostAmount := ItemUsageCostAmount + "Total Cost";
ItemUsagePriceAmount := ItemUsagePriceAmount + "Line Amount";

END;
IF Type = Type::"G/L Account" THEN BEGIN
GLUsageCostAmountLCY := GLUsageCostAmountLCY + "Total Cost (LCY)";
GLUsagePriceAmountLCY := GLUsagePriceAmountLCY + "Line Amount (LCY)";
GLUsageCostAmount := GLUsageCostAmount + "Total Cost";
GLUsagePriceAmount := GLUsagePriceAmount + "Line Amount";

END;
END;
IF "Entry Type" = "Entry Type"::Sale THEN BEGIN
IF Type = Type::Resource THEN BEGIN
ResSaleCostAmountLCY := ResSaleCostAmountLCY + "Total Cost (LCY)";
ResSalePriceAmountLCY := ResSalePriceAmountLCY + "Line Amount (LCY)";
ResSaleCostAmount := ResSaleCostAmount + "Total Cost";
ResSalePriceAmount := ResSalePriceAmount + "Line Amount";

END;
IF Type = Type::Item THEN BEGIN
ItemSaleCostAmountLCY := ItemSaleCostAmountLCY + "Total Cost (LCY)";
ItemSalePriceAmountLCY := ItemSalePriceAmountLCY + "Line Amount (LCY)";
ItemSaleCostAmount := ItemSaleCostAmount + "Total Cost";
ItemSalePriceAmount := ItemSalePriceAmount + "Line Amount";

END;
IF Type = Type::"G/L Account" THEN BEGIN
GLSaleCostAmountLCY := GLSaleCostAmountLCY + "Total Cost (LCY)";
GLSalePriceAmountLCY := GLSalePriceAmountLCY + "Line Amount (LCY)";
GLSaleCostAmount := GLSaleCostAmount + "Total Cost";
GLSalePriceAmount := GLSalePriceAmount + "Line Amount";

END;
END;

UNTIL NEXT = 0;

WITH JobPlanningLine DO BEGIN
IF FIND('-') THEN
REPEAT
IF "Schedule Line" THEN BEGIN
IF Type = Type::Resource THEN BEGIN
ResSchCostAmountLCY := ResSchCostAmountLCY + "Total Cost (LCY)";
ResSchPriceAmountLCY := ResSchPriceAmountLCY + "Line Amount (LCY)";
ResSchCostAmount := ResSchCostAmount + "Total Cost";
ResSchPriceAmount := ResSchPriceAmount + "Line Amount";

END;
IF Type = Type::Item THEN BEGIN
ItemSchCostAmountLCY := ItemSchCostAmountLCY + "Total Cost (LCY)";
ItemSchPriceAmountLCY := ItemSchPriceAmountLCY + "Line Amount (LCY)";
ItemSchCostAmount := ItemSchCostAmount + "Total Cost";
ItemSchPriceAmount := ItemSchPriceAmount + "Line Amount";

END;
IF Type = Type::"G/L Account" THEN BEGIN
GLSchCostAmountLCY := GLSchCostAmountLCY + "Total Cost (LCY)";
GLSchPriceAmountLCY := GLSchPriceAmountLCY + "Line Amount (LCY)";
GLSchCostAmount := GLSchCostAmount + "Total Cost";
GLSchPriceAmount := GLSchPriceAmount + "Line Amount";

END;
END;
IF "Contract Line" THEN BEGIN
IF Type = Type::Resource THEN BEGIN
ResContCostAmountLCY := ResContCostAmountLCY + "Total Cost (LCY)";
ResContPriceAmountLCY := ResContPriceAmountLCY + "Line Amount (LCY)";
ResContCostAmount := ResContCostAmount + "Total Cost";
ResContPriceAmount := ResContPriceAmount + "Line Amount";

END;
IF Type = Type::Item THEN BEGIN
ItemContCostAmountLCY := ItemContCostAmountLCY + "Total Cost (LCY)";
ItemContPriceAmountLCY := ItemContPriceAmountLCY + "Line Amount (LCY)";
ItemContCostAmount := ItemContCostAmount + "Total Cost";
ItemContPriceAmount := ItemContPriceAmount + "Line Amount";

END;
IF Type = Type::"G/L Account" THEN BEGIN
GLContCostAmountLCY := GLContCostAmountLCY + "Total Cost (LCY)";
GLContPriceAmountLCY := GLContPriceAmountLCY + "Line Amount (LCY)";
GLContCostAmount := GLContCostAmount + "Total Cost";
GLContPriceAmount := GLContPriceAmount + "Line Amount";

END;
END;

UNTIL NEXT = 0;

Good idea with few records...

But this customer had ~1000
records in each of the datasets

Ex. 3 Consider CALCSUMS instead

WITH JobPlanningLine DO BEGIN
SETRANGE("Schedule Line");
SETRANGE("Contract Line");
IF PlanLineTypeParm = PlanLineType::Schedule THEN
SETRANGE("Schedule Line",TRUE)

ELSE
SETRANGE("Contract Line",TRUE);

SETRANGE(Type,TypeParm);

CALCSUMS("Total Cost (LCY)","Line Amount (LCY)","Total Cost","Line Amount");

JobPlanAmounts[1 + PlanLineTypeParm,1 + TypeParm,1 + AmountType::TotalCostLCY] := "Total Cost (LCY)";
JobPlanAmounts[1 + PlanLineTypeParm,1 + TypeParm,1 + AmountType::LineAmountLCY] := "Line Amount (LCY)";
JobPlanAmounts[1 + PlanLineTypeParm,1 + TypeParm,1 + AmountType::TotalCost] := "Total Cost";
JobPlanAmounts[1 + PlanLineTypeParm,1 + TypeParm,1 + AmountType::LineAmount] := "Line Amount";

END;

Translates roughly to
SELECT sum(...),sum(..),..
FROM <some table>
WHERE <conditions>

Ex. 4 OnAfterGetRecord on lists
Bug description (customer case)
“We have a customer case where they run a scenario:
• Opened Windows Client -> 36 seconds – very slow, but, yeah, the service has

been restarted
• Opened Posted Sales Invoices -> 9 seconds – very slow
• In quick search entered a value for No. -> 12 seconds – very slow
• Opened document page for the resulting posted sales invoice -> 11 seconds –

very slow
• Closed document page -> 8 seconds – very slow”

Ex. 4 Posted Sales Invoices

This Photo by Unknown author is licensed under CC BY-NC-ND.

Ex. 4 Page 143 Posted Sales Invoices
OnAfterGetRecord=VAR

SalesInvoiceHeader@1000 : Record 112;
BEGIN

DocExchStatusStyle := GetDocExchStatusStyle;
SalesInvoiceHeader.COPYFILTERS(Rec);
IsPostedSalesInvoicesEmpty := SalesInvoiceHeader.ISEMPTY;
SalesInvoiceHeader.SETFILTER(

"Document Exchange Status",'<>%1’,
"Document Exchange Status"::"Not Sent");

DocExchStatusVisible := NOT SalesInvoiceHeader.ISEMPTY;

Why not just:
IsPostedSalesInvoicesEmpty := FALSE; ?

Hint...

Why calculate this for every row in the list?
Why not just OnAfterGetCurrentRecord?

Or even in OnOpenPage?

This Photo by Unknown author is
licensed under CC BY-SA-NC.

Other Patterns

E.g. PrinterSelection in codeunit 44

Finding a Setup Record

Tests are inconclusive.

Seem to slightly favor
the existing code due to
primary key caching.

Potentially 4 sql calls

1 sql call

Calculate Sums – even when no SIFT

~350ms

~12ms

Old example from upgrade

~12 sec.

~5 sec.

~1 sec.

Original

MODIFY ~15k Item Ledger Entries
27s

15s

13s

MODIFY 100k customers

268s

937s

319s

Gotcha!

Event Subscribers
• May or may not be expensive in themselves
• But they prevent bulk updates
• MODIFYALL
• DELETEALL

Caching... Or not
With update 19 (~Fall release) we made PowerBI default active for all users.
1. We upgraded some customer clusters to Update19
2. When users opened their role center, the PowerBI factbox automatically uploaded

PBI packages to the PowerBI service
3. After a short while, the PowerBI called back to the BC servers to get data.
4. All at the same time...
5. It turns out that several of our web services (pages and queries) are expensive to

query
6. Result: Our servers max’ed out on CPU and our users couldn’t access the service.
7. One of our web services, page 197 returns finance data that requires some

dataprocessing (Account Schedule) to deliver its data.

Page 197 web service (~PowerBIFinance)
Same data for all users

Minimal change over a day

New entries are usually for a
very recent period – no need

to recalculate old periods

Each cell is calculated
using Account

Schedule -> 1 sql call

RoleCenters
• We want to provide insightful and actionable information on the front page
• The user starts in the role center
• The user returns to the role center after almost every action
• ...so the role center needs to be snappy!
• The Business Manager Role Center shown on next slide takes ~5s to open (on

a private deployment with a large Azure VM and P1 DB!)
• 95 Percentile shows ~10s in the telemetry, which includes demo companies.

Let’s try the NAV App Performance Profiler
https://blogs.msdn.microsoft.com/nav/2014/07/04/introducing-the-microsoft-
dynamics-nav-application-profiler/

Where is the slow code?

Updating the RoleCenter
• Set RoleCenter 9022 as default
• Make sure you have some customers (more than CRONUS)
• ... And let’s fire up our Performance profiler...
• Performance profiler combines a traditional profiler with insights on which

SQL statements have been executed.

Top 5 Customers by Sales

Performance Profiler – Open Role Center

What’s wrong with this picture?
100.000 customers

One possible improvement

Maybe add caching?

Performance of
Events

Performance of Events

• Subscription models
• Static-Automatic binding

•Pros:
•Always subscribed to the event and no one can turn it off
•Best for single invocations
•State can be held in single instance codeunits

•Cons:
•Expensive with FOR loops, OnAfterGetRecord etc.
Each subscriber call might be a complete object creation

•Even small subscriber classes, are twice as slow as manual binding

Performance of Events

• Subscription models
• Manual binding

•Pros:
•Cheap if no subscription
•Very good for iterative loops
•State can be held in normal instance or single instance codeunits
• If you are running on temporary records, you can skip the binding

•Cons:
•You are in charge of binding the subscriber

Subscription
Models

Performance of Events
• What happens during an event
• IF subscriber attached
• Get list of subscribers and check
• IF any static-automatic or manual found

•CASE of Manual binding
•Invoke if subscribed

•CASE of Static-Automatic
•Check permissions/License
•Find metadata
•Create instance

• ELSE
•RETURN

• ELSE
• RETURN

Rather heavy operation
compared to just invoking on

an existing instance

Performance of Events
• Table of execution methods and time

Type Time in ms

Local Function 943
Function call in another Codeunit 909
Event Publisher no subscriber attached 538
Event Publisher with manual bound subscriber 4440
Event Publisher with static automatic subscription 9092
Event Publisher with static automatic in codeunit 80 26991
Single Instance
Event Publisher with static automatic subscription

4763

Single Instance
Event Publisher with static automatic in codeunit 80

4810

Performance of Events
• Size matters of subscriber codeunits

Performance of Events

Behavioral changes based on event subscriptions

• Table Events changes behavior of SQL optimizations
• MODIFYALL/DELETEALL/GlobalTriggers Database Triggers

•SQL update/delete statement per row in a for loop rather than one SQL
statement

• Impacts MODIFYALL/DELETEALL from bulk to single row

• OnAfterXXX triggers
• Beware of uncommited changes on records

Summary
Events

•Static-Automatic and manual
subscription

Be conscious
about

invocation
model

•Don’t waste users time if you
don’t about an event right now

Only
subscribe

when you are
ready to react

•If you choose static-automatic
consider the amount of code
you need in the subscriber
codeunit

Size of
subscriber
codeunits

Performance
types in AL

Dictionary - New AL types in extensions

• Key value lookups
• In C/AL we would use in-memory Temporary tables

• IF KeyCacheRec.GET(‘Some Value’) THEN
Complete data stack execution for a relatively simple
operation

• AL Has a new Dictionary Type
• https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-

auto/dictionary/dictionary-data-type

• Dictionary: Cannot be used with record
instances

Dictionary

List - New AL types in extensions

• Unbound Arrays
• In C/AL we would use in-memory Temporary tables

• listRec.Value := ‘Some Value’;
• listRec.INSERT();

Complete data stack execution for a relatively simple
operation

• AL Has a new List Type
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-
itpro/developer/methods-auto/list/list-data-type

• Lists: Cannot be used with record
instances

List

TextBuilder - New AL types in extensions

• Concatenation of long strings
• In C/AL we would TEXT type and concatenate them

together
• myText := myText + ‘Some Value’;
• myText += ‘Some Value’;

Creating many strings adds stress to the garbage
collector

• AL Has a new TextBuilder Type
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-
itpro/developer/methods-auto/textbuilder/textbuilder-data-type

TextBuilder

The bigger an append, the
more unnecesary strings are

created

Wasted CPU

Settings affecting
performance

JIT
compilation

• Application objects are compiled with
debug information.

• C# files persisted between server restarts
• 'Compile and Load Business Application'

automatically enabled.

EnableDebugging

• Specifies whether C/AL debugging is
allowed for this Dynamics 365 Business
Central Server instance.

• No runtime performance impact – only
raises an error if debugger is started

Debugging Allowed

• Compile and load the full business app on
startup

Compile and
LoadBusinessApplication

Telemetry trace levels

• Diagnostics Trace Level
• Consider setting to Warning if you do not have dedicated

listener
• Some performance impact when listening

• Enable Full C/AL function tracing
• Captures every AL statement execution
• Significant performance degradation

Crowd control

• Non-Interactive Sessions Log Retain Time Interval
• Session Event Table Retain Time Interval

• Reduces the size of the Session Event table
• OData and SOAP can add millions of records
• Avoid using directly

• ODataMaxPageSize
• Determines how many rows an OData call can return
• Many calls required to fetch e.g. 1 million records

• ODataMaxConcurrentSessions
• Maximum Concurrent Running Tasks

• Consider having a dedicated NST for running tasks
• Reserve capacity for UI by setting this to a low value

Reporting

• NetFx40_LegacySecurityPolicy
• True -> reports are allowed to run inside AppDomain

• EnableApplicationDomainIsolation
• RDLC can run .Net code
• Isolate in app domain for security
• Significant performance impact

• ReportPDFFontEmbedding
• Ensures that all fonts render correctly
• Creates larger documents

Search Timeout

Specifies the time (in seconds) that a search
operation on lists in the client will continue until it
is terminated.

When the limit is reached, the following message
displays in the client:
Searching for rows is taking too long. Try to
search or filter using different criteria.

Default: 10
Dynamically Updatable: Yes

Key takeaways
• Consider dedicated NSTs
• Tune settings to match the workload

• Reserve capacity for UI operations

• Run reports in the background

• Consider the impact of AppDomain isolation

Be a good
citizen

• Many tenants on clusters
• Many tenants in parallel
• Many users in parallel

• Shared CPU Cores
• Shared Memory
• Shared SQL Capacity

