
.NET INTEROPERABILITY IN NAV 2013 R2 
FOR MERE MORTALS

Vjekoslav Babić
(Fortempo)



Vjekoslav Babić

consultant, trainer, blogger, author

Twitter: @vjekob

Mibuso: Vjeko

Blog: vjeko.com

Author of many How Do I… videos for MSDN and PartnerSource for NAV 2013, NAV 2013 R2, and NAV 2015

Co-author of “Implementing Microsoft Dynamics NAV 2009” book

ABOUT ME



Many practical “how do I do this or that” in .NET 
Interoperability

Arrays Strings
Regular 

expressions
File system

Surviving 
different 

data 
formats

Converting 
between 

types

Handling 
Base64

Using 
Visual 

Studio and 
C# like a 

pro

AGENDA



“A mere mortal C/AL developer understands .NET arrays.”

(ancient Chinese proverb)

System.Array



WHY DO WE NEED .NET ARRAYS?



THE “ARRAY” PATTERN



Create a template in an easy accessible place (OneNote, for example):

• List DotNet variables of most commonly used types

• Create code templates

• Copy/Paste them when needed

LIFE HACK #1
(Pssst! This is trade secrets, don’t share this, you!)





A powerful class that handles text information

Maps fully and directly to Text data type in C/AL

System.String



• Parsing a delimited string

• Finding an extension of a file name

DEMO



Regular expressions are to text what SQL language is to relational databases

Fast and efficient:

• Pattern matching

• Searching

• Replacing

REGULAR EXPRESSIONS



Detecting an incorrect e-mail address

Finding e-mail addresses in text

Replacing e-mail addresses in text

DEMO



System.IO.File and System.IO.FileInfo types

System.IO.Directory and System.IO.DirectoryInfo types

System.Path type

HANDLING FILES



Creating a directory structure

Appending text to a file

Checking if a filename contains an invalid character

DEMO



C/AL only understands date, time and number formats of the current language

.NET understands date and number formats of any language

System.DateTime, System.Decimal, and System.CultureInfo types allow you to:

• Show dates, time, and numbers in any date format supported by Windows

• Convert text in any date format supported by Windows into actual DateTime or Decimal value

HANDLING DATE AND NUMBER FORMATS



Reading date, time, and number information in different formats

DEMO



C/AL only knows of two types of streams: input stream, and output stream

There are many different types of streams in .NET, they are all bi-directional (both input and output)

.NET stream map directly and fully to C/AL streams, and variables can be used practically interchangeably

.NET streams can be independent of storage objects and can be manipulated programmatically

STREAMS IN .NET



Downloading a picture from internet and storing it in a BLOB field in the database

DEMO



EVALUATE’s big momma

Allows conversion between practically all built-in value types in .NET

Provides some very useful functionality to handle Base64 encoding

System.Convert



Encoding and decoding to and from Base64

DEMO



.NET code is easier to write in C# than in C/AL

C# has no limitations about accessing .NET, C/AL has aplenty

Native .NET code executes faster than any .NET interoperability code written in C/AL

CREATING CUSTOM ASSEMBLIES



Creating and deploying a simple assembly

DEMO



• Deploy to Global Assembly Cache (GAC)

• Declare properties, not fields

• Make classes serializable

• Use interfaces if at all possible

SOME BEST PRACTICES



Central, machine-wide repository of .NET assemblies

Allows referencing assemblies by knowing their fully qualified name

NAV shows the contents of the Global Assembly Cache in the .NET tab of the Assembly List form

Why should you use GAC?

• Simplifies deployment

• Speeds up development

• Forces you to sign assemblies with a strong name

GLOBAL ASSEMBLY CACHE (GAC)



Deployment to Global Assembly Cache (GAC)

DEMO



Fields are variables declared directly in a class

Properties look like fields, but they are not just variables; they are essentially facades to access data internally stored in

the class

Properties are accessible in C/AL

Fields are not accessible in C/AL

Never declare fields! Properties can be auto-implemented, and it’s easy to turn a field into an auto-implemented

property.

FIELDS VS. PROPERTIES



Fields

Properties

Auto-implemented properties

DEMO



Process that allows a class to be stored (e.g. on a disk, in a database…) and later created as an exact copy of the original

Serialization preserves state of the class

You rarely need to call serialization directly in C/AL, but you benefit if classes are serializable

When creating new classes it is easy to make a class serializable – it costs nothing and makes a massive difference

SERIALIZATION



Why non-serializable classes are not good

How to make a class serializable

Benefitting from serialization

DEMO



Interfaces enable the highest level of code flexibility by allowing a class to be represented (and handled) as a more

general type

Interfaces open doors to various code-level design patterns that simplify coding and enhance extensibility

Interfaces make a lot of senses on classes that perform tasks

Creating an interface from a class is fully automated, it costs nothing, and provides better code structure

Using interfaces in C/AL is as simple as using classes

INTERFACES



Extracting an interface from a class

Using interfaces in C/AL

DEMO








