
BEST PRACTICES IN DEVELOPING
MICROSOFT DYNAMICS NAV 2017 EXTENSIONS

ERIC WAUTERS (WALDO)

IFACTO BUSINESS SOLUTIONS
CLOUD READY SOFTWARE

Extension Management

Development Considerations

Data Management

Session objectives

Extensions in

NAV2016

• Limited set of Object Types

• Codeunits

• Tables

• Pages

• Changes to

• Tables

• Pages

• NO XMLPorts

• NO Queries

• NO Reports

• NO Add-Ins

• NO Web Services

• …

Extensions in

NAV2016

In a nutshell …

What’s new in
NAV2017

Additional Object Types:
• Reports

• XMLPorts

• Queries

• Custom report templates

• Reports

Default and starting data

Multilanguage captions

Support for .Net Framework
Add-Ins

• .NET interop types executed on the server

• Client-side JavaScript

• WinForms extensibility control add-ins

Support for web services

Restore and backup data in
extensions

• NAVAPP.RESTOREARCHIVEDATA

• NAVAPP.DELETEARCHIVEDATA

Updated PowerShell to publish
Extensions

• Publish to SQL db on Azure SQL

Installing Extensions
• Users can install/uninstall from Extensions Mgt
page.

NAV 2017 Extension: New capabilities

Extension
Management

PowerShell

Create your own set of functions

Turn them into a Module

Make sure you use the same module on all environments

On top of this module, create script to maintain your
Extension

Make these scripts part of your app

PowerShell

Set of scripts that "maintains" the extension/app:

• _Settings file

• Create DEV Environment
• Auto naming of environments
• Shared test instance
• Shared orig instance

• Apply Deltas
• Import deltas in the DEV environment

• Create PermissionSet

• Open DEV Environment

• Build and Deploy

• Backup App

PowerShell

Set of scripts that "maintains" the extension/app:

• _Settings file

• Create DEV Environment
• Auto naming of environments
• Shared test instance
• Shared orig instance

• Apply Deltas
• Import deltas in the DEV environment

• Create PermissionSet

• Open DEV Environment

• Build and Deploy

• Backup App

PowerShell

Original
•Needed to create deltas

DEV database
•Development

TEST database
•Always test as an extension

PowerShell – Create DEV Environment

Update your DEV db with your latest developments by importing deltas

Agnostic to
•DB version

•CU Update
•…

Can also handle deletes

It’s dangerous to work with Fob or Txt

PowerShell – Apply deltas

Very necessary

Export-NAVAppPermissionSet

Data

Incorporate it in a script

(same for webservices)

PowerShell – Permission Sets

Never expect your Extension to work as normal development

ALWAYS test an Extension AS an Extension

Steps
•Create a NAVX file

• Increment Build

•Deltas

•Permission sets

•Create AddIn

•…

• If it’s installed on the TEST-environment: uninstall it

•Publish / install in test

•Open TEST

PowerShell – Build And Deploy

Structured way to “save” developments
• Enables SCM

Backup as much as might be useful:
• txt

• Split txt

• fob

• navx

• Deltas

• Reversed deltas

• manifest

PowerShell – Backup

WaldoNAVPad

You don’t have to start from scratch …

GitHub (https://github.com/waldo1001/)

PowerShell Scripts:

https://github.com/waldo1001/Cloud.Ready.Software.PowerShell

WaldoNAVPad

https://github.com/waldo1001/Waldo.NAV

PowerShell

Development

1.PowerShell scripts & settings

2.Build DEV environment

3.Import the basics:
•Upgrade codeunit
•Helper codeunits
•Only in your numberrange!
•Unique naming!

4.UidOffSet

Start with the basics

Start ID (UidOffSet)

This

Is

NOT

good!

Start ID (UidOffSet)

This

Is

NOT

good

either!

When you try to publish an Extension that has conflicting ControlIDs:

• Publish-NAVApp : Merge conflict found for object Page:22, Missing base object
to apply modification, or duplicate new objects fou nd

• At line:1 char:1
• ...

Start ID (UidOffSet)

Suppose the Extension was already published,

but at a later point, an action (with same ID) was added using normal development.

Now you try to install the Extension:

• Install-NAVApp : An error occurred while applying changes from the ' Just4Test
by Cloud Ready Software GmbH 1.0.0.16' app to the a pplication

• object of type 'Page' with the ID '22'. The error w as: The element '< Actions
ID="1100084000" />' can only be added once in this context.

• At line:1 char:118
• + ...

Start ID (UidOffSet)

Suppose the Extension was already installed,

people were using it, but you now you add an action (with the same ID) using normal
development:

All compiles in DEV!

All seems to work in RTC!

But the new action does not show �

Start ID (UidOffSet)

Suppose you come across that situation – you might want to uninstall the Extension.

• unInstall-NAVApp : An error occurred while applying changes from the
'Just4Test by Cloud Ready Software GmbH 1.0.0.16' a pp to the application
object of type 'Page' with the ID '22'. The error w as:

• The element '<Actions ID="1100084000" />' can only be added once in this
context.

• At line:1 char:118
• + ..

Start ID (UidOffSet)

Take care of the UidOffSet

from Day 1

Hour 1

Minute 1

Second 1

Millisecond 1
…

Include it in your PowerShell scripts

Start ID (UidOffSet) - Conclusion

App ID is really important

Make it part of your SCM

Include it in your PowerShell scripts

Manifests

Prerequisites:
•a collection of Object elements that define what must be presently available in the hosting
Microsoft Dynamics NAV deployment in order for this extension to function

Dependencies:
•a collection of Dependency elements that identifies other extensions that this extension has a
specific dependency on

Dependencies vs Prerequisites

Extension Development Demo

CurrPage.SETSELECTIONFILTER
Never change 20000…-tables
No Documentation Trigger allowed
No code on default objects

• No code on new actions on default pages
• No new functions in default tables

Only new Objects in the ISV range!
• For Dynamics 365: 70-million range!
• Mind the UIDOffSet

Naming Conventions:
• Don’t use too generic names – might conflict with other Extensions
• Work with Prefixes specific for your Extension

Menusuites
• Adds surprises

Don’t change Option Values
No processing Reports

Some other GOTCHA ’s

Different approach for:

Missing Events - Approach

Extensions for Dynamics 365 Extensions for your own product

In the Microsoft Cloud On Premise

Managed Service

Your own cloud Infrastructure

Microsoft owns the base product You own the base product

You’re dependent from Microsoft’s events You can create any event you like

e.g.: Converting Quote to Orders

How can you work around it:

Page Events
•No “Sender” (so, no CurrPage)
•No GlobalVAR

Context of Events

� work with CallStack (James Pearson)

Missing Events

If you have suggestions for Microsoft:

http://connect.microsoft.com/dynamicssuggestions

Follow steps here:

https://blogs.msdn.microsoft.com/nav/2015/10/15/integration-events-in-
microsoft-dynamics-nav-2016/

Missing Events - Suggestions

Multiple Subscribers

Erroring events
•not always a compile error
•not always a runtime error
•It usually just ignores the event

Events – considerations

Monitor
•the number of subscriptions on one publisher
•Monitor the errors

•An issue in a subscriber might mean that a subscriber is ignored, while no error is
being showed! � expected business logic is not executed!

•Uncompiled Objects (as a bonus)

On each login

Different behavior per db type

Event Helper

Monitor
•the number of subscriptions on one publisher
•Monitor the errors

•An issue in a subscriber might mean that a subscriber is ignored, while no error is
being showed! � expected business logic is not executed!

•Uncompiled Objects (as a bonus)

On each login

Different behavior per db type

Event Helper

The upgrade process

An error (breaking execution)

A specific part in code (setting breakpoints)

Code Coverage

Debug Extensions

How?

- Manually set Break Points

- Debug Next � Break

- Break on Error

Debug Extensions

How?

- Manually set Break Points

- Debug Next � Break

- Break on Error

Debug Extensions

Publish-NAVApp
• Default: NAVX needs to be signed

• For testing purposes
• you can use –skipverification

• Or: use Self-Signed certificate

DigiCertUtil (https://www.digicert.com/util/)

Code signing

Data

Extension should ensure necessary setup has been done

Extension install
• Recommended when handling archive data

OnNewCompany
• Recommended when new companies need to be handled later

Setup page
• Recommended when user input is necessary

It is not possible to remove certain setup data when you uninstall an extension. (e.g. Job
Queue, Web Services, …)

Handling Initial Data

You always need an upgrade codeunit

Upgrade Extensions

Use generic code is/if possible

Upgrade Extensions

Use generic code is/if possible

Upgrade Extensions

Manage Versions in code:
•NAVAPP.GETARCHIVEVERSION
•1.2.0.0 > 1.10.0.0

Versions

IF

gVersionFunctions.IsLessThan(NAVAPP.GETARCHIVEVERSION,'1.
0.19.4') THEN BEGIN

 RestoreFieldsInModifiedTables(70006800,70006999);

 RestoreAppTables(70006802,70006803);

 DeleteAppTables(70006804,70006999);
END ELSE IF

gVersionFunctions.IsLessThanOrEqualTo(NAVAPP.GETARCHIVEVE

RSION,'1.0.20.2') THEN BEGIN

 RestoreOnlyExistingFieldsOnTables(70006802,70006802);
 DeleteAppTables(23,23);

 RestoreFieldsInModifiedTables(70006800,70006999);

 RestoreAppTables(70006800,70006801);

 RestoreAppTables(70006803,70006999);
END ELSE BEGIN

 RestoreFieldsInModifiedTables(70006800,70006999);

 RestoreAppTables(70006800,70006999);
END;

Let PowerShell help you to be as efficient as possible

Let PowerShell help you to not forget stuff

Test AS an Extension – never expect your software to work as normal
development

Get familiar with the development considerations

Use events with care

Have fun!

Key Takeaways

