

Microsoft Business Solutions–Navision
SQL Server Option Resource Kit
White Paper

Published: April 2005

Contents

Introduction..1

Planning ..2
Maximum Capacity Specifications for SQL Server...................................2
Maximum Number of Processors Supported by SQL3
Maximum Physical Memory Supported by the Editions of SQL Server
2000...4

Design ...5
Using Find Statements...5
Understanding Navision Indexes and the SQL Server Option8
Minimizing the Impact on SQL Server..11
Useful SQL Server Commands..12
Optimizing Navision Indexes and SIFT Tables15

Tools..19
Indexes ..19
Key Information Tool..22
The Navision Database Sizing Tool ...28
Estimating Database Size of a New System..29
Modifying the Key in an Index..37

Form Design and Performance ...39
SIFT ...39
Find As You Type Feature ...39

Locking and Deadlocks ...41
Deadlocks ..41
LOCKTIMEOUT...41
Minimizing the Duration of Locks ...43
Tools ..44

Using PINTABLE for Small Hot Tables..45
DBCC PINTABLE ..46

SQL Server Maintenance ..48
Updating SQL Server Statistics..48
Index Fragmentation ..48
Index Defrag Tool ..49
Maintenance Plan ..54
Optimizing Navision Tables..55
Server Performance Counters to Monitor ..56

Troubleshooting...57
SQL Diagnostic Utility ..57
Typical Performance Problems..57

Useful Links...59

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 1

Introduction
This document describes several considerations that Navision consultants
must bear in mind when they are implementing the Microsoft SQL Server
Option for Navision.
This resource kit is designed for use with Navision 3.70 and SQL Server
2000, even though some of the articles are based on previous versions of
the products.
The document is divided into several sections that correspond to the
different phases of implementing the SQL Server Option for Navision:
• Planning

• Design

• Implementation

• Maintenance

• Troubleshooting

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 2

Planning
One of the first things that a consultant must consider is the system
requirements that the customer’s installation must conform with. For a
complete list of the system requirements for Microsoft Business Solutions–
Navision, see http://www.microsoft.com/sql/evaluation/overview/default.asp

Maximum Capacity Specifications for SQL Server

The following table specifies the maximum sizes and numbers of various
objects defined in Microsoft SQL Server databases or referenced in
Transact-SQL statements.

Object SQL Server 2000
Batch size 65,536 * Network Packet Size1

Bytes per short string column 8,000

Bytes per text, ntext, or image column 2 GB-2

Bytes per GROUP BY, ORDER BY

Bytes per index 9002

Bytes per foreign key 900

Bytes per primary key 900

Bytes per row 8,060

Bytes in source text of a stored procedure Lesser of batch size or 250 MB

Clustered indexes per table 1

Columns in GROUP BY, ORDER BY

Columns or expressions in a GROUP BY
WITH CUBE or WITH ROLLUP statement

Columns per index 16

Columns per foreign key 16

Columns per primary key 16

Columns per base table 1,024

Columns per SELECT statement 4,096

Columns per INSERT statement 1,024

Connections per client Maximum value of configured connections

Database size 1,048,516 TB3

Databases per instance of SQL Server 32,767

Filegroups per database 256

Files per database 32,767

File size (data) 32 TB

File size (log) 32 TB

Foreign key table references per table 253

Identifier length (in characters) 128

Instances per computer 16

Length of a string containing SQL
statements (batch size)

65,536 * Network packet size1

Locks per connection Max. locks per server

http://www.microsoft.com/sql/evaluation/overview/default.asp

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 3

Locks per instance of SQL Server 2,147,483,647 (static)
40% of SQL Server memory (dynamic)

Nested stored procedure levels 32

Nested sub-queries 32

Nested trigger levels 32

Non-clustered indexes per table 249

Objects concurrently open in an instance of
SQL Server4

2,147,483,647 (or available memory)

Objects in a database 2,147,483,6474

Parameters per stored procedure 1,024

REFERENCES per table 253

Rows per table Limited by available storage

Tables per database Limited by number of objects in a database4

Tables per SELECT statement 256

Triggers per table Limited by number of objects in a database4

UNIQUE indexes or constraints per table 249 non-clustered and 1 clustered

1 Network Packet Size is the size of the tabular data scheme (TDS) packets used to
communicate between applications and the relational database engine. The default
packet size is 4 KB and is controlled by the network packet size configuration option.

2The maximum number of bytes in any key cannot exceed 900 in SQL Server 2000. You
can define a key using variable-length columns whose maximum sizes add up to more
than 900, provided no row is ever inserted with more than 900 bytes of data in those
columns. For more information, see Maximum Size of Index Keys.

3 The size of a database cannot exceed 2 GB when using the SQL Server 2000 Desktop
Engine or the Microsoft Data Engine (MSDE) 1.0.

4 Database objects include all tables, views, stored procedures, extended stored
procedures, triggers, rules, defaults, and constraints. The sum of the number of all these
objects in a database cannot exceed 2,147,483,647.

Maximum Number of Processors Supported by SQL

The following table lists the number of processors that the database engine
in each SQL Server 2000 edition can support on symmetric
multiprocessing (SMP) computers:

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Windows 2003
Server

32 4 2 32 2 1 32

Microsoft
Windows 2000
DataCenter

32 4 2 32 2 N/A 32

Windows 2000
Advanced
Server

8 4 2 8 2 N/A 8

Windows 2000
Server

4 4 2 4 2 N/A 4

Windows 2000
Professional

N/A N/A 2 2 2 N/A 2

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 4

Maximum Physical Memory Supported by the Editions of SQL
Server 2000

This table shows the maximum physical memory, or RAM, that the
database engine in each SQL Server 2000 edition can support:

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Windows 2003 64 GB 2 GB 2 GB 64 GB 2 GB N/A 64 GB

Windows 2000
DataCenter

64 GB 2 GB 2 GB 64 GB 2 GB N/A 64 GB

Windows 2000
Advanced
Server

8 GB 2 GB 2 GB 8 GB 2 GB N/A 8 GB

Windows 2000
Server

4 GB 2 GB 2 GB 4 GB 2 GB N/A 4 GB

Windows 2000
Professional

N/A N/A 2 GB 2 GB 2 GB N/A 2 GB

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 5

Design
The next phase in rolling out a customer’s installation is to design the
application so that it meets that customer’s particular needs.
There are many resources that the Navision consultant can access to learn
how to design a Navision application for the SQL Server Option. These
include:
• The Application Designer’s Guide available on the product CD. This manual contains

all the information you need to create all of the objects that Navision supports. For the
SQL Server Option the topics covered include: data types, SIFT, numbers & sorting,
locking, record level security, performance and the NDBCS Driver.

• Installation & System Management: Microsoft SQL Server Option available on the
product CD. This manual tells you how to install and implement the SQL Server Option.
Topics covered include: Installation, database creation, backups and restore, database
testing.

• C/SIDE Reference Guide Online Help. An online Help project installed with the client
that explains all of the functions supported by the C/AL Programming language.

Using Find Statements

The Navision application has traditionally used two different Find
statements to locate records in tables. These are FIND(‘-’) and
FIND(‘+’).

These functions are used to:
• Find either the first or last record in a table or set.

• Check whether or not there are any records in the table.

• Loop through the records in the table or set.

These functions work very well on Navision Database Server because it
uses the ISAM (Indexed Sequential Access Method) disk access method
and therefore reads records individually.
These FIND statements can also be used to return a set of records and to
modify a key in the index that the loop is based on. While Navision
Database Server has no difficulty with these ‘ambiguous’ statements, it is
exactly this ambiguity that makes it very difficult for Navision to issue
precise SQL statements. This means that SQL Server does not always
interpret these functions correctly and tends to use set based queries to
return small sets of records rather than just returning the single record that
was requested. This is generally the case when the WHILE FIND(‘-’)
method is used instead of the REPEAT UNTIL NEXT method.

This is an extremely inefficient way to use SQL Server. SQL Server prefers
more precise statements that enable it to reuse cursors more frequently.
Navision now contains more unambiguous functions that should be used to
perform these tasks:
• FINDFIRST

• FINDLAST

• FINDSET

These functions perform the same tasks in a much more efficient manner
and don’t overload the server with unnecessary cursors. These functions
result in fewer server calls being made, a simpler execution plan and the
more efficient reuse of cursors.

FINDFIRST and FINDLAST
The following excerpts from the Navision Client Monitor illustrate how
server calls have been interpreted by SQL Server in earlier versions of
Navision:

Using FIND(‘-’)

In the first section, FIND(‘-’) is used without locking
(READUNCOMMITTED) for 5 iterations. As you can see, it took four iterations
before the Navision SQL driver NDBCS.dll realized that what we really
wanted it to do was find the first record. After it generates the SELECT TOP
1 statement, the record is cached and no more server calls are made.

In the second section, FIND(‘-’) is used with locking (UPDLOCK) and the
story is the same. It took four iterations before the Navision SQL driver
realized that what we really wanted it to do was find the first record.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 6

The following excerpts illustrate how the new FINDFIRST function is
interpreted more efficiently by SQL Server:

Using FINDFIRST

In the first section, FINDFIRST is used without locking for 5 iterations
(READUNCOMMITTED). As you can see, the Navision SQL driver was able
to issue the correct call immediately. After the record is cached, no more
SQL statements were generated and no more server calls were made.
Similarly, in the second section when FINDFIRST is used with locking
(UPDLOCK) the correct statement is issued.

The effect is the same when you use FINDLAST; a more precise SQL
statement is sent to the server, fewer server calls are made, a simpler
‘SQL plan’ is generated and cursors are avoided.

Looping with FINDSET
The FINDSET function is designed to make searching through sets of
records more efficient. This function retrieves a set of records from the
table and loops through them.
The FINDSET function optimizes loops by:

• Generating more explicit code on SQL Server. This means that the
code used in the Navision SQL Server Option must use this function
explicitly to ensure that the driver generates optimal statements.

• Reusing cursors more efficiently or avoiding them totally.
This function works alongside the database property Record Set.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 7

To set this property, open Navision and click File, Database, Alter and click
the Advanced tab:

Alter Database

This property allows you to specify how many records are cached when
Navision performs a FINDSET operation for a read-only loop (with the
ForUpdate parameter set to FALSE). The default setting is 500 records.

If a FINDSET statement reads more than the number of records specified
here, additional SQL statements will be sent to the server after the records
have been read with NEXT and this will degrade performance. Increasing
this value also increases the amount of memory that the client uses to
support each FINDSET statement.

The syntax of the FINDSET function is:
[Ok :=] FINDSET([ForUpdate][, UpdateKey])

And the general rules for using it are:
• FINDSET(FALSE,FALSE)- read-only. This uses no server cursors are used and the

record set is read with a single server call.

• FINDSET(TRUE,FALSE)- is used to update non-key fields. This uses a cursor with a
fetch buffer similar to FIND(‘-’).

• FINDSET(TRUE,TRUE)- is used to update key fields.

Understanding Navision Indexes and the SQL Server Option

Understanding how to design indexes so that they work optimally in the
SQL Server Option is one of the keys to building a successful application.
In Navision, indexes are created for several purposes the most important of
which are:
• Data retrieval:

To quickly retrieve a result set based on a filter. For example, you want to view all the
customer ledger entries for a specific customer. There is a table in Navision called
Cust. Ledger Entry (table 18) and the primary index of this table is the Entry No.
field (Integer). There is also a secondary index consisting of the Customer No.,
Posting Date and the Currency Code fields that you can use to quickly retrieve a
result set that is filtered by Customer No.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 8

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 9

• Sorting:

To display a result set in a specific order. For example, you want to see all the
different document types from the Cust. Ledger Entry table for the same customer.
In this case you could filter on the index that consists of the Document Type,
Customer No., Posting Date and the Currency Code fields.

• SIFT (Sum Index FlowField Technology):

SIFT is used to maintain pre-calculated sums for various columns. For example, if you
want to have daily/monthly/yearly summaries of the Sales and Profit columns in the
Cust. Ledger Entry table, you must have SIFT turned on for an index that contains
the following SumIndexFields Sales (LCY),Profit (LCY).

How Indexes Work in Navision
• All the indexes in Navision are unique. Note that in the earlier example, the index is

Customer No., Posting Date, Currency Code, Entry No. to enforce uniqueness.

• A primary index in Navision translates to a unique clustered index on SQL Server and a
secondary index in Navision translates to unique non-clustered index in SQL Server.

• Navision Database Server supports SIFT effortlessly. However, in the SQL Server
Option, when a SIFT field is defined on any index an extra table is created on SQL
Server. This table is maintained by triggers that have been placed on the source data
table. Based on the earlier example, Navision creates a new SIFT table on SQL Server
for the source data table. The source data table is called CRONUS International
Ltd_$Cust_ Ledger Entry and the SIFT table is called CRONUS International
Ltd_$21$0 and looks like this:

CRONUS International Ltd_$21$0

Bucket Contents
[bucket] [int] total/day/month/and so on
[f3] [varchar] Field3 in Navision = “Customer No.”
[f4] [datetime] Field4 in Navision = “Posting Date”
[f11] [varchar] Field11 in Navision = “Currency Code”
[s18] [decimal] Sum of Field18 in Navision = “Sales(LCY)”
[s19] [decimal] Sum of Field19 in Navision = “Profit(LCY)”
[s20] [decimal] Sum of Field20 in Navision = “Inv.Discount (LCY)”

The table name is constructed as: [Company Name$Table
Number$SIFTindexNo]
• If this table contains another index that maintains SIFT, Navision creates yet another

SIFT table.

• Navision Database Server can only sort a result set in descending/ascending order. To
have the results sorted by for example Customer No., Document Type, Posting
Date, Currency Code, you must create an index in Navision that matches this order.

• Tables that contain transaction details use an Integer as the primary index. In the Cust.
Ledger Entry table, the primary index is Entry No. – a field of data type Integer.

• Boolean (Yes/No) fields in Navision are tinyint on SQL Server.

• Option fields in Navision are Integer on SQL Server. An example of an option field in
Navision is the Document Type field in the Cust. Ledger Entry table

• The Navision client reads record by record (ISAM). Navision Database Server is
designed to work this way but SQL Server is not. The SQL Server Option for Navision
has been designed to detect when it is reading in a loop or reading single records.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 10

When it detects that it is reading single records only, it switches to singleton queries
such as SELECT TOP 1 instead of set-based queries with subsequent fetches.

This mechanism is disturbed if the application modifies a key in the index that the loop
is based on or if the WHILE FIND(‘-’) method is used instead of the REPEAT
UNTIL NEXT method. Furthermore, the SQL Server query optimizer is often disturbed
by this and frequently switches to another non-clustered index scan or clustered index
scan execution plan. Navision Database Server is robust in this scenario.

• Navision uses SIFT technology to display FlowFields. These are calculated fields and
are not stored permanently.

• An example is the Sales (LCY) field in the Customer table. This field is defined as:
Sum("Cust. Ledger Entry"."Sales (LCY)" WHERE (Customer No.=FIELD(No.),Global
Dimension 1 Code=FIELD(Global Dimension 1 Filter),Global Dimension 2
Code=FIELD(Global Dimension 2 Filter),Posting Date=FIELD(Date Filter),Currency
Code=FIELD(Currency Filter)))

• There are several different types of FlowField – SUM, AVERAGE, EXIST, COUNT,
MIN, MAX, LOOKUP. However, the standard Navision application does not use the
AVERAGE, MIN and MAX methods.

• In Navision, you can define which indexes should be maintained on SQL Server by
setting the MaintainSQLIndex property for each index. If the application code refers to a
specific index, it needs to be defined in the Navision table; however it doesn’t need to
be defined on SQL Server. Therefore, if you need two ‘similar’ yet different sort orders
in the Navision application:

• 1) Field1, Field2, Field3, Field4
• 2) Field1, Field2, Field4, Field3

You must define both indexes. However, you can disable the maintenance of one of the
indexes on SQL Server. SQL Server will still be able to retrieve the result set based on
the index that is maintained and sort the result set in the requested sort order.

• In Navision, you can specify which SIFT indexes should be maintained on SQL Server
by setting the MaintainSIFTIndex property for each index. When you decide to maintain
a SIFT index, you can also specify which SIFT levels should be maintained by using
the SIFTLevelsToMaintain property.

• In the Cust. Ledger Entry table, select the secondary index that consists of the
Customer No., Posting Date and the Currency Code fields and open the Properties
window for this key.

• In the Value field of the SIFTLevelsToMaintain property, click the AssistButton to open
the SIFT Levels List window:

SIFT Levels List

In this window, you specify which SIFT buckets you want to maintain.
If Navision cannot return the requested sum by using the SIFT table, it
performs the SUM operation on the source table. This can take a long time
if there are many records in the source table’s result set. However, if the
result set is small, the response time is similar. Furthermore, maintaining
SIFT indexes is costly because every update of a source table causes at
least one and probably multiple updates of the SIFT table(s).
• The Navision indexes have not been redesigned for SQL Server. The scope of the

product development when developing SQL Server Option was defined as “one
application on both server platforms”.

• Navision Database Server is optimized for low selectivity keys. For example, if there is
an index that consists of the Document Type and Customer No. fields and the
application filters on the Customer No. field only, Navision Database Server will search
through the index branches and retrieve the result set quickly. However, SQL Server is
not optimized to do that, it scans from the beginning to the end of a range and in many
cases this results in a non-clustered index scan.

• Both server options are inefficient when filtering on datetime fields, therefore the
Navision application defines indexes with datetime keys towards the end of an index,
for example: Document Type,Customer No.,Currency Code,Posting Date.

Minimizing the Impact on SQL Server

To minimize the impact of the way the Navision application is designed
when running the SQL Server Option:
• Eliminate the maintenance of indexes that are only designed for sorting purposes. SQL

Server will sort the result set without these indexes.

• Redesign the indexes so that their selectivity becomes higher by putting Boolean,
Option and Date fields towards the end of the index.

• Do not maintain SIFT indexes on small tables or temporary tables. Examples of
temporary tables are: Sales Line, Purchase Line, Warehouse Activity Line, and
similar tables.

• If you loop through a table, set a separate looping variable.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 11

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 12

• Never use WHILE FIND(‘-’) or WHILE FIND(‘+’) structures.

WHILE FIND(‘-’) or WHILE FIND(‘+’) logic is always used to look for the first or
last record in a set and therefore automatically disables the read ahead mechanism. It
is therefore recommended that you do not use this logic unless you have some very
good reasons for doing so.

Example of bad code:

Customer.SETCURRENTKEY(“Currency Code”);
Customer.SETRANGE(“Currency Code”, ‘GBP’);
WHILE Customer.FIND(‘-‘) DO BEGIN
 Customer.“Currency Code” := ‘EUR’;
 Customer.MODIFY;
END;

Useful SQL Server Commands

sp_helpindex
This command displays the indexes for a specified table.
Example 1
sp_helpindex [CRONUS International Ltd_$Cust_ Ledger Entry]

Result 1

Index_name Index_description Index_keys
$1 nonclustered, unique located on

PRIMARY
Customer No_, Posting Date, Currency
Code, Entry No_

$10 nonclustered, unique located on
PRIMARY

Customer No_, Applies-to ID, Open, Positive,
Due Date, Entry No_

$2 nonclustered, unique located on
PRIMARY

Document No_, Document Type, Customer
No_, Entry No_

$3 nonclustered, unique located on
PRIMARY

Document Type, External Document No_,
Customer No_, Entry No_

$4 nonclustered, unique located on
PRIMARY

Customer No_, Open, Positive, Due Date,
Currency Code, Entry No_

$5 nonclustered, unique located on
PRIMARY

Open, Due Date, Entry No_

$6 nonclustered, unique located on
PRIMARY

Document Type, Customer No_, Posting
Date, Currency Code, Entry No_

$7 nonclustered, unique located on
PRIMARY

Salesperson Code, Posting Date, Entry No_

$8 nonclustered, unique located on
PRIMARY

Closed by Entry No_, Entry No_

$9 nonclustered, unique located on
PRIMARY

Transaction No_, Entry No_

CRONUS
International
Ltd_$Cust_
Ledger Entry$0

clustered, unique, primary key
located on PRIMARY

Entry No_

Some indexes are never or at most rarely used by the application (index $7
is used only for one report in Navision – Salesperson Commission). You
should consider dropping these and thereby no longer maintaining them on
SQL Server.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 13

Example 2
sp_helpindex [CRONUS International Ltd_$Warehouse Activity Line]

Result 2

Index_name Index_description Index_keys
$1 nonclustered, unique located on

PRIMARY
Source Type, Source Subtype, Source No_,
Source Line No_, Source Subline No_, Unit
of Measure Code, Action Type, Breakbulk
No_, Original Breakbulk, Activity Type, No_,
Line No_

$10 nonclustered, unique located on
PRIMARY

Activity Type, No_, Action Type, Bin Code,
Line No_

$11 nonclustered, unique located on
PRIMARY

Activity Type, No_, Item No_, Variant Code,
Action Type, Bin Code, Line No_

$12 nonclustered, unique located on
PRIMARY

Whse_ Document No_, Whse_ Document
Type, Activity Type, Whse_ Document Line
No_, Action Type, Unit of Measure Code,
Original Breakbulk, Breakbulk No_, Lot No_,
Serial No_, No_, Line No_

$13 nonclustered, unique located on
PRIMARY

Item No_, Bin Code, Location Code, Action
Type, Variant Code, Unit of Measure Code,
Breakbulk No_, Activity Type, Lot No_, Serial
No_, No_, Line No_

$14 nonclustered, unique located on
PRIMARY

Item No_, Location Code, Activity Type, Bin
Type Code, Unit of Measure Code, Variant
Code, Breakbulk No_, Action Type, Lot No_,
Serial No_, No_, Line No_

$15 nonclustered, unique located on
PRIMARY

Bin Code, Location Code, Action Type,
Breakbulk No_, Activity Type, No_, Line No_

$16 nonclustered, unique located on
PRIMARY

Location Code, Activity Type, No_, Line No_

$17 nonclustered, unique located on
PRIMARY

Source No_, Source Line No_, Source
Subline No_, Serial No_, Lot No_, Activity
Type, No_, Line No_

$2 nonclustered, unique located on
PRIMARY

Activity Type, No_, Sorting Sequence No_,
Line No_

$3 nonclustered, unique located on
PRIMARY

Activity Type, No_, Shelf No_, Line No_

$4 nonclustered, unique located on
PRIMARY

Activity Type, No_, Location Code, Source
Document, Source No_, Action Type, Zone
Code, Line No_

$5 nonclustered, unique located on
PRIMARY

Activity Type, No_, Due Date, Action Type,
Bin Code, Line No_

$6 nonclustered, unique located on
PRIMARY

Activity Type, No_, Bin Code, Breakbulk
No_, Action Type, Line No_

$7 nonclustered, unique located on
PRIMARY

Activity Type, No_, Bin Ranking, Breakbulk
No_, Action Type, Line No_

$8 nonclustered, unique located on
PRIMARY

Activity Type, No_, Destination Type,
Destination No_, Action Type, Bin Code, Line
No_

$9 nonclustered, unique located on
PRIMARY

Activity Type, No_, Whse_ Document Type,
Whse_ Document No_, Whse_ Document
Line No_, Line No_

CRONUS
International
Ltd_$Cust_
Ledger Entry$0

clustered, unique, primary key
located on PRIMARY

Activity Type, No_, Line No_

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 14

This table is heavily over indexed with long composite indexes. This table
could be very ‘hot’ in a busy warehousing environment. You should
consider dropping the maintenance on SQL Server of indexes with the
same beginning or composition; hopefully the resulting subset will be small
enough and will be sorted quickly enough.
In this example, indexes $10, $11, $2, $3, $4, $5, $6, $7, $8 $9 start with
the same fields [Activity Type],[No_] which are the same as the beginning
of the clustered index. If you always filter on these two keys, there is a high
probability that the SQL Server query optimizer will estimate that the cost
of using the non-clustered index in this scenario is too high (because using
the clustered index will mean fetching the data as well), and may decide to
do a clustered index seek, or use any of the similar indexes.
Additionally, if you reduce the number of indexes, SQL Server will not have
to keep these in memory, thereby increasing page life expectancy and
improving performance. Maintaining fewer indexes can mean better
performance.
dbcc show_statistics
Example 1
dbcc show_statistics ([CRONUS International Ltd_$Cust_ Ledger
Entry],[$3])

Result 1

All density Average Length Columns
0.33333334 4.0 Document Type
0.33333334 4.0 Document Type, External Document No_
4.3478262E-2 10.086206 Document Type, External Document No_, Customer

No_
1.7241379E-2 14.086206 Document Type, External Document No_, Customer

No_, Entry No_

The All Density column shows the selectivity of the key (how distinct the
values are). In this case, the first two keys have very poor selectivity, if you
filter a result set on these two keys only, SQL Server will have to fetch 1/3
of the table. In such cases, and sometimes even if you filter further on this
composite index, for example on the [Customer No_] key, the SQL Server
query optimizer might switch to a clustered index scan and not use the
‘best’ index, or switch to another index and do a nonclustered index scan
or seek (remember that seek is good, scan is bad).
Consider using the SQLIndex key property to drop (no longer maintain) this
index, and/or create a new index in Navision for, example, Customer
No.,Document Type,… and maintain this one while disabling the
maintenance of the original index. This way, your Navision code will work
and also give the optimum performance.
The SQLIndex property allows you to define the actual fields that are used
in the corresponding index on SQL Server.
Example 2

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 15

dbcc show_statistics ([CRONUS International Ltd_$Cust_ Ledger
Entry],[$3])

Result 2 (only the ‘interesting’ part is shown)

All density Average Length Columns
0.02 5.7974682 Customer No_
0.01 13.797468 Customer No_, Posting Date
0.01 19.063292 Customer No_, Posting Date, Currency Code
1.2658228E-2 23.063292 Customer No_, Posting Date, Currency Code, Entry

No_

The All Density column shows the selectivity of the key (how distinct
values are). In this case, the first key has good selectivity, if you filter a
result set on that key, SQL Server will have to fetch only 2 percent of the
table. However, placing a field of date data type (Posting Date) towards
the beginning of the index (second key) is not very wise because that field
has too high selectivity (it’s too granular). This means that it doesn’t matter
what key you define next in the index and try to filter on, SQL Server will
never use the index for that part and seek or scan the index because
almost the entire subset contains possible data.
Consider putting the date field at the end of the index. To avoid runtime
errors in Navision, keep the index in the table design but turn off the SIFT
maintenance, and design a new index which might give better
performance.

Optimizing Navision Indexes and SIFT Tables

This section suggests a methodology and some tools that you can use
when optimizing Navision indexes on SQL Server.

Minimize the Number of Indexes
Don’t maintain indexes that are only used for sorting purposes. SQL Server
will sort the result set. The main focus should be on quickly retrieving the
result set. If you, for example, have several indexes that start with the
same combination of keys (index fields), you should maintain only one of
them on SQL Server. Hopefully you can identify the one that is most used
in the most situations. In Navision, you should then use the
MaintainSQLIndex property of the other indexes to specify that they should
no longer be maintained on SQL Server.

Indexes on ‘Hot’ Tables
Avoid having too many indexes on ‘hot’ tables because each record update
means an index update producing more disk I/Os. For example, if the Item
Ledger Entry table is growing by 1000 records per day and has 20
indexes, it can easily produce in excess of 20000 disk I/Os per day.
However, if you reduce the number of indexes to for example 5, it greatly
reduces the number of disk I/Os. Experience has shown that it is always
possible to reduce the number of indexes to between 5 and 7 and even
less on ‘hot’ tables.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 16

Redesign Indexes for Better Selectivity
Redesign indexes so that their selectivity becomes higher. Remember to
not place Boolean and option fields at the beginning of an index and
always put date fields towards the end of the index.

Furthermore, indexes like Posting Date,Customer No.,… must be
avoided because the index is like an entire book and the chances that the
query optimizer would pick this index are quite small.

Indexes like Document Type,Customer No.,… have very low selectivity
on the first key. You could create a new index Customer No.,Document
Type, … and maintain it on SQL Server while you turn off the maintenance
of the original index on SQL Server.

SQLIndex Key Property
Navision contains a key property, called SQLIndex that allows you to
create indexes on SQL Server that are different from the keys defined in
Navision.
This property is designed to address selectivity issues by allowing you to
optimize the way that Navision uses SQL Server indexes without having to
rewrite your application or redesign your keys in Navision.
This generally means rearranging the columns in the SQL Server index but
you can also define a completely new index if you wish.
If you want to create a unique index, you must include all the columns from
the primary key in the index you define on SQL Server. However non-
unique indexes are also allowed
This property is designed to help you minimize the impact of the way the
Navision application is designed when running the SQL Server Option.
You can use it to:
• Eliminate the maintenance of indexes that are only designed for sorting purposes. After

you have removed or changed these indexes, SQL Server will still sort the result.

• Redesign the indexes so that their selectivity becomes higher by putting Boolean,
Option and Date fields towards the end of the index.

Clustered Key Property
In Navision the clustered index is normally the primary key. The Clustered
property allows you to specify that another key should be the clustered
index. You can also have tables that do not contain any clustered key.
This is a way to help the SQL Server Query Optimizer determine the
optimal execution plan for each query.

To set the SQLIndex and Clustered properties for a table, open the table
you want to redesign, open the Keys window, select the key you want to
modify and open the Properties window for that key:

Key Properties window

Needless to say, the SQLIndex and Clustrered properties are not a cure-all
for any problems that keys might be causing in your application. They
should only be used after you have given lengthy consideration to the
needs of your Navision application.

Important
Before you redesign a table and the indexes that it contains, you must
ensure that the Maintain relationships database property is not checked.
To see whether or not the property is used in your database, click File,
Database, Alter to open the Alter Database window and click the
Integration tab. Remember to check the property again after the table has
been redesigned.

Small/Temporary Tables SIFT Maintenance
Do not maintain SIFT indexes on small tables or on temporary tables.
Examples of temporary tables are Sales Line, Purchase Line,
Warehouse Activity Line, and similar tables. SQL Server can retrieve
sums directly from the ‘source’ table when the SIFT indexes are not
maintained. If the data set within the filter is small, the sum is calculated
quickly and at the same time all the updates of the ‘source’ table are
performed more quickly because Navision does not have to update all the
associated SIFT tables.

Minimize Number of SIFT Buckets
Minimize the number of buckets that are maintained for each SIFT index.
There is, for example, no reason to maintain the daily bucket for the Cust.
Ledger Entry table if you only post several invoices and payments a
month for the same customer. Furthermore, if you have several SIFT
indexes defined on a table that you design, you should investigate whether
or not some of the buckets are already maintained by another index. For

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 17

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 18

example if you have two indexes Customer No.,Currency Code,… and
Customer No.,Open,… which both maintain Amount (LCY) sums, you
could disable the bucket that maintains the totals per Customer No. in one
of the indexes.
Do not assume that the following example is 100% correct – there might be
different record sizes, different fill factors, different block and sector/stripe
sizes, and so on. It is merely provided as an illustration.
If a SIFT table contains a lot of buckets, every single update of the ‘source’
table produces a large number of bucket updates. Remember that each
SIFT table has two indexes. For example, imagine that you maintain 40
buckets on the G/L Entry table and 8 indexes – every time you insert a
record into the G/L Entry table, the database engine must update 40
buckets (80 index entry updates), one ‘source’ record and it’s 8 indexes
(all/some keys). This single insert could produce in excess of 100 I/Os on
the disk subsystem.
Obviously the smaller the records in the table the smaller the problems
associated with the indexes and the SIFT indexes become.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 19

Tools
This section describes some useful tools that you can use with the SQL
Server Option for Navision.
The topics covered include:
• Index size and structure

• Database size and growth

• Selecting and fetching on SQL Server

Indexes

This section describes how to analyze the indexes that have been created
in your Navision database.

Indexes per Table
The following query will list all the indexes in a Navision database by table:
SELECT
 OBJECT_NAME(id) AS [Object Name],
 name AS [Index Name]
FROM sysindexes
WHERE (name NOT LIKE '_WA_%') AND (id > 255)
ORDER BY [Object Name]

Number of Indexes per Table
The following query will show the number of indexes per table in a Navision
database sorted by the number of indexes:
SELECT
 OBJECT_NAME(id) AS [Object Name],
 COUNT (id) AS [No. of Indexes]
FROM sysindexes
WHERE (name NOT LIKE '_WA_%') AND (id > 255)
GROUP BY id
ORDER BY [No. of Indexes] DESC, [Object Name]

Number of Index Updates
If your database has been running for several months and contains data
that is typical for your application, the following query will show you the
number of index updates that were required when records have been
inserted into the database. The results are sorted by the number of
updates.
SELECT
 OBJECT_NAME(id) AS [Object Name],
 COUNT (id) AS [No. of Indexes],
 rowcnt AS [No. Of Rows],
 (rowcnt * COUNT(id)) AS [No. Of Updates]
FROM sysindexes
WHERE (name NOT LIKE '_WA_%') AND (id > 255)
GROUP BY id, rowcnt
ORDER BY [No. Of Updates] DESC

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 20

Index Structures
The following query shows the structure of the indexes in your database
and sorts the results by table:
SET NOCOUNT ON

--DROP TABLE ##Table
--DROP TABLE ##IndexHelp

CREATE TABLE ##Table (
 [table_name] VARCHAR(255)

)

CREATE TABLE ##IndexHelp (
 [table_name] VARCHAR(255) DEFAULT '',
 [index_name] VARCHAR(255),
 [index_description] VARCHAR(255),
 [index_keys] VARCHAR(512)
)

INSERT INTO ##Table
 SELECT [name] AS [table_name]
 FROM sysobjects
 WHERE [xtype] = 'U' and [id] > 255
 ORDER BY [name]

DECLARE @Statement CHAR (255)
DECLARE @name sysname
DECLARE Get_Curs CURSOR FOR
 SELECT table_name FROM ##Table

OPEN Get_Curs

FETCH NEXT FROM Get_Curs INTO @name

WHILE @@FETCH_STATUS = 0 BEGIN

 INSERT INTO ##IndexHelp (index_name, index_description,
index_keys)
 EXEC('sp_helpindex [' + @name + ']')

 UPDATE ##IndexHelp SET table_name = @name WHERE table_name = ''

 FETCH NEXT FROM Get_Curs INTO @name
END

CLOSE Get_Curs
DEALLOCATE Get_Curs

SELECT * FROM ##IndexHelp
ORDER BY table_name

Number of SIFT Indexes
The following query shows the number of SIFT indexes per 'source table':
SELECT

 SUBSTRING(name,1,CHARINDEX('$',name,CHARINDEX('$',name)+1)) AS
[Source Table],

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 21

COUNT(SUBSTRING(name,1,CHARINDEX('$',name,CHARINDEX('$',name)+1)))
AS [No. Of SIFT Indexes]
FROM sysobjects
WHERE OBJECTPROPERTY(id, N'IsUserTable') = 1 AND name LIKE
'%'+'$'+'[0-9]'+'%'
GROUP BY
(SUBSTRING(name,1,CHARINDEX('$',name,CHARINDEX('$',name)+1)))
ORDER BY [No. Of SIFT Indexes] DESC, [Source Table]

Number of SIFT Buckets
The following query shows the number of buckets in the SIFT tables.
However, if your database does not contain any data and/or some SIFT
‘source’ tables have not been populated, the query will not show any or just
a few buckets.
SET NOCOUNT ON

--DROP TABLE ##SIFTtables

CREATE TABLE ##SIFTtables (
 [table_name] VARCHAR(255) DEFAULT '',
 [bucks] INT DEFAULT 0
)

DECLARE @Statement CHAR (255)
DECLARE @tname sysname

DECLARE Get_Curs CURSOR FOR
 SELECT name
 FROM sysobjects
 WHERE OBJECTPROPERTY(id, N'IsUserTable') = 1 AND name LIKE
'%'+'$'+'[0-9]'+'%'
 ORDER BY name

OPEN Get_Curs

FETCH NEXT FROM Get_Curs INTO @tname

WHILE @@FETCH_STATUS = 0 BEGIN

 INSERT INTO ##SIFTtables (bucks)
 EXEC('SELECT COUNT(DISTINCT bucket) AS bucks FROM
['+@tname+']')

 UPDATE ##SIFTtables SET table_name = @tname WHERE table_name =
''

 FETCH NEXT FROM Get_Curs INTO @tname
END

CLOSE Get_Curs
DEALLOCATE Get_Curs

SELECT table_name AS [Table Name], bucks AS [No. Of Buckets] FROM
##SIFTtables

To ensure that this query gives you the right results:
• Create an empty database solely for this purpose and restore your objects into it.

• Import and compile the FillSIFTBuckets.txt object into Navision (it is supplied as
a text file so that you can renumber the object to an unused object number).

• Run the Fill SIFT Buckets codeunit – this code inserts and deletes one record into
every Navision table thereby ensuring that all the SIFT buckets are populated with zero
values (Navision doesn’t delete ‘empty’ buckets.

Key Information Tool

This tool could be used as alternative to the tools that we have just
described.
This tool gives you an overview of the indexes that have been defined for
each table including the number of keys that been enabled, the
SumIndexFields that are supported and the SIFT levels that are enabled.
Note
The Key Information tool is a read-only tool and does not update the tables in the
database. The information that the tool displays is not updated dynamically.

Before you can use the Key Information tool you must import the SQL key
information.fob file that contains all the objects that make up the tool.

Setting Up the Key Information Tool
After you have imported the SQL key information.fob file, you must
set up the tool before you can use it.
To set up the Key Information Tool:

1. Select form 50070, Key Information and run it. The first time you run the form it
loads all the information from the Object and the Table Information virtual
tables. It also displays a form containing a more concise version of the following
instructions.

Key Information

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 22

2. In the Key Information window, click Key Info, Setup SQL Connection to open
the SQL Connection Setup window:

SQL Connection Setup

3. In the SQL Connection Setup window, enter the following information:

Field Input
Server Name The name of the SQL Server.

You can find the name in the Database
Information window.

NT Authentication A check mark here tells the system to use
the current NT Authentication ID.
Otherwise you must enter a Used ID and
a password.

User ID The ID of the database login that you are
using to connect to the server. This user
should be either a System Administrator
or DBO.
This field is only used if you are not using
NT Authentication.

Password The password of the database login.
This field is only used if you are not using
NT Authentication.

The SQL Connection Setup window also contains two buttons:

• Test Connection –tests whether or not the information you entered allows you
to connect with the server.

• Edit Password – this button opens a window that allows you to change the
password of the database login.

4. After you have entered this information, close the SQL Connection Setup
window.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 23

5. In the Key Information window, click Key Info, Setup and the Key Information
Setup window opens:

Key Information Setup

This window contains two fields:

• Empty SIFT Record Pct. Threshold – the percentage of empty SIFT records that
are allowed within a SIFT level. The SIFT levels that match or exceed the value
entered in this field are colored in the Key Field List form. This information is also
used to filter out unwanted lines in the Key Information report.

• Empty Key Field Pct. Threshold – the percentage of empty key fields that are
allowed within the SIFT records of a particular key. The fields that match or exceed
the value entered in this field are colored in the Key Field List form. This
information is also used to filter out unwanted lines in the Key Information report.

When you open this window both fields contain the default value – 80%.

6. Close the Key Information Setup window.

The Key Information tool is now ready for use.

Using the Key Information Tool
You can now start to use the tool to analyze some or all of the tables in
your database.
To import the information into the tool:

1. In the Object Designer, export the table definitions of the tables that you want to
analyze.

2. In the Key Information window, click Load Text Objects. Browse to the text file
that you just exported from the Object Designer and click Open to import the table
definitions.

3. In the Key Information window, click Get SIFT Info to extract the SIFT
information from the database and update the SIFT columns in the tool.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 24

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 25

The General tab of the Key Information window contains the following
fields:

Field Meaning
Company Name The name of the company that you are

analyzing.
If the database contains more than one
company, you must run the tool once for
each company in the database.

Table No. The number and name of the table that is
currently displayed.

No. of Records The number of records in the table. This
value is retrieved from the table
Information table and is the number of
records that were in the table when you
imported the data into the tool. This value
is not updated dynamically.

Cost Per Record The number of updates (write
transactions) that must be performed
every time you insert or modify a record
in this table.
This value is calculated by adding the
number of keys that are enabled in this
table to the number of SIFT levels that
are enabled for each key.
This value can help you see which tables
in the database have the highest
performance overhead. You can then
consider reducing the cost per record.

Keys – Enabled The number of keys that are enabled in
this table.

Keys – Disabled The number of keys that are disabled in
this table.

Key No. The number of the key.

Enabled Whether the key is enabled or not.

Key Fields A list of the fields that make up the key.

Sum Index Fields A list of the SumIndexFields in the key.

Maintain SQL Index Whether or not a SQL index is
maintained for this key.

Maintain SIFT Index Whether or not a SIFT index is
maintained for this key.

SIFT Levels Enabled The number of SIFT levels that are
maintained for this key.

SIFT Recs The total number of SIFT records created
for all the SIFT levels that are
maintained.

Empty SIFT Recs The total number of empty records
created for all the SIFT levels that are
maintained

Empty SIFT Recs % The percentage of the total number of
SIFT records that are empty.

In the Key Information window, the Properties tab displays the properties
of the selected table:

Key Information Properties Tab

This information is retrieved from the Objects virtual table and is not
updated dynamically.
To analyze the information gathered by the Key Information tool:

1. In the General tab of the Key Information window, select the key that you want
to analyze and click the Key Fields field.

2. In the Key Fields field, click the AssistButton and the Key Field List window
appears:

Key Field List

This form displays the SIFT record information for each individual field in the key. The
Blank SIFT Recs for Field % field gives you an indication of whether or not the field

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 26

is contributing to the key. If a field is not contributing to a key, it does not help SQL
Server to optimize data retrieval. The key is therefore not as efficient as it could be.

Note
In certain types of field (Option, Boolean, Integer and so on) a blank value is not
necessarily a blank value. You must analyze the field more carefully to determine
whether or not the field really is blank.

3. In the Key Information window, select the key that you want to analyze and click
the Sum Index Fields field.

4. In the Sum Index Fields field, click the AssistButton and the Key Information
Field List window appears:

Key Information Field List

This window lists the SumIndexFields associated with this key.

5. In the Key Information window, select the key that you want to analyze and click
the SIFT Levels Enabled field.

6. In the SIFT Levels Enabled field, click the AssistButton and the SIFT Level List
window appears:

SIFT Level List

This window lists all the SIFT levels that are defined for the current key. It
also lists the number of records per SIFT level and the number of blank
records per SIFT level. These values are then use to calculate the % of 0
SIFT Recs.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 27

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 28

You can also open this window by clicking the AssistButton in the SIFT
Recs field and in the Empty SIFT Recs field in the Key Information
window.
The Key Information tool also contains two reports that summarize all the
information gathered by the tool:
• Key Information – contains all the information gathered by the Key Information tool,

except the list of fields that have been defined for the keys.

• Key Field Information – contains the list of fields that have been defined for the keys

Both of these reports can be filtered so that they only show the records that
meet or exceed the values that you specified in the Key Information
Setup window.

The Navision Database Sizing Tool

If your application has been running for several months you might have a
good idea of how fast the database grows – how many records are added
per day/month per table. If you do not have an idea, you can use the
Navision Database Sizing Tool (NDST) to estimate the growth rate of your
database.
The Navision Database Sizing Tool is designed to help you evaluate your
hard disk requirements by estimating the growth rate of your database. The
tool can be used to estimate the growth rate of new implementations as
well as existing installations.

Scope of NDST
NDST can be used with both database options – Navision and SQL.
The NDST only gives you estimates. The results it generates can be used
as guidelines for how much your database will grow. The exact growth rate
of the database depends on a number of customer specific factors. No two
customers will have the exact same record sizes, or create the exact same
number of new records per order.
Database growth depends on factors such as:
• Application areas used - A few examples: Customers using Warehouse Management

create additional records such as Picks, Putaways, Warehouse entries and so on. If the
customer uses Analysis Views, then this will increase database growth; synchronizing
contacts with customers will add to the space used, and so on.

• Working practice - The more fields you enter in a record, the more space it takes up.
A customer who enters every possible piece of information (including comments) in all
the records will use more space than a customer with the same number of records,
who only enters the most basic information.

• Record size – This is based on the size of the table compared to the number of
records in that table. The size of a table includes indexes (keys). So record sizes will be
affected by the number and size of the indexes.

The record sizes that NDST uses for calculations are only estimates and
are based on a very simple setup. The real numbers may well be different.

Contents of NDST
NDST contains:
• DBSizingWorksheet.xls,

• NDST.fob,

• SpaceUsed.sql,

Each of these components is described in the following sections.

How to Use NDST
The NDST can be used before implementing a new system, or it can be
used on an existing system to forecast future database growth.

Estimating Database Size of a New System

To estimate the appropriate database size for a new system, you only need
to use the DBSizingWorksheet.xls spreadsheet.

1. Open DBSizingWorksheet.xls:

Database Sizing Worksheet 1

2. In the grey column, enter your estimate of the size that the table should have. In
this example, the estimate is for 900 customers, 100 vendors and so on. They
place an estimated 3650 orders (Purchase and Sales) generating an average of 8
lines each).

The factors you can enter are:
Database Version Navision Database Server or SQL Server.

The tool does not allow other values.
Customer The number of customers you expect.
Vendor The number of vendors you expect.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 29

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 30

Item The number of items you expect.
Contact The number of contacts you expect.
Other1 .. Other2 These lines are user defined. For example, if you want to

include the size of your Fixed Assets table, you can enter
a line here called Fixed Assets and then enter the number
of Fixed Assets you expect. If you want to enter any user
defined tables, then you also have to edit the underlying
factors as described later.

Number of orders The number of orders you expect. This includes sales as
well as purchase orders.

Number of lines pr order The average number of lines in an order.
Number of dimensions The average number of dimensions in an order.

The spreadsheet calculates the total size of the data based on the
numbers you entered.
It then adds two extra values:
• Initial Size: Even an empty database has a size.

• Overhead: The spreadsheet calculates the database growth based on the amount of
data in the most commonly used tables. To account for other tables and fields, for
example, comments, G/L Accounts, Budget Entries, To-dos, and so on, it adds an
estimated overhead. This is set to 10%.

Changing the Underlying Factors
NDST uses estimated record sizes to calculate database growth. You can
change these estimates. Reasons for changing the estimates could be,
that you have experienced that the real record size for some table is
different to the ones used in NDST, or you might have customized some
tables.

The DBSizingWorksheet.xls consists of two worksheets: Sizing and
RecSizes. Both worksheets are protected, except for the grey cells. Before
you can modify anything outside of the grey cells, you must unprotect the
worksheet:
To unprotect the worksheet:
In Excel, click Tools, Protection, Unprotect Sheet.

The RecSizes sheet contains the estimated average size of a record in all
the tables that are used to estimate database growth.

Database Sizing Worksheet 2

At the top is the base tables, and lower down you have the dynamic tables.
Because record size often differs depending on the database option, the
average size is specified for both Navision Database Server, and SQL
Server. Average Size (Bytes) is the average size of one record.

For dynamic tables, you also have the columns Records pr order, and
Records pr line. These specify how many records are created when you
post a sales or purchase order. For instance, we estimate that posting one
order creates three G/L Entries and three Item Ledger Entries pr. line.
These values can depend on the settings in Navision. For instance, if you
have activated Automatic Cost Posting, then one order will create at least
two additional G/L Entries, and “Discount Posting” in Sales & Receivables
setup will also affect the number of entries created per order. Finally, of
course customizations can affect the number of records created.
Warning
You can change the values on this sheet, but do not move the existing rows and columns.
The formulas on the sizing sheet refer to many of these cells. If you move them, the
calculations will probably be wrong.

If you specify any user-defined tables (Other 1, Other 6), then you must
also specify the record size on the RecSizes sheet.

Finally, on the right hand side of the Sizing sheet (in the blue square), you
can modify the Initial Size and the Overhead if you wish.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 31

Details
The lower half of the sizing sheet contains calculated values for a number
of tables.

Database Sizing Worksheet 3

These details show how much each of the tables are expected to grow,
based on the values you entered.
The detailed values are calculated, and should not be overwritten
manually. They are calculated based on the Average Size and Records pr
order/line, which are set up in the RecSizes sheet.

Forecasting Database Growth for an Existing System
The NDST also contains functionality that allows you forecast the growth
rate of an existing system. However, you can also use it to estimate the
size of a new system by finding out how much a single operation causes
the database to grow and then multiplying that by the number of expected
operations.
It works by taking snapshots of the size of the database at different times
and comparing the two snapshots.
The NDST contains two files: NDST.fob and SpaceUsed.sql.
• NDST.fob can be used on both Navision Database Server and on the SQL Server

Option.

• SpaceUsed.sql can only be used to get more detailed information about the SQL
Server Option.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 32

NDST.fob contains 8 objects:

Type No. Name Version List
Table 72000 sp_spaceused file Line NDST

Table 72001 Space Used Version NDST

Form 72000 Space Used Version Lines NDST

Form 72001 Space Used Version List NDST

Form 72005 DB Sizing Card NDST

Codeunit 72000 Snapshot from files (SQL) NDST

Codeunit 72001 Make Spreadsheet NDST

Codeunit 72003 Snapshot from DB Info NDST

Creating Snapshots to Evaluate Database Growth
To create snapshots and estimate database growth:

1. In Navision, open the Object Designer and click File, Import to import NDST.fob.
You can use both Navision Database Server and the SQL Server Option.

2. In the Object Designer, run form 72005, DB Sizing Card.

Database Sizing Card

1. Click Functions, Clear to clear the form.

2. Click Functions, Create Snapshot. This creates a new version, and enter the new
version number as Version 1.

3. Close the DB Sizing Card window.

4. Create a sales order and post it (or perform any other activity that will create new
records).

5. Open the DB Sizing Card and click Functions, Generate Snapshot again. This
creates a new version, and automatically specifies this new version as Version 2.
With Version 1 and Version 2 specified on the card, you can see the number of
new records and the amount of new data (KB) that has been generated between
the two different versions.

6. To get more details, click Functions, Generate Report. This creates an Excel
Spreadsheet that contains details about each table that was involved in the
transactions that you performed.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 33

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 34

The DB Sizing Card
All the functionality in the objects that were imported in the NDST.fob can
be run from the DB Sizing Card. The Functions button gives you access to
a number of functions:

Create Snapshot:
This creates a snapshot of the database. Every time you create a new
snapshot, NDST automatically creates a new version. On the DB Sizing
Card, you can select one or two versions, then immediately see the
number of rows, and the amount of data in that version, as well as the
difference between the two versions.
By comparing the two versions (snapshots), you can see how much the
database grew in the time that elapsed between the two snapshots. This
enables you to forecast database growth based on such things as:
• Running a batch job

• Posting one order

• Synchronizing contacts and so on

• Growth per month / quarter / and so on

Generate Report:
This creates a report that gives you a more detailed overview than the DB
Sizing Card does. It creates a new Excel workbook which shows you the
changes in each individual table. The workbook contains one line for each
table which has been changed (and displays either the number of records
added or the size it has grown by).
It generates two spreadsheets:
• Changes, which shows you data for version 2 as well as the changes between version

1 and 2.

• Details, which shows you version 1 and version 2.

Finally, at the top of the Changes sheet, you see a summary.
If you have problems making this Excel integration work, please refer to the
Troubleshooting section.

Clear:
This clears the contents of the form. It does not delete any data it only
blanks out the form. If you clear the form before creating a snapshot, then
the form will automatically enter the newly created version as Version 1 (or
Version 2 if Version 1 is already specified).

Delete all versions:
Deletes all the versions (all the snapshots) and clears the form.

Import SQL Snapshot:
This is another way of creating a snapshot. It only applies to the SQL
Server Option, and gives you a bit more information than the Create
Snapshot function. This means that with the SQL Server Option, you can

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 35

choose between using Create Snapshot and Import SQL Snapshot.
However, you can only compare like with like.
The Import SQL Snapshot function splits the amount of space used into
Data and Indexes. The Create Snapshot function shows Data and Indexes
as one field. So if you compare a version created by “Create Snapshot”
with a version created by “Import SQL Snapshot”, the result will not be very
precise.
The advantages of the Import SQL Snapshot function compared to the
Create Snapshot function are:
• It displays separate values for the amount of database space used by the data and the

indexes.

• You get individual results for the SIFT tables.

• For example: Create Snapshot creates one record for the, G/L Entry table. This record
contains the accumulated values for the G/L Entry table and it’s two SIFT tables 17$0
and 17$1. The Import SQL Snapshot function creates three individual records – one for
each table.

You must run a SQL query from Query Analyzer before you can run the
Import SQL Snapshot function.
To run this query:

1. Open Query Analyzer.

2. Log in, and select your Navision database.

3. Open the script SpaceUsed.sql. Set Execute Mode to Results to File…
(Ctrl+Shift+F), then execute the query. This batch uses the stored procedure
sp_spaceused to export the details for each table.

4. In Navision open the DB Sizing Card window and on the SQL tab, specify the file
that was created in Query Analyzer.

5. Run Import SQL Snapshot.

Troubleshooting
The Generate Report function was developed using Microsoft Office 2003
but it has also been tested with Office 2000. If you have problems making
this work:

1. Make sure you have Office installed.

2. Even though Office 2003 if backwards compatible, previous versions may have
problems. If this is the case, you may have to check the design of codeunit 72001,
Make Spreadsheet.

3. Click View, Globals, and check the four Automation variables – they will most
likely say Unknown Automation Server. Even if they say Unknown Automation
Server, it may still work. If it does not work, try to re-set the variables to the
installed version of Office.

For each Automation variable, click the AssistButton in the SubType field to open
the Automation Object List window:

Automation Object List

4. Click the AssistButton in the Automation Server field to open the Automation
Server List window and select the latest version of Office in the list.

5. In the Automation Object List window, select the corresponding class for each
of the variables:

• XApp.Application
• XBook_Workbook
• XSheet_Worksheet
• xRange.Range
Note
For Workbook and Worksheet, select the classes that are preceded by an
underscore.

6. Save and close and compile the codeunit.

Factors that Affect Database Growth
As mentioned earlier, a large number of customer specific factors can
affect the pace at which the customer’s database grows.
This means, that the results generated by the DBSizingWorksheet.xls
tool must not be taken at face value. This section discusses some of the
most common factors that must be considered and provides guidelines on
how to deal with them.
As explained in the section “Changing the Underlying Factors” you can
change the factors that the DBSizingWorksheet.xls tool uses to
calculate the estimated database size. For instance, if you activate
Automatic Cost Posting in your application, Navision will create 5 instead of
3 G/L entries for each order you post. You can easily update
DBSizingWorksheet.xls to reflect this.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 36

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 37

Use NDST to Make Customer Specific Estimates:
There is only one way to find out exactly how much any particular action
(for example, posting an order) affects a database, and that is to run the
action and see what happens. This is one of the things that NSDT can help
you do – see the section “The DB Sizing Card.”
Example:

1. Set up Navision in the same the way as it is for the customer, and create a typical
order.

2. Create a snapshot, post the order and then create another snapshot.

3. Run “Generate Report”, and you can now see exactly how many entries were
created in each table.

4. Now you can update the DBSizingWorksheet.xls tool with these values.

Typical Factors that Affect Database Growth:
Apart from the most obvious factors, such as having the Contact table
synchronized with the Customer table, a number of other typical but less
obvious factors will have an effect on database growth:

Number of Posting Groups
Posting an order creates two G/L entries per Combination of Gen.
Business Posting Group and Gen. Product Posting Group plus one
balancing entry. If, for example you post an order with two items which
belong to separate Gen. Product Posting Groups, Navision will create 5
G/L entries.

Part Shipping:
Every time you part ship an order, Navision creates posted documents,
entries, dimension entries and so on. This means that if you part
ship/invoice orders, the database will grow more per order than it will if you
only ship and invoice full orders.
Once you have a good idea of how many records are created when an
order is posted, you can update the DBSizingWorksheet.xls tool to get
a more precise estimate of database growth.

Modifying the Key in an Index

If you modify a key in an index that you use for browsing through the
records, the read ahead mechanism is switched off. We therefore
recommended that you restore the key values just before the NEXT
statement, or use one record variable for browsing through the set and
another one for modifying the records.

Example of bad code
Customer.SETCURRENTKEY(“Currency Code”);
Customer.SETRANGE(“Currency Code”,’GBP’);
IF Customer.FIND(‘-‘) THEN
 REPEAT
 Customer.“Currency Code” := ’EUR’;
 Customer.MODIFY;
 //The above modifies the key value

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 38

 UNTIL Customer.NEXT = 0;

Example of good code 1 (restoring key value)
Customer.SETCURRENTKEY(“Currency Code”);
Customer.SETRANGE(“Currency Code”,’GBP’);
IF Customer.FIND(‘-‘) THEN
 REPEAT
 Customer.“Currency Code” := ’EUR’;
 Customer.MODIFY;
 Customer.“Currency Code” := ’GBP’;
 //The above restores the original value
 //of the key, just before NEXT statement
 UNTIL Customer.NEXT = 0;

Example of good code 2 (restoring key value)
Customer.SETCURRENTKEY(“Currency Code”);
Customer.SETRANGE(“Currency Code”,’GBP’);
IF Customer.FIND(‘-‘) THEN
 REPEAT
 Customer2 := Customer;
 Customer.“Currency Code” := ’EUR’;
 Customer.MODIFY;
 Customer.“Currency Code” := Customer2.“Currency Code”;
 //The above restores the original value
 //of the key, just before NEXT statement
 UNTIL Customer.NEXT = 0;

Example of good code 3 (separate variables for browsing)
Customer1.SETCURRENTKEY(“Currency Code”);
Customer1.SETRANGE(“Currency Code”,’GBP’);
IF Customer1.FIND(‘-‘) THEN
 REPEAT
 Customer2 := Customer1;
 Customer2.“Currency Code” := ’EUR’;
 Customer2.MODIFY;
 UNTIL Customer1.NEXT = 0;

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 39

Form Design and Performance
This section describes how to create forms that perform optimally in
Navision. You should pay particular attention to these three areas:
• SIFT

• SourceTablePlacement property

• Find As You Type feature

SIFT

SIFT technology is a great feature that allows you to retrieve and maintain
cumulated sums. However, it has a performance overhead.
The best practices when using SIFT are:

Display on Demand
Do not place (or at least minimize the number of) FlowFields on normal
forms, such as the Customer Card, Item Card, and so on. Use special
forms such as Customer Statistics, Item Statistics, Customer Entry
Statistics, Item Entry Statistics, Customer Sales, Item Turnover, and
so on. The basic principle is to display these FlowFields on demand rather
than by default when the user is not even interested in the information
provided.

Never place FlowFields on List Forms
When you place FlowFields on list forms you delay the retrieval time
because each line must calculate the FlowField value(s). You should also
be aware that if you hide a FlowField on a form, C/SIDE still calculates the
FlowField value. You must delete the field from the form to avoid the
overhead.

SourceTablePlacement Property
The SourceTablePlacement property is used to tell the system which
record it should display when a particular form is opened. The default value
is ‘Saved’, which means that C/SIDE tries to position the cursor on the
record that was last displayed. If the form is based on a big table, this has
a large performance overhead (as a rule of thumb a big table contains
more than 1 million records). The best practice is to find these forms and
change the SourceTablePlacement property to ‘First’ or ‘Last’. Remember
that tables grow, so try to estimate how many records they will contain in a
year or two.

Find As You Type Feature

The Find As You Type feature allows you to type over a non-editable field
in a list form, and while you are typing C/SIDE ‘jumps through’ the
underlying table. This feature can have a massive impact on performance
because it is impossible to predict the number of times that the cursor must
reposition itself in the displayed table. We therefore recommended that this

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 40

feature is disabled in large installations. You can use the Find (Ctrl+F) or
Field/Table Filter (F7 or Ctrl+F7) features instead, and train the users to
always change the key (index) to an index which includes the field they are
searching and/or filtering on.
To disable the Find As You Type feature:

1. Click File, Database, Alter to open the Alter Database window.

2. Click the Options tab.

3. Make sure that the “Allow Find As You Type” is unchecked.

To minimize the dissatisfaction that can be caused by disabling the feature
after users have gotten used to using it, we recommend that you always
disable it when you create a new database and only enable it when
requested.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 41

Locking and Deadlocks
This section outlines some best practices and techniques that you can use
to avoid what might otherwise be unpreventable locks and deadlocks. It
must be stressed that application developers should focus on performance
before looking into locks because improving performance might minimize
locking.

Deadlocks

Deadlock situations arise when two processes have locked data and each
process cannot release the lock until the other process has released its
lock. The following logic would generate a deadlock:
• Session A locks table A

• Session B locks table B

• Session A tries to lock table B (but is blocked and must wait for session B to finish)

• Session B tries to lock table A (but is blocked and must wait for session A to finish)

• Result – Deadlock.

SQL Server resolves the deadlock by terminating one of the transactions.
However detecting the deadlock can take some time and consumes
valuable resources.

Preventing Deadlocks
There are two well-known approaches to preventing deadlocks;
• Always lock tables in the same order.

Application developers must agree on the order in which they lock tables. For
example, when processing a sales order we always lock the following tables in this
order: table 39, Purchase Line, table 38, Purchase Header, table 37, Sales Line
and table 36 Sales Header.

• Lock an agreed “master resource” first.

It might be impossible or just too complicated to agree the locking order. As a
workaround, developers must agree that they will always lock a master resource
before they process any tables (in any order). An example of this approach can be
found in Codeunit 80, Sales-Post, which locks the last record in the G/L Entry table
before processing anything else:
 GLEntry.LOCKTABLE;
 IF GLEntry.FIND('+') THEN;

However, it must be stressed that even though this mechanism is used, the first
principle (locking tables in the same order) is also used.

LOCKTIMEOUT

Navision contains a database property that allows you to specify whether
or not a session will wait to place a lock on a resource that has already
been locked by another session. You can let the session wait indefinitely or
you can specify how long the session will wait before timing out and failing

to place a lock. This is the SQL property LockTimeout that is exposed in
Navision.
To set this property in Navision, click File, Database, Alter and click the
Advanced tab:

Alter Database – Advanced tab

This property is designed to improve performance by ensuring that the
users and transactions that are waiting to place locks don’t have to wait
indefinitely.
After a session has waited the specified number of seconds and failed to
place a lock the user receives a message informing them that the lock
could not be placed:

Lock Timeout Message

The user can then perform another task instead of waiting indefinitely for
the lock to be released.
This is a database property and once set it remains set until you remove
the check mark in this window. However, you can also use the C/SIDE
function LOCKTIMEOUT to temporarily enable or disable this property in the
application.

Always Rowlock
The Advanced tab also contains a property called Always rowlock.
By default this property is not selected and SQL Server uses its default
locking behavior. This can improve performance by allowing SQL Server to
determine the best locking granularity.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 42

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 43

In Navision 4.00 and earlier, rowlock hints were always issued to SQL
Server. With Navision 4.01 and later, Navision takes advantage of the SQL
Server locking behavior by default.
When you upgrade to Navision 4.01, the new default functionality might
change the behavior of your application and could have an adverse effect
on concurrency. If you find this unacceptable, you should select this
property and force Navision to issue rowlock hints.

Minimizing the Duration of Locks

You should always try to place a lock as late as possible and lock for as
short a time as possible. If you have a lot of records to process, give other
users a chance to access the system as well, for example when if you are
importing 1000 orders from a web site, you could create a loop which
would:
• import 5 records (use LOCKTABLE commands in the right order, see deadlock section

later)

• write a log

• COMMIT the changes

• SLEEP for 1 minute (just an example)

• SELECTLATESTVERSION

• repeat this sequence

This enables other users to access the database in the slots of time when
the system is not locked by the import routine.

Never Allow User Input during a Transaction
Consider the worst scenario; after you have started a transaction (locked
the records) the system displays a form so that you can select some
options, answer yes/no, click OK button, or some such user interaction.
However, before you do this, you leave your desk to fetch a cup of coffee
and get distracted by a colleague who needs some assistance and in the
meantime all the other users are blocked from using the same or possibly
some other functionality.
C/SIDE automatically detects this when you use, for example, the
Form.RUNMODAL command after you have locked a resource. You would
get the following error message:
The following C/AL functions can be used only to a limited degree during
write transactions (because one or more tables will be locked).
Form.RunModal() is not allowed in write transactions.

CodeUnit.Run() is allowed in write transactions only if the return value is
not used. For example, OK := CodeUnit.Run() is not allowed.

Report.RunModal() is allowed in write transactions only if
RequestForm = FALSE. For example,
Report.RunModal(...,FALSE) is allowed.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 44

DataPort.RunModal() is allowed in write transactions only if
RequestForm = FALSE. For example,
DataPort.RunModal(...,FALSE) is allowed.

Use the COMMIT function to save the changes before this call, or structure
the code differently.
Unfortunately C/SIDE doesn’t detect other commands which can be used
for user input such as Window.INPUT and IF [NOT] CONFIRM
constructs.

Application Setup
It is also worthwhile reviewing some of the application setup.

For example, if you enable the Automatic Cost Posting field in the
Inventory Setup table, every stock transaction automatically generates an
entry in the General Ledger.

Another example is the Update on Posting field in the Analysis View
table, which tells the system to generate analysis view entries for the view
when you post to the General Ledger.
It could be a disaster if both of these fields are enabled because when you
post a sales order or a purchase order with items, the system will post
(lock) to the Item Ledger table as well as to the General Ledger table and
it will update (lock) the Analysis View table.

Overnight Processing
You might consider performing some heavy tasks outside of normal
working hours (overnight) by using the Navision CRM Job Scheduling
functionality. Batch jobs such as Adjust Cost - Item Entries and Post
Inventory Cost to G/L are typical examples.

Tools

The Performance Troubleshooting Guide manual contains tools and
instructions that explain how to analyze the record locking order of
transactions and compare them with the locking order rules. The locking
order rules must be defined in the Locking Order Rules form. The
Performance Troubleshooting Guide contains only a sample locking rule.
The most practical way of identifying the locking order rules is to focus on
the key procedures and document the order in which they lock the various
tables.
To identify the locking order rules for a procedure:

1. Start the Client Monitor.

2. Perform an isolated task (procedure).

3. Stop the Client Monitor.

4. Run the Transactions form.

5. Run the Transaction Locking Order form.

6. Use the locking order as manual input for the Locking Order Rules form.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 45

After you have defined the locking order rules, you can perform the same
procedure for the next task. You can then check that the second procedure
does not violate the locking order rules that you identified for the first
procedure.
You must:

1. Start the Client Monitor.

2. Perform an isolated task.

3. Stop the Client Monitor.

4. Run the Transactions (Locking Rules) form.

5. In the Transactions (Locking Rules) window, you must check the Locking Rule
Violations field.

6. Click Transaction, Locking Rules Violations to check the violation.

7. In Locking Rules Violations window, you can see if and how your transaction
violated the locking order rules. You can now fix the code, amend the locking
order rules or decide that the probability of the two processes running
concurrently is minimal and ignore the violation.

Needles to say, you can run the Code Coverage tool during the test and
this will help you identify the code that is causing the conflicts. However the
Code Coverage tool is quite a ‘heavy’ tool and should not be used for
multiple transactions, or run for more than 10 minutes. It takes a long time
to perform complex procedures when the Code Coverage tool is running
and it also takes some time to process the information in the tool
afterwards. On the other hand, if you only use the Client Monitor without
the Code Coverage tool you will normally get enough information to identify
the code that is causing the conflict.
In summary, you can run the Client Monitor on its own in a real-life
environment without experiencing any major decrease in performance and
still get the information needed to resolving incorrect locking order
problems.
Important
You must perform all these steps for both server options because the locking order could
look very different in the two options.

The only way to lock a record on SQL Server is to actually read it, while on
Navision Database Server you can use the LOCKTABLE command to
dictate and define the locking order. The LOCKTABLE command on SQL
Server Option does not do anything except flag internally that locks will be
placed later when records are read.

Using PINTABLE for Small Hot Tables
Some Navision application tables might be:
• small

• temporary

• accessed all the time (hot)

• over indexed

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 46

A typical example could be the Warehouse Activity Line table. In a busy
warehousing application, Picks and Put-Away documents are
created/registered (deleted) frequently in this table. However, it would not
exceed more than several hundred records, and would have many indexes
that are similar (use sp_helpindex to see the standard application
indexes).
The following adjustments can improve performance:
• Use the MaintainSIFTIndex property to disable all the SIFT tables that are based on the

source table.

• Use the MaintainSQLIndex property to disable all but a few of the SQL Server Indexes.

• Study the changes and if reading the tables is still too slow, pin the table to memory
using DBCC PINTABLE.

Note
Pinning the table doesn’t mean that it is read to memory automatically. You can ensure
that the table is cached in memory by scheduling a job that reads the entire table (using
SELECT *…) to run every time SQL Server starts.

For further information about the DBCC PINTABLE command, see SQL
Server Books Online.
The following information is taken from SQL Server Books Online.

DBCC PINTABLE

Marks a table to be pinned, which means SQL Server does not flush the
pages for the table from memory.

Syntax
DBCC PINTABLE (database_id , table_id)

Arguments
database_id
This is the database identification (ID) number of the table to be pinned. To
determine the database ID, use the DB_ID function.

table_id
This is the object identification number of the table to be pinned. To
determine the table ID, use the OBJECT_ID function.

Remarks
DBCC PINTABLE does not read the table into memory. As the pages from
the table are read into the buffer cache by normal Transact-SQL
statements, they are marked as pinned pages. SQL Server does not flush
pinned pages when it needs space to store a new page. SQL Server still
logs updates to the page and, if necessary, writes the updated page back
to disk. SQL Server does, however, keep a copy of the page in the buffer
cache until the table is unpinned with the DBCC UNPINTABLE statement.

DBCC PINTABLE is useful for keeping small, frequently used tables in
memory. The pages for the small table are read into memory once and
then all future references to this data do not require a disk read.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 47

Important
Although DBCC PINTABLE can give performance improvements, it must be used with
care. If a large table is pinned, it can start using a large portion of the buffer cache and not
leave enough cache to service the other tables in the system adequately. If a table larger
than the buffer cache is pinned, it can fill the entire buffer cache. To unpin the table, a
member of the sysadmin fixed server role must shut down SQL Server and restart SQL
Server. Pinning too many tables can cause the same problems as pinning a table larger
than the buffer cache.

Warning
Pinning tables should be carefully considered. If a pinned table is larger, or grows larger,
than the available data cache, the server may need to be restarted and the table
unpinned.

DBCC execution completed. If DBCC printed error messages, contact your
system administrator.

Permissions
DBCC PINTABLE permissions default to members of the sysadmin fixed
server role and are not transferable.

Examples
This example pins the Authors table in the Pubs database:
DECLARE @db_id int, @tbl_id int
USE pubs
SET @db_id = DB_ID('pubs')
SET @tbl_id = OBJECT_ID('pubs..authors')
DBCC PINTABLE (@db_id, @tbl_id)

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 48

SQL Server Maintenance
This section focuses on some of the most important maintenance tasks on
SQL Server. These include updating statistics, defragmenting indexes and
optimizing fill factors. You can use a Database Maintenance Plan in SQL
Server to manage this, as well as other tasks such as backup, disaster
recovery, etc.

Updating SQL Server Statistics

When you create a Navision database on SQL Server, statistical
information is created automatically. In order for the SQL Server Option for
Navision to function optimally, you must update these statistics regularly.
You can use two commands to update statistics:
• update statistics [table name] to update the statistics for a single table.

• sp_updatestats to update the statistics for all the tables.

For more information about these functions, see SQL Server Books Online.
Notes:

• Updating the statistics for Navision tables can be a time-consuming task depending on
the number of records that the tables contain. The tables that are updated most often
are the tables whose statistics must be updated most regularly. Therefore, we
recommend that you create a job on SQL Server that performs regular updates of all
the tables when the system is not in use. If performing the update is still too time-
consuming, you can divide it into smaller jobs that update the statistics for some of the
tables. Creating a SQL job allows you to automate the task and generate reports
containing details about the success of the job.

• If you update statistics regularly using SQL jobs, turn off the Auto Update Statistics and
Auto Create Statistics options otherwise you may have unpredictable behavior when
this process starts during normal working hours.

To turn off these options:

1. Open SQL Server Enterprise Manager and select the Navision database.

2. Right–click the database and select Properties.

3. In the Properties window, click the Options tab, and make sure that the Auto
Update Statistics and Auto Create Statistics options are not selected.

• If you use SQL jobs to update statistics regularly, make sure that when you create,
modify or delete a table or index in Navision your SQL jobs are updated accordingly.

Index Fragmentation

The following is an excerpt from SQL Server Books Online:
When you create an index in the database, the index information used by queries is
stored in index pages. The sequential index pages are chained together by pointers from
one page to the next. When changes are made to the data that affect the index, the
information in the index can become scattered in the database. Rebuilding an index
reorganizes the storage of the index data (and table data in the case of a clustered index)
to remove fragmentation. This can improve disk performance by reducing the number of
page reads required to obtain the requested data.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 49

There are a number of alternative ways to reduce the fragmentation of an index, the most
common being:

• DBCC INDEXDEFRAG

• DBCC DBREINDEX

Unlike DBCC DBREINDEX (or the index building operation in general), DBCC
INDEXDEFRAG is an online operation. It does not hold locks for a long time and therefore
does not block running queries or updates. A relatively unfragmented index can be
defragmented faster than a new index can be built because the time it takes to
defragment is related to the amount of fragmentation. A very fragmented index might take
considerably longer to defragment than to rebuild. Furthermore, the defragmentation is
always fully logged, regardless of the database recovery model setting (see ALTER
DATABASE). Defragmenting a very fragmented index can generate a larger log than even
a fully logged index creation. The defragmentation, however, is performed as a series of
short transactions and therefore does not require a large log if log backups are taken
frequently or if the recovery model setting is SIMPLE.

Whichever method is chosen, it is possible to detect the fragmentation of an index by
using the DBCC SHOWCONTIG command. It is recommended that indexes are maintained
more frequently on volatile tables, perhaps via a scheduled job or a maintenance plan.

In general, if the level of Extent switches is much higher than Extents scanned, or a low
scan density is detected, defragmenting or rebuilding the index may be beneficial. See
DBCC SHOWCONTIG in Books Online for further details, and a sample script that you can
use to detect a fragmented index and rebuild it if the specified threshold is exceeded.

Index Defrag Tool

This tool gives you easy access to some SQL Server functionality from
within Navision. It contains a simple user interface that allows you to
quickly identify the tables in your application that contain fragmented
indexes or indexes that need to be rebuilt. It also allows you to generate a
report containing details of the tables that you have analyzed.
This tool calls a SQL statement called DBCC SHOWCONTIG that gathers
and displays fragmentation information for the data and indexes of the
specified table. For more information about this procedure, see SQL Server
Books Online.

Setting Up the Index Defrag Tool
To set up the Index Defrag Tool:

1. In Navision, open the Object Designer and import Index Defrag 50090.fob.

2. Open form 50090, Index Defrag Card:

Index Defrag Card

For more information about any of the fields in this window, see SQL Server
Books Online.

3. Click Defrag, Setup, File Locations to open the SQL IO Setup window:

SQL IO Setup

4. In the SQL Script File Directory field, enter the path to the folder where you want
to store the scripts that are generated by this tool.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 50

5. In the Index Defrag Script Filename field, enter the name that you want to give
the script that you use to run the DBCC SHOWCONTIG SQL statement in your
database. You can edit this file so that it always uses the same database.

6. In the Rebuild Index Script Filename field, enter the name that you want to give
this file. This is the file that you use to store the information about which tables
contain indexes that should be defragmented or rebuilt.

7. Click the Execute tab and in the Query Analyzer field, click the AssistButton and
browse to the folder where the .exe file for the SQL Server Query Analyzer is
stored. This could be on another computer. If Query Analyzer is installed on your
local computer, you can just enter isqlw – the name of the exe file for Query
Analyzer.

Connecting with the Server
The Index Defrag Tool allows you to specify which instance of SQL Server
you want to connect with, which kind of authentication you want to use and
change the password for you database login.
To connect with an instance of SQL Server:

1. In the Index Defrag Card window, click DeFrag, Setup, SQL Connection to open
the SQL Connection Setup window:

SQL Connection Setup

2. In the Server Name field, enter the name of the SQL Server that you want to
connect with.

3. In the NT Authentication field, enter a checkmark if you want to use NT
authentication when connecting to the server. If you want to use a database login
to connect to the server, enter the user ID and password of the database login
that you want to use.

4. If you want to change the password of a database login, click Edit Password.

5. Click Test Connection to see whether or not you can connect with the server.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 51

Running the Index Defrag Tool
Now that you have set up the tool, you can start to run it.
To run the Index Defrag tool:

1. In the Index Defrag Card window, click Process. The tool now runs the DBCC
SHOWCONTIG SQL statement. When it is finished, it populates the Index Defrag
Card with the results:

Index Defrag Card

You can also print a report that summarizes the information contained in
this window. To print this report click Defrag, DBCC Showcontig, Print
Results.
The Index Defrag tool also contains functionality that allows you to get a
better overview of the data that has been collected. This makes it much
easier for you to identify the tables that contain fragmented indexes.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 52

Identifying Fragmented Indexes
To identify the fragmented indexes:

1. Open the Index Defrag Card window and click Recommend and the Index
Defrag Recommendations window opens:

Index Defrag Recommendations

2. Click Recommend, Generate and the Index Defrag Recommendations window
is populated with data telling you which indexes the tool recommends should be
defragmented and which should be re-indexed:

Index Defrag Recommendations

If the tool has found any tables that contain fragmented indexes or indexes
that need to be rebuilt, there is a check mark in the appropriate field for that
table.
You can add or remove check marks as you see fit.
If you would like to defragment the indexes in every table or rebuild every
index in the database, click Override, DBReIndex – All or IndexDefrag – All
depending on what you want to do.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 53

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 54

Important
Rebuilding indexes is a complicated and time consuming process that locks many
resources and should only be done when there are no users accessing the database.
Index defragmentation can be performed at any time.

To defragment the indexes:
1. When you have decided which indexes need defragmenting, click Recommend,

Create Scripts to create the SQL scripts that will defragment and rebuild the
indexes.

2. Click Recommend, Edit/Execute Scripts and the scripts are opened in the Query
Analyzer. You can now edit the scripts if you want to.

3. In Query Analyzer, run the script and the indexes are defragmented.

You can verify that the indexes have been defragmented by repeating the
entire process described in this section.
You can also print a report that lists all the tables and tells you which ones
should be defragmented and which ones should be rebuilt. To generate
this report click Recommend, Print Report.

Maintenance Plan

Many of the topics that we have discussed in this document can be
addressed by creating a SQL Server maintenance plan. A maintenance
plan can be created that addresses such issues as automating backups
and rebuilding indexes on a scheduled basis. You can use a wizard to
create a maintenance plan and this is fully documented in SQL Server
Books Online.
Excerpt from SQL Server Books Online:
The Database Maintenance Plan Wizard can be used to help you set up the core
maintenance tasks necessary to ensure that your database performs well, is regularly
backed up in case of system failure, and is checked for inconsistencies. The Database
Maintenance Plan Wizard creates a SQL Server 2000 job that performs these
maintenance tasks automatically at scheduled intervals.

The maintenance tasks that can be scheduled to run automatically are:

• Reorganizing the data on the data and index pages by rebuilding indexes with a new fill
factor. This ensures that database pages contain an equally distributed amount of data
and free space, which allows future growth to be faster. For more information, see Fill
Factor.

• Compressing data files by removing empty database pages.

• Updating index statistics to ensure the query optimizer has up-to-date information
about the distribution of data values in the tables. This allows the query optimizer to
make better judgments about the best way to access data because it has more
information about the data stored in the database. Although index statistics are
automatically updated by SQL Server periodically, this option can force the statistics to
be updated immediately.

• Performing internal consistency checks of the data and data pages within the database
to ensure that a system or software problem has not damaged data.

• Backing up the database and transaction log files. Database and log backups can be
retained for a specified period. This allows you to create a history of backups to be
used in the event that you need to restore the database to a time earlier than the last
database backup.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 55

• Setting up log shipping. Log shipping allows the transaction logs from one database
(the source) to be constantly fed to another database (the destination). Keeping the
destination database in synchronization with the source database allows you to have a
standby server, and also provides a way to offload query processing from the main
computer (source server) to read-only destination servers.

The results generated by the maintenance tasks can be written as a report to a text file,
HTML file, or the sysdbmaintplan_history tables in the msdb database. The report can
also be e-mailed to an operator.

Optimizing Navision Tables

Navision includes a feature that you can use to optimize your database
tables.
To optimize a table:
• Click File, Database, Information, and the Database Information window opens.

• Click Tables and the Database Information (Tables) window opens.

• Select the table or tables that you want to optimize and click Optimize. You can select a
single table, several tables or all the tables.

What Does Table Optimization Do?
Navision executes the following statement for each index that is maintained
on SQL Server:

CREATE …. INDEX …. WITH DROP_EXISTING

If any SIFT tables are maintained, the zero entries are removed from the
SIFT tables.

What Are the Benefits?
The benefits of table optimization include:
• Better performance as a result of defragmenting the indexes.

• Fewer records in the SIFT tables. There is a simple reason for this – Navision does not
delete SIFT records. If you, for example, maintain some SIFT indexes on temporary
tables such as the Warehouse Activity Line table, the SIFT records are not deleted
from the SIFT tables when you delete (process) the records from the source table.

How Long Does It Take to Optimize?
It takes the same amount of time as it takes to create the indexes from
scratch.

Can the Process Be Scheduled on SQL Server?
You can automate the first part using DBCC REINDEX or
DBCC INDEXDEFRAG, however rebuilding SIFT tables cannot be
automated easily and is not without its risks.
You can design custom SQL queries that delete records that contain zero
values from the SIFT tables – all the ‘s’ columns contain zero values.
However, those queries must be modified whenever you change the
design of the SIFT indexes in Navision.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 56

Server Performance Counters to Monitor

The following table contains a list server counters that you should monitor
and lists the recommended action that you should take if the counters are
not at their optimum value:

Performance
Object

Counter
Name

Instances Best Value Recommendation
(when the Best
Value is not met)

Available
MBytes

SQL Server
TS Servers

>5MB Add more memory
Reserve less memory
for SQL Server

Memory

Pages/sec SQL Server
TS Servers

<25 Add more memory
Reserve less memory
for SQL Server

Avg. Disk Read
Queue length

SQL Server
Disks

<2 Change disk system Physical Disk

Avg. Disk Write
Queue length

SQL Server
Disks

<2 Change disk system

Processor % Processor
Time

SQL Server
TS Servers

0-80 Add more CPUs

Processor
queue Length

SQL Server
TS Servers

<2 Add more CPUs System

Context
Switches/sec

SQL Server
TS Servers
(multi-
processors)

<8000 Set Affinity Mask

Network Interface Output Queue
Length

SQL Server
TS Servers

<2 Increase network
capacity

Full Scans/sec SQL Server Review Navision C/AL
code

SQL Server
Access Methods

Page Splits/sec SQL Server 0 Defrag SQL Server
indexes
Review Navision C/AL
Keys

SQL Server Buffer
Manager

Buffer cache hit
ratio

SQL Server >90 Add more memory

SQL Server
Databases

Log Growths SQL Server O (during peak
times)

Increase and set the
size of the transaction
log

SQL Server
General Statistics

User
Connections

SQL Server

Lock
Requests/sec

SQL Server Review Navision C/AL
code

SQL Server Locks

Lock Waits/sec SQL Server Review Navision C/AL
code

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 57

Troubleshooting
The Performance Troubleshooting Guide that is available on the Navision
tools CD includes tools and documentation that help Navision developers
identify code bottlenecks, parts of the code that execute slowly as well as
identify blocking and deadlocking situations.

SQL Diagnostic Utility

The sqldiag utility gathers and stores diagnostic information and the
contents of the query history trace (if it is running). The output file includes
error logs, output from sp_configure and additional version information.
If the query history trace is running when the utility is invoked, the trace file
will contain the last 100 SQL events and exceptions.
sqldiag is intended to expedite and simplify information gathering by
Microsoft Product Support Services. If you have any problem with your
SQL Server you will be asked to provide this information.
Running with the default options:
Run sqldiag.exe in the MSSQL\Binn folder. The default path is:
C:\Program Files\Microsoft SQL Server\MSSQL\Binn\sqldiag.exe

Collecting the results:
Collect SQLdiag.txt in the MSSQL\LOG folder. The default path is:
C:\Program Files\Microsoft SQL Server\MSSQL\LOG\SQLdiag.txt

For more information:
http://msdn.microsoft.com/library/en-us/coprompt/cp_sqldiag_96k9.asp

Typical Performance Problems

The following table lists some of the problems that have been dealt with by
Microsoft Business Solutions support teams:

Area Problem Examples and Comments
Badly configured
disks

using RAID5,
incorrect stripe size, incorrect cache policy,
database files and transaction log files on same disk,
too many disks on the same channel,
database files not spread across the disks,

RAM 4GB RAM on machine, 2GB only used by SQL Server –
must use Windows Advanced Server and enable 3GB
switch.

Hardware

Parallelism Reducing the Max Degree of Parallelism to 1 increased
performance of heavy batch jobs.
No maintenance plan Platform Maintenance
No archiving plans – tables can grow very large over
the years.

http://msdn.microsoft.com/library/en-us/coprompt/cp_sqldiag_96k9.asp

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 58

Area Problem Examples and Comments
Old version of
C/SIDE

It is a highly recommended that you keep your C/SIDE
up to date – there are potentially big performance
improvements and upgrading C/SIDE is nowhere near
as costly as upgrading the application.
Large ‘empty’ SIFT tables – Optimize the tables to
remove the entries which have zero sums or are based
on nonexistent source tables.
Too may SIFT indexes on hot tables.
Too many SIFT levels maintained on big composite
indexes.
SIFT indexes on ‘temporary’ tables such as 36, 37, 38,
39 and so on. The record sets in these tales are
typically small and only live in the database for several
days.

SIFT

SIFT indexes on the Warehouse Activity Line table
can cause deadlocks.

Indexes Too many indexes on ‘hot’ tables such as the ledger
entry tables.
User input screen left hanging after processing has
been started thereby locking the tables involved.

Users

Renaming an object during working hours and causing
massive blocks because the application needs to
update (lock) all the relevant tables.
Enabling “Automatic Cost Posting” and/or “Expected
Cost Posting to G/L” in Inventory Setup. These
functions extend the processing time of any stock
transaction by posting to the General Ledger and
locking the G/L Entry table. It makes more sense to run
this as a batch job outside normal working hours.
Enabling “Update on Posting” in Analysis Views. This
function extends processing times of any G/L
transaction by updating the view. It makes more sense
to run this as a batch job outside normal working hours.
Posting to large journals during work hours.
Inventory cost adjustment during work hours.
Batch posting stock to G/L during work hours.

Business Logic
and Timing

Running MRP during work hours.
Enabling automatic credit limit warnings (but not using
the feature) – the code updates a lot of calcfields.

Calcfields

Enabling automatic stock out warnings (but not using
the feature) – the code updates a lot of calcfields.

Processing
Lengthy
Transactions

One lengthy transaction can, for example, fetch all the
sales lines, create and release picks, update associated
purchase orders and so on. While this activity is run,
almost all the users are blocked.

Dimensions Too many dimensions. The more dimensions you have
the more indexes and SIFT tables need to be updated
and maintained.
Enabling the Find as you Type feature.

Application

General
Running ad hoc queries on large tables.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 59

Useful Links
SQL Server 2000 Operations Guide
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sqlops0.mspx

The contents of this guide are drawn from the knowledge and best practice
guidelines drawn up by Microsoft Consulting Services (MCS), Microsoft’s
Internal Technical Support Group, and the SQL Server Development
Team.

How To: Use the SQLIOStress Utility to Stress a Disk Subsystem
Such As SQL Server
http://support.microsoft.com/default.aspx?scid=kb;en-us;231619

Assessing the New Microsoft SQL Server 2000 Resource Kit
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsqlpro01/html/sql01f1.asp

Microsoft SQL Server 2000 Resource Kit CD
http://www.microsoft.com/resources/documentation/sql/2000/all/reskit/en-us/sql2krk.mspx

Microsoft SQL Server 2000 Best Practices Analyzer 1.0 Beta
http://www.microsoft.com/downloads/details.aspx?FamilyID=B352EB1F-D3CA-44EE-
893E-9E07339C1F22&displaylang=en

Microsoft SQL Server Best Practices Analyzer is a database management
tool that lets you verify the implementation of best practices on your
servers.

How to View SQL Server 2000 Performance Data
http://support.microsoft.com/default.aspx?scid=kb;en-us;283886

Identifying Common Administrative Issues for Microsoft SQL Server
2000
http://support.microsoft.com/default.aspx?scid=kb;en-us;322322

How to Monitor SQL Server 2000 Blocking
http://support.microsoft.com/default.aspx?scid=kb;en-us;271509

http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sqlops0.mspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;231619
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsqlpro01/html/sql01f1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsqlpro01/html/sql01f1.asp
http://www.microsoft.com/resources/documentation/sql/2000/all/reskit/en-us/sql2krk.mspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=B352EB1F-D3CA-44EE-893E-9E07339C1F22&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=B352EB1F-D3CA-44EE-893E-9E07339C1F22&displaylang=en
http://support.microsoft.com/default.aspx?scid=kb;en-us;283886
http://support.microsoft.com/default.aspx?scid=kb;en-us;271509

About Microsoft Business Solutions
Microsoft Business Solutions, a division of Microsoft, offers a wide range of integrated,
end-to-end business applications and services designed to help small, midmarket and
corporate businesses become more connected with customers, employees, partners and
suppliers. Microsoft Business Solutions' applications optimize strategic business
processes across financial management, analytics, human resources management,
project management, customer relationship management, field service management,
supply chain management, e-commerce, manufacturing and retail management. The
applications are designed to provide insight to help customers achieve business success.
More information about Microsoft Business Solutions can be found at
http://www.microsoft.com/BusinessSolutions/

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment
on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter
in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document
does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Business Solutions ApS, Denmark. All rights reserved.

Microsoft, Great Plains, Navision are either registered trademarks or trademarks of Microsoft Corporation, Great Plains Software,
Inc or Microsoft Business Solutions ApS or their affiliates in the United States and/or other countries. Great Plains Software, Inc.
and Microsoft Business Solutions ApS are subsidiaries of Microsoft Corporation. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners. The example companies, organizations, products, domain
names, email addresses, logos, people and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, or event is intended or should be inferred.

Microsoft Business Solutions–Navision SQL Server Option Resource Kit 60

http://www.microsoft.com/BusinessSolutions/

	Introduction
	Planning
	Maximum Capacity Specifications for SQL Server
	Maximum Number of Processors Supported by SQL
	Maximum Physical Memory Supported by the Editions of SQL Ser

	Design
	Using Find Statements
	FINDFIRST and FINDLAST
	Looping with FINDSET

	Understanding Navision Indexes and the SQL Server Option
	How Indexes Work in Navision

	Minimizing the Impact on SQL Server
	Useful SQL Server Commands
	sp_helpindex

	Optimizing Navision Indexes and SIFT Tables
	Minimize the Number of Indexes
	Indexes on ‘Hot’ Tables
	Redesign Indexes for Better Selectivity
	SQLIndex Key Property
	Clustered Key Property
	Small/Temporary Tables SIFT Maintenance
	Minimize Number of SIFT Buckets

	Tools
	Indexes
	Indexes per Table
	Number of Indexes per Table
	Number of Index Updates
	Index Structures
	Number of SIFT Indexes
	Number of SIFT Buckets

	Key Information Tool
	Setting Up the Key Information Tool
	Using the Key Information Tool

	The Navision Database Sizing Tool
	Scope of NDST
	Contents of NDST
	How to Use NDST

	Estimating Database Size of a New System
	Changing the Underlying Factors
	Details
	Forecasting Database Growth for an Existing System
	Creating Snapshots to Evaluate Database Growth
	The DB Sizing Card
	Create Snapshot:
	Generate Report:
	Clear:
	Delete all versions:
	Import SQL Snapshot:

	Troubleshooting
	Factors that Affect Database Growth
	Use NDST to Make Customer Specific Estimates:
	Typical Factors that Affect Database Growth:
	Number of Posting Groups
	Part Shipping:

	Modifying the Key in an Index
	Example of bad code
	Example of good code 1 (restoring key value)
	Example of good code 2 (restoring key value)
	Example of good code 3 (separate variables for browsing)

	Form Design and Performance
	SIFT
	Display on Demand
	Never place FlowFields on List Forms
	SourceTablePlacement Property

	Find As You Type Feature

	Locking and Deadlocks
	Deadlocks
	Preventing Deadlocks

	LOCKTIMEOUT
	Always Rowlock

	Minimizing the Duration of Locks
	Never Allow User Input during a Transaction
	Application Setup
	Overnight Processing

	Tools

	Using PINTABLE for Small Hot Tables
	DBCC PINTABLE
	Syntax
	Arguments
	database_id
	table_id

	Remarks
	Important
	Warning
	Permissions
	Examples

	SQL Server Maintenance
	Updating SQL Server Statistics
	Index Fragmentation
	Index Defrag Tool
	Setting Up the Index Defrag Tool
	Connecting with the Server
	Running the Index Defrag Tool
	Identifying Fragmented Indexes
	Important

	Maintenance Plan
	Optimizing Navision Tables
	What Does Table Optimization Do?
	What Are the Benefits?
	How Long Does It Take to Optimize?
	Can the Process Be Scheduled on SQL Server?

	Server Performance Counters to Monitor

	Troubleshooting
	SQL Diagnostic Utility
	Typical Performance Problems

	Useful Links
	SQL Server 2000 Operations Guide
	How To: Use the SQLIOStress Utility to Stress a Disk Subsyst
	Assessing the New Microsoft SQL Server 2000 Resource Kit
	Microsoft SQL Server 2000 Resource Kit CD
	Microsoft SQL Server 2000 Best Practices Analyzer 1.0 Beta
	How to View SQL Server 2000 Performance Data
	Identifying Common Administrative Issues for Microsoft SQL S
	How to Monitor SQL Server 2000 Blocking
	About Microsoft Business Solutions

